Intelligent Learning Analytics Dashboards
Automated Drill-Down Recommendations to Support Teacher Data Exploration
DOI:
https://doi.org/10.18608/jla.2021.7279Keywords:
learning analytics dashboards, drill-down analysis, intelligent dashboards, process mining in educationAbstract
Learning analytics dashboards commonly visualize data about students with the aim of helping students and educators understand and make informed decisions about the learning process. To assist with making sense of complex and multidimensional data, many learning analytics systems and dashboards have relied strongly on AI algorithms based on predictive analytics. While predictive models have been successful in many domains, there is an increasing realization of the inadequacies of using predictive models in decision-making tasks that affect individuals without human oversight. In this paper, we employ a suite of state-of-the-art algorithms, from the online analytics processing, data mining, and process mining domains, to present an alternative human-in-the-loop AI method to enable educators to identify, explore, and use appropriate interventions for subpopulations of students with the highest deviation in performance or learning process compared to the rest of the class. We demonstrate an application of our proposed approach in an existing learning analytics dashboard (LAD) and explore the recommended drill-downs in a course with 875 students. The demonstration provides an example of the recommendations from real course data and shows how recommendations can lead the user to interesting insights. Furthermore, we demonstrate how our approach can be employed to develop intelligent LADs.
References
Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015). Exploring machine learning methods to automatically identify students in need of assistance. In Proceedings of the 11th Annual International Conference on International Computing Education Research (ICER 2015), 9–13 July 2015, Omaha, NE, USA (pp. 121–130). New York: ACM. https://doi.acm.org/10.1145/2787622.2787717
Ahn, J., Campos, F., Hays, M., & Digiacomo, D. (2019). Designing in context: Reaching beyond usability in learning analytics dashboard design. Journal of Learning Analytics, 6(2), 70–85. https://doi.org/10.18608/jla.2019.62.5
Ain, N., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success—A systematic literature review. Decision Support Systems, 125, 113113. https://doi.org/10.1016/j.dss.2019.113113
Ali, L., Hatala, M., Gašević, D., & Jovanovic, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470–489. https://doi.org/10.1016/j.compedu.2011.08.030
Arnold, K. E., & Pistilli, M. D. (2012). Course signals at purdue: Using learning analytics to increase student success. In S. Dawson, C. Haythornthwaite, S. B. Shum, D. Gašević, & R. Ferguson (Eds.), Proceedings of the Second International Conference on Learning Analytics and Knowledge (LAK 2012), Vancouver, BC, Canada, 29 April–2 May 2012 (pp.267–270). New York: ACM. https://doi.org/10.1145/2330601.2330666
Bakharia, A., Corrin, L., de Barba, P. G., Kennedy, G. E., Gašević, D., Mulder, R., . . . Lockyer, L. (2016). A conceptual framework linking learning design with learning analytics. In D. Gašević, G. Lynch, S. Dawson, H. Drachsler, & C. P. Rosé (Eds.), Proceedings of the Sixth International Conference on Learning Analytics and Knowledge (LAK 2016), 25–29 April 2016, Edinburgh, UK (pp. 329–338). New York: ACM. https://doi.org/10.1145/2883851.2883944
Bogarín, A., Cerezo, R., & Romero, C. (2018). A survey on educational process mining. WIREs Data Mining and Knowledge Discovery, 8(1), e1230. https://doi.org/10.1002/widm.1230
Buckingham Shum, S., & Luckin, R. (2019). Learning analytics and AI: Politics, pedagogy and practices. British Journal of Educational Technology, 50(6), 2785–2793. https://doi.org/10.1111/bjet.12880
Cairns, A. H., Gueni, B., Assu, J., Joubert, C., & Khelifa, N. (2015). Analyzing and improving educational process models using process mining techniques. In Proceedings of the Fifth International Conference on Advances in Information Mining Management (IMMM 2015), 21–26 June 2015, Brussels, Belgium (pp. 17–22).
Caron, E., & Daniels, H. (2004). Automated business diagnosis in the OLAP context. In H. A. Fleuren, D. den Hertog, & P. M. Kort (Eds.), Operations Research, Proceedings 2004, Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Jointly Organized with the Netherlands Society for Operations Research (NGB), 1–3 September 2004, Tilburg, Netherlands (pp. 425–433). Berlin: Springer. https://doi.org/10.1007/3-540-27679-353
Charleer, S., Moere, A. V., Klerkx, J., Verbert, K., & Laet, T. D. (2018). Learning analytics dashboards to support adviser-student dialogue. IEEE Transactions on Learning Technologies, 11(3), 389–399. https://doi.org/10.1109/TLT.2017.2720670
Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. SIGMOD Record, 26(1), 65–74. https://doi.org/10.1145/248603.248616
Corrin, L., De Barba, P., Lockyear, L., Gašević, D., Williams, D., Dawson, S., . . . Bakharia, A. (2016). Completing the Loop: Returning Meaningful Learning Analytic Data to Teachers. Australian Government Office for Learning and Teaching. Retrieved from https://ltr.edu.au/resources/ID133068KennedyReport2016.pdf
Dekker, G., Pechenizkiy, M., & Vleeshouwers, J. (2009). Predicting students drop out: A case study. In T. Barnes, M. C. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the Second International Conference on Educational Data Mining (EDM 2009), 1–3 July 2009, Cordoba, Spain (pp. 41–50). www.educationaldatamining.org. Retrieved from https://www.educationaldatamining.org/EDM2009/uploads/proceedings/dekker.pdf
Dollinger, M., Liu, D., Arthars, N., & Lodge, J. (2019). Working together in learning analytics towards the co-creation of value. Journal of Learning Analytics,6(2), 10–26. https://doi.org/10.18608/jla.2019.62.2
Dudík, M., Chen, W., Barocas, S., Inchiosa, M., Lewins, N., Oprescu, M., . . . Wallach, H. (2020, September). Assessing and mitigating unfairness in credit models with the fair learn toolkit (Tech. Rep. No. MSR-TR-2020-34). Microsoft. Retrieved from https://go.ey.com/3kVTOY8
Echeverría, V., Martínez Maldonado, R., Granda, R., Chiluiza, K., Conati, C., & Buckingham Shum, S. (2018). Driving data storytelling from learning design. In A. Pardo et al. (Eds.), Proceedings of the Eighth International Conference on Learning Analytics and Knowledge, (LAK 2018), 7–9 March 2018, Sydney, Australia (pp. 131–140). New York: ACM. https://doi.org/10.1145/3170358.3170380
Ez-zaouia, M., & Lavoué, É. (2017). EMODA: A tutor oriented multimodal and contextual emotional dashboard. In M. Hatalaet al. (Eds.), Proceedings of the Seventh International Conference on Learning Analytics and Knowledge (LAK 2017), 13–17 March 2017, Vancouver, BC, Canada (pp. 429–438). New York: ACM. https://doi.org/10.1145/3027385.3027434
Fluxicon. (n.d.). Disco. Retrieved from https://fluxicon.com/
Fortenbacher, A., Beuster, L., Elkina, M., Kappe, L., Merceron, A., Pursian, A., . . . Wenzlaff, B. (2013). LeMo: A learning analytics application focussing on user path analysis and interactive visualization. In Proceedings of the IEEE Seventh International Conference on Intelligent Data Acquisition and Advanced Computing Systems, (IDAACS 2013), 12–14 September 2013, Berlin, Germany (pp. 748–753). IEEE. https://doi.org/10.1109/IDAACS.2013.6663025
Gourville, J. T., & Soman, D. (2005). Overchoice and assortment type: When and why variety backfires. Marketing Science, 24(3), 382–395. https://doi.org/10.1287/mksc.1040.0109
Govaerts, S., Verbert, K., Duval, E., & Pardo, A. (2012). The student activity meter for awareness and self-reflection. In J. A. Konstan, E. H. Chi, & K. Hööok (Eds.), Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI 2012), Extended Abstracts Volume, 5–10 May 2012, Austin, TX, USA (pp. 869–884). ACM. https://doi.org/10.1145/2212776.2212860
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., . . . Pirahesh, H. (1996). Data Cube: A relational aggregation operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS. In Proceedings of the 12thInternational Conference on Data Engineering, 26 February–1 March 1996, New Orleans, LA, USA (pp. 152–159). https://doi.org/10.1109/ICDE.1996.492099
Hajian, S., Bonchi, F., & Castillo, C. (2016). Algorithmic bias: From discrimination discovery to fairness-aware data mining. In B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, & R. Rastogi (Eds.), Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August 2016, San Francisco, CA,USA (pp. 2125–2126). New York: ACM. https://doi.org/10.1145/2939672.2945386
Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudík, M., & Wallach, H. M. (2019). Improving fairness in machine learning systems: What do industry practitioners need? In S. A. Brewster, G. Fitzpatrick, A. L. Cox, & V. Kostakos (Eds.), Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 4–9 May 2019, Glasgow, UK (pp. 1–16). New York: ACM. https://doi.org/10.1145/3290605.3300830
Hu, Y., Lo, C., & Shih, S. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior,36, 469–478. https://doi.org/10.1016/j.chb.2014.04.002
Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate: Preparing learning analytics dashboards for educational practice. In A. Pardo et al. (Eds.), Proceedings of the Eighth International Conference on Learning Analytics and Knowledge (LAK 2018), 7–9 March 2018, Sydney, Australia (pp. 31–40). New York: ACM. https://doi.org/10.1145/3170358.3170421
Joglekar, M., Garcia-Molina, H., & Parameswaran, A. G. (2019). Interactive data exploration with smart drill-down. IEEE Transactions on Knowledge and Data Engineering, 31(1), 46–60. https://doi.org/10.1109/TKDE.2017.2685998
Jovanovic, J., Dawson, S., Joksimovic, S., & Siemens, G. (2020). Supporting actionable intelligence: reframing the analysis of observed study strategies. In C. Rensing & H. Drachsler (Eds.), Proceedings of the 10th International Conference on Learning Analytics and Knowledge (LAK 2020), 23–27 March 2020, Frankfurt, Germany (pp. 161–170). New York: ACM. https://doi.org/10.1145/3375462.3375474
Jovanovic, J., Gašević, D., Brooks, C. A., Devedzic, V., & Hatala, M. (2007). LOCO-analyst: A tool for raising teachers’ awareness in online learning environments. In E. Duval, R. Klamma, & M. Wolpers (Eds.), Creating New Learning Experiences on a Global Scale, Proceedings of the Second European Conference on Technology Enhanced Learning (EC-TEL 2007), 17–29 September 2007, Crete, Greece (Vol. 4753, pp. 112–126). Berlin: Springer. https://doi.org/10.1007/978-3-540-75195-39
Khosravi, H., Sadiq, S. W., & Gašević, D. (2020). Development and adoption of an adaptive learning system: Reflections and lessons learned. In J. Zhang, M. Sherriff, S. Heckman, P. A. Cutter, & A. E. Monge (Eds.), Proceedings of the 51st ACM Technical Symposium on Computer Science Education, (SIGCSE 2020), 11–14 March 2020, Portland, OR, USA (pp.58–64). New York: ACM. https://doi.org/10.1145/3328778.3366900
Knight, S., & Buckingham Shum, S. (2017). Theory and learning analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gašević (Eds.), The Handbook of Learning Analytics (1st ed., pp. 17–22). Alberta, Canada: Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.001
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694
Lee, D. J. L., Dev, H., Hu, H., Elmeleegy, H., & Parameswaran, A. G. (2019). Avoiding drill-down fallacies with VisPilot: assisted exploration of data subsets. In W. Fu, S. Pan, O. Brdiczka, P. Chau, & G. Calvary (Eds.), Proceedings of the 24th International Conference on Intelligent User Interfaces (IUI 2019), 17–20 March 2019, Marina del Ray, CA, USA (pp.186–196). New York: ACM. https://doi.org/10.1145/3301275.3302307
Leemans, S. J. J., Shabaninejad, S., Goel, K., Khosravi, H., Sadiq, S. W., & Wynn, M. T. (2020). Identifying cohorts: Recommending drill-downs based on differences in behaviour for process mining. In G. Dobbie, U. Frank, G. Kappel, S. W. Liddle, & H. C. Mayr (Eds.), Proceedings of the 39th International Conference on Conceptual Modeling (ER2020), 3–6 November 2020, Vienna, Austria (Vol. 12400, pp. 92–102). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-62522-17
Leemans, S. J. J., Syring, A. F., & van der Aalst, W. M. P. (2019). Earth movers’ stochastic conformance checking. In T. T. Hildebrandt, B. F. van Dongen, M. Röglinger, & J. Mendling (Eds.), Proceedings of the Business Process Management Forum (BPM Forum 2019), 1–6 September 2019, Vienna, Austria (Vol. 360, pp. 127–143). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-26643-18
Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS: A learning analytics visualization tool. In S. Dawson, C. Haythornthwaite, S. Buckingham Shum, D. Gašević, & R. Ferguson (Eds.), Proceedings of the Second International Conference on Learning Analytics and Knowledge, (LAK 2012), 29 April–2May 2012, Vancouver, BC, Canada (pp. 162–163). New York: ACM. https://doi.org/10.1145/2330601.2330642
Liu, D., Bartimote-Aufflick, K., Pardo, A., & Bridgeman, A. (2017). Data-driven personalization of student learning support in higher education. In A. Peña-Ayala (Ed.), Learning Analytics: Fundaments, Applications, and Trends (Vol. 94, pp.143–169). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-52977-65
Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action aligning learning analytics with learning design. American Behavioral Scientist, 57(10), 1439–1459. https://doi.org/10.1177/0002764213479367
Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90–97. https://doi.org/10.1016/j.chb.2014.07.013
Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students in a course using standards-based grading. Computers & Education, 103, 1–15. https://doi.org/10.1016/j.compedu.2016.09.005
Marsh, D., Schroeder, D., Dearden, K., Sternin, J., & Sternin, M. (2004). The power of positive deviance. BMJ (Clinical Research Edition), 329, 1177–1179. https://doi.org/10.1136/bmj.329.7475.1177
Matcha, W., Ahmad Uzir, N., Gasevic, D., & Pardo, A. (2019). A systematic review of empirical studies on learning analytics dashboards: A self-regulated learning perspective. IEEE Transactions on Learning Technologies, 13(2), 226–245. https://doi.org/10.1109/TLT.2019.2916802
Matcha, W., Gasevic, D., Uzir, N. A., Jovanovic, J., & Pardo, A. (2019). Analytics of learning strategies: Associations with academic performance and feedback. In Proceedings of the Ninth International Conference on Learning Analytics and Knowledge (LAK 2019), 4–8 March 2019, Tempe, AZ, USA (pp. 461–470). New York: ACM. https://doi.org/10.1145/3303772.3303787
Mukala, P., Buijs, J. C. A. M., Leemans, M., & van der Aalst, W. M. P. (2015). Learning analytics on Coursera event data: A process mining approach. In P. Ceravolo & S. Rinderle-Ma (Eds.), Proceedings of the Fifth International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA 2015), 9–11 December 2015, Vienna, Austria (Vol. 1527, pp.18–32). CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-1527/paper2.pdf
Pardo, A., Bartimote, K., Buckingham Shum, S., Dawson, S., Gao, J., Gašević, D., . . . Vigentini, L. (2018). OnTask: Delivering data-informed, personalized learning support actions. Journal of Learning Analytics, 5(3), 235–249. https://doi.org/10.18608/jla.2018.53.15
Park, Y., & Jo, I.-H. (2019). Factors that affect the success of learning analytics dashboards. Educational Technology Research and Development, 67(6), 1547–1571. https://doi.org/10.1007/s11423-019-09693-0
Pechenizkiy, M., Trcka, N., Vasilyeva, E., van der Aalst, W. M. P., & Bra, P. D. (2009). Process mining online assessment data. In T. Barnes, M. C. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the Second International Conference on Educational Data Mining (EDM 2009), 1–3 July 2009, Cordoba, Spain (pp. 279–288). Retrieved from https://educationaldatamining.org/EDM2009/uploads/proceedings/pechenizkiy.pdf
Putnam, V., & Conati, C. (2019). Exploring the need for explainable artificial intelligence (XAI) in intelligent tutoring systems (ITS). In C. Trattner, D. Parra, & N. Riche (Eds.), Joint Proceedings of the ACM IUI 2019 Workshops co-located with the24th ACM Conference on Intelligent User Interfaces (ACM IUI 2019), 20 March 2019, Los Angeles, CA, USA (Vol.2327). CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-19.pdf
Queiroz-Sousa, P. O., & Salgado, A. C. (2020). A review on OLAP technologies applied to information networks. ACM Transactions on Knowledge Discovery from Data, 14(1), 8:1–8:25. https://doi.org/10.1145/3370912
Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine,169(12), 866-872. (PMID: 30508424) https://doi.org/10.7326/M18-1990
Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2(1), 7–12. https://doi.org/10.18608/jla.2015.21.2
Saint, J., Gašević, D., Matcha, W., Uzir, N. A., & Pardo, A. (2020). Combining analytic methods to unlock sequential and temporal patterns of self-regulated learning. In C. Rensing & H. Drachsler (Eds.), Proceedings of the 10th International Conference on Learning Analytics and Knowledge (LAK 2020), 23–27 March 2020, Frankfurt, Germany (pp. 402–411). New York: ACM. https://doi.org/10.1145/3375462.3375487
Saint, J., Gašević, D., & Pardo, A. (2018). Detecting learning strategies through process mining. In V. Pammer-Schindler, M. Pérez-Sanagustín, H. Drachsler, R. Elferink, & M. Scheffel (Eds.), Lifelong Technology-Enhanced Learning—Proceedings of the 13th European Conference on Technology Enhanced Learning (EC-TEL 2018), 3–5 September 2018, Leeds, UK (Vol. 11082, pp. 385–398). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-98572-529
Sarawagi, S. (2000). User-adaptive exploration of multidimensional data. In A. E. Abbadi et al. (Eds.), Proceedings of the 26th International Conference on Very Large Data Bases (VLDB 2000), 10–14 September 2000, Cairo, Egypt (pp. 307–316). Morgan Kaufmann. Retrieved from https://www.vldb.org/conf/2000/P307.pdf
Sarawagi, S. (2001). User-cognizant multidimensional analysis. The VLDB Journal,10(2-3), 224–239. https://doi.org/10.1007/s007780100046
Schmitz, M., van Limbeek, E., Greller, W., Sloep, P. B., & Drachsler, H. (2017). Opportunities and challenges in using learning analytics in learning design. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Proceedings of Data Driven Approaches in Digital Education—12th European Conference on Technology Enhanced Learning (EC-TEL 2017), 12–15 September 2017, Tallinn, Estonia (Vol. 10474, pp. 209–223). Springer. https://doi.org/10.1007/978-3-319-66610-516
Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., . . . Dillenbourg, P. (2017). Perceiving learning at a glance: A systematic literature review of learning dashboard research. IEEE Transactions on Learning Technologies, 10(1), 30–41. https://doi.org/10.1109/TLT.2016.2599522
Shabaninejad, S., Khosravi, H., Indulska, M., Bakharia, A., & Isaias, P. (2020). Automated insightful drill-down rec-ommendations for learning analytics dashboards. In Proceedings of the 10th International Conference on Learning Analytics and Knowledge (LAK 2020), 23–27 March 2020, Frankfurt, Germany (pp. 41–46). New York: ACM. https://doi.org/10.1145/3375462.3375539
Shabaninejad, S., Khosravi, H., Leemans, S. J. J., Sadiq, S. W., & Indulska, M. (2020). Recommending insightful drill-downs based on learning processes for learning analytics dashboards. In I. I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Mill ́an (Eds.), Proceedings of the 21st International Conference on Artificial Intelligence in Education, Part I (AIED 2020), 6–10 July 2020, Ifrane, Morocco (Vol. 12163, pp. 486–499). Springer. https://doi.org/10.1007/978-3-030-52237-739
Siemens, G., & Gašević, D. (2012). Guest editorial—Learning and knowledge analytics. Journal of Educational Technology & Society, 15(3), 1–2. Retrieved from https://www.jstor.org/stable/jeductechsoci.15.3.1
Trcka, N., & Pechenizkiy, M. (2009). From local patterns to global models: Towards domain driven educational process mining. In Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA2009), 30 November–2 December 2009, Pisa, Italy (pp. 1114–1119). IEEE Computer Society. https://doi.org/10.1109/ISDA.2009.159
Uzir, N. A., Gašević, D., Matcha, W., Jovanovic, J., & Pardo, A. (2020). Analytics of time management strategies in a flipped classroom. Journal of Computer Assisted Learning, 36(1), 70–88. https://doi.org/10.1111/jcal.12392
van der Aalst, W. M. P. (2016). Process mining—Data science in action (2nd ed.). Berlin: Springer. https://doi.org/10.1007/978-3-662-49851-4v
an der Aalst, W. M. P., Guo, S., & Gorissen, P. (2013). Comparative process mining in education: An approach based on process cubes. In P. Ceravolo, R. Accorsi, & P. Cudré-Mauroux (Eds.), Data-Driven Process Discovery and Analysis—Third IFIP WG 2.6, 2.12 International Symposium (SIMPDA 2013), 30 August 2013, Riva del Garda, Italy, Revised Selected Papers (Vol. 203, pp. 110–134). Belin: Springer. https://doi.org/10.1007/978-3-662-46436-66
Verbert, K., Ochoa, X., Croon, R. D., Dourado, R. A., & Laet, T. D. (2020). Learning analytics dashboards: The past, the present and the future. In C. Rensing & H. Drachsler (Eds.), Proceedings of the 10th International Conference on Learning Analytics and Knowledge (LAK 2020), 23–27 March 2020, Frankfurt, Germany (pp. 35–40). New York: ACM. https://doi.org/10.1145/3375462.3375504
Wise, A. F., & Jung, Y. (2019). Teaching with analytics: Towards a situated model of instructional decision-making. Journal of Learning Analytics,6(2), 53–69. https://doi.org/10.18608/jla.2019.62.4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Learning Analytics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TEST