Networks in Learning Analytics: Where Theory, Methodology, and Practice Intersect

Authors

DOI:

https://doi.org/10.18608/jla.2022.7697

Keywords:

network analysis, networked learning, social network analysis, learning analytics, network science, editorial

Abstract

Network analysis has contributed to the emergence of learning analytics. In this editorial, we briefly introduce network science as a field and situate it within learning analytics. Drawing on the Learning Analytics Cycle, we highlight that effective application of network science methods in learning analytics involves critical considerations of learning processes, data, methods and metrics, and interventions, as well as ethics and value systems surrounding these areas. Careful work must meaningfully situate network methods and interventions within the theoretical assumptions explaining learning, as well as within pedagogical and technological factors shaping learning processes. The five empirical papers in the special section demonstrate diverse applications of network analysis, and the invited commentaries from cognitive network science and physics education research further discuss potential synergies between learning analytics and other sister fields with a shared interest in leveraging network science. We conclude by discussing opportunities to strengthen the rigour of network-based learning analytics projects, expand current work into nascent areas, and achieve more impact by holistically addressing the full cycle of learning analytics.

References

Bakharia, A., & Dawson, S. (2011). SNAPP: A bird’s-eye view of temporal participant interaction. In P. Long, G. Siemens, G. Conole, & D. Gašević (Eds.), Proceedings of the 1st International Conference on Learning Analytics and Knowledge: Connecting the technical, pedagogical, and social dimensions of learning analytics (LAK ʼ11), 27 February–1 March 2011, Banff, AB, Canada (pp. 168–173). ACM Press. https://doi.org/10.1145/2090116.2090144

Barabási, A.-L. (2016). Network science (1st edition). Cambridge University Press.

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509

Barabási, A.-L., & Bonabeau, E. (2003). Scale-free networks. Scientific American, 288(5), 60–69.

Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17(7), 348–360. https://doi.org/10.1016/j.tics.2013.04.010

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. https://doi.org/10.1038/nn.4502

Béres, F., Kelen, D. M., Pálovics, R., & Benczúr, A. A. (2019). Node embeddings in dynamic graphs. Applied Network Science, 4(1), 1–25. https://doi.org/10.1007/s41109-019-0169-5

Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001

Bodin, Ö., & Tengö, M. (2012). Disentangling intangible social–ecological systems. Global Environmental Change, 22(2), 430–439. https://doi.org/10.1016/j.gloenvcha.2012.01.005

Buckingham Shum, S., & Ferguson, R. (2012). Social learning analytics. Educational Technology and Society, 15(3), 3–26.

Budak, C., Agrawal, D., & El Abbadi, A. (2011). Limiting the spread of misinformation in social networks. Proceedings of the 20th International Conference on World Wide Web (WWW 2011), 28 March–1 April 2011, Hyderabad, India (pp. 665–674). ACM Press. https://doi.org/10.1145/1963405.1963499

Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology, 38(1), 155–200. https://doi.org/10.1111/j.1467-9531.2008.00203.x

Butts, C. T. (2009). Revisiting the foundations of network analysis. Science, 325(5939), 414–416.

Chen, B., Chang, Y.-H., Ouyang, F., & Zhou, W. (2018). Fostering student engagement in online discussion through social learning analytics. The Internet and Higher Education, 37, 21–30. https://doi.org/10.1016/j.iheduc.2017.12.002

Chen, B., & Poquet, O. (2020). Socio-temporal dynamics in peer interaction events. Proceedings of the 10th International Conference on Learning Analytics and Knowledge (LAK ’20), 23–27 March 2020, Frankfurt, Germany (pp. 203–208). ACM Press. https://doi.org/10.1145/3375462.3375535

Chen, B., & Zhu, H. (2019). Towards value-sensitive learning analytics design. Proceedings of the 9th International Conference on Learning Analytics and Knowledge (LAK ’19), 4–8 March 2019, Tempe, AZ, USA (pp. 343–352). ACM Press. https://doi.org/10.1145/3303772.3303798

Chen, B., Zhu, X., & Shui, H. (2022, forthcoming). Socio-semantic network motifs framework for discourse analysis. Proceedings of the 12th International Conference on Learning Analytics and Knowledge (LAK ’22), 21–25 March 2022, Online (pp. 500–506). ACM Press. https://doi.org/10.1145/3506860.3506893

Clow, D. (2012). The learning analytics cycle. In S. Buckingham Shum, D. Gašević, & R. Ferguson (Eds.), Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 134–138). ACM Press. https://doi.org/10.1145/2330601.2330636

Contractor, N. (2009). The emergence of multidimensional networks. Journal of Computer-Mediated Communication, 14(3), 743–747. https://doi.org/10.1111/j.1083-6101.2009.01465.x

Dado, M., & Bodemer, D. (2017). A review of methodological applications of social network analysis in computer-supported collaborative learning. Educational Research Review, 22, 159–180. https://doi.org/10.1016/j.edurev.2017.08.005

Dawson, S., Joksimovic, S., Poquet, O., & Siemens, G. (2019). Increasing the impact of learning analytics. Proceedings of the 9th International Conference on Learning Analytics and Knowledge (LAK ’19), 4–8 March 2019, Tempe, AZ, USA (pp. 446–455). ACM Press. https://doi.org/10.1145/3303772.3303784

de Arruda, G. F., Petri, G., & Moreno, Y. (2020). Social contagion models on hypergraphs. Physical Review Research, 2(2), 023032. https://doi.org/10.1103/PhysRevResearch.2.023032

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904–927. https://doi.org/10.1007/s11336-017-9557-x

Feng, X., van Aalst, J., Chan, C. K. K., & Yang, Y. (2021). Developing progressive knowledge building through idea-friend maps and opportunistic collaboration. Proceedings of the 15th International Conference of the Learning Sciences (ICLS ’21), 8–11 June 2021, Bochum, Germany (pp. 370–377). International Society of the Learning Sciences. https://repository.isls.org//handle/1/7491

Gašević, D., Zouaq, A., & Janzen, R. (2013). “Choose your classmates, your GPA is at stake!”: The association of cross-class social ties and academic performance. American Behavioral Scientist, 57(10), 1460–1479. https://doi.org/10.1177/0002764213479362

Gardner, J., & Brooks, C. (2018). Coenrollment networks and their relationship to grades in undergraduate education. Proceedings of the 8th International Conference on Learning Analytics and Knowledge (LAK ’18), 5–9 March 2018, Sydney, NSW, Australia (pp. 295–304). ACM Press.

Göhnert, T., Harrer, A., Hecking, T., & Hoppe, H. U. (2013). A workbench to construct and re-use network analysis workflows: Concept, implementation, and example case. Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM ’13), 25–28 August 2013, Niagara, ON, Canada (pp. 1464–1466). ACM Press.

Haythornthwaite, C. (2011). Learning networks, crowds and communities. In P. Long, G. Siemens, G. Conole, & D. Gašević (Eds.), Proceedings of the 1st International Conference on Learning Analytics and Knowledge: Connecting the technical, pedagogical, and social dimensions of learning analytics (LAK ʼ11), 27 February–1 March 2011, Banff, AB, Canada (pp. 18–22). ACM Press. https://doi.org/10.1145/2090116.2090119

Haythornthwaite, C., & De Laat, M. (2012). Social network informed design for learning with educational technology. In A. D. Olofsson, J. O. Lindberg, K. Klinger, & C. Shearer (Eds.), Informed Design of Educational Technologies in Higher Education: Enhanced Learning and Teaching (pp. 352–374). IGI Global. https://doi.org/10.4018/978-1-61350-080-4.ch018

Hecking, T., Chounta, I. A., & Hoppe, H. U. (2016, April). Investigating social and semantic user roles in MOOC discussion forums. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 198–207). ACM Press. https://doi.org/10.1145/2883851.2883924

Hobson, E. A., Silk, M. J., Fefferman, N. H., Larremore, D. B., Rombach, P., Shai, S., & Pinter-Wollman, N. (2021). A guide to choosing and implementing reference models for social network analysis. Biological Reviews, 96(6), 2716–2734. https://doi.org/10.1111/brv.12775

Hoppe, H. U. (2017). Computational methods for the analysis of learning and knowledge building communities. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), Handbook of Learning Analytics (pp. 23–33). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.002

Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis with digital trace data. Journal of the Association for Information Systems, 12(12). https://doi.org/10.17705/1jais.00282

Knight, S., & Buckingham Shum, S. (2017). Theory and learning analytics. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), Handbook of Learning Analytics (pp. 17–22). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.001

Knox, H., Savage, M., & Harvey, P. (2006). Social networks and the study of relations: Networks as method, metaphor and form. Economy and Society, 35(1), 113–140. https://doi.org/10.1080/03085140500465899

Krioukov, D., Kitsak, M., Sinkovits, R. S., Rideout, D., Meyer, D., & Boguñá, M. (2012). Network Cosmology. Scientific Reports, 2(1), 1–6. https://doi.org/10.1038/srep00793

Li, Q., Jung, Y., & Friend Wise, A. (2021). Beyond first encounters with analytics: Questions, techniques and challenges in instructors’ sensemaking. Proceedings of the 11th International Conference on Learning Analytics and Knowledge (LAK ’21), 12–16 April 2021, Irvine, CA, USA (pp. 344–353). ACM Press. https://doi.org/10.1145/3448139.3448172

Lund, K., & Suthers, D. (2016). Le déterminisme méthodologique et le chercheur agissant. Éducation et didactique, 10(1), 27–37. https://doi.org/10.4000/educationdidactique.2439

Mallavarapu, A., Lyons, L., & Uzzo, S. (2022). Exploring the utility of social-network-derived collaborative opportunity temperature readings for informing design and research of large-group immersive learning environments. Journal of Learning Analytics, 9(1), 53–76. https://doi.org/10.18608/jla.2022.7419

Malmberg, J., Saqr, M., Järvenoja, H., & Järvelä, S. (2022). How the monitoring events of individual students are associated with phases of regulation: A network analysis approach. Journal of Learning Analytics, 9(1), 77–92. https://doi.org/10.18608/jla.2022.7429

National Research Council. (2005). Network Science. The National Academies Press. https://doi.org/10.17226/1151 6

Newman, M. (2018). Networks. Oxford: Oxford University Press.

Oshima, J., & Hoppe, H. U. (2021). Finding meaning in log-file data. In U. Cress, C. Rosé, A. F. Wise, & J. Oshima (Eds.), International Handbook of Computer-Supported Collaborative Learning (pp. 569–584). Springer International Publishing. https://doi.org/10.1007/978-3-030-65291-3_31

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14), 24–27 August 2014, New York City, USA (pp. 701–710). ACM Press. https://doi.org/10.1145/2623330.2623732

Philip, T. M., & Sengupta, P. (2021). Theories of learning as theories of society: A contrapuntal approach to expanding disciplinary authenticity in computing. Journal of the Learning Sciences, 30(2), 330–349. https://doi.org/10.1080/10508406.2020.1828089

Poquet, O., Chen, B., Saqr, M., & Hecking, T. (2021a). Using network science in learning analytics: Building bridges towards a common agenda. In O. Poquet, B. Chen, M. Saqr, & T. Hecking (Eds.), Proceedings of the NetSciLA2021 Workshop “Using Network Science in Learning Analytics: Building Bridges towards a Common Agenda” (NetSciLA2021) (No. 2868; pp. 1–2). http://ceur-ws.org/Vol-2868/#article_1

Poquet, O., Hecking, T., & Chen, B. (2020). The modeling of digital learning networks. Companion Proceedings of the 10th International Conference on Learning Analytics and Knowledge: Celebrating 10 years of LAK: Shaping the future of the field (LAK ’20), 23–27 March 2020, Frankfurt, Germany (pp. 348–351). Society for Learning Analytics Research (SoLAR). https://www.solaresearch.org/wp-content/uploads/2020/06/LAK20_Companion_Proceedings.pdf

Poquet, O., & Joksimovic, S. (2022). Cacophony of networks in learning analytics. In Handbook of Learning Analytics (2nd ed.). Society for Learning Analytics Research (SoLAR).

Poquet, O., Saqr, M., & Chen, B. (2021b). Recommendations for network research in learning analytics: To open a conversation. In O. Poquet, B. Chen, M. Saqr, & T. Hecking (Eds.), Proceedings of the NetSciLA2021 workshop “Using Network Science in Learning Analytics: Building Bridges towards a Common Agenda” (NetSciLA2021) (No. 2868; pp. 34–41). http://ceur-ws.org/Vol-2868/#article_7

Prinsloo, P., & Slade, S. (2017). Ethics and learning analytics: Charting the (un)charted. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), Handbook of Learning Analytics (pp. 49–57). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.004

Reeves, T. (2011). Can educational research be both rigorous and relevant? Educational Designer, 1(4). https://www.educationaldesigner.org/ed/volume1/issue4/article13/

Saqr, M., & López-Pernas, S. (2022). The curious case of centrality measures: A large-scale empirical investigation. Journal of Learning Analytics, 9(1), 13–31. https://doi.org/10.18608/jla.2022.7415

Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), Cambridge Handbook of the Learning Sciences. Cambridge University Press.

Scott, J. (2013). Social Network Analysis (3rd ed.). SAGE Publications.

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1), 1–8. http://www.itdl.org/Journal/Jan_05/article01.htm

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380–1400. https://doi.org/10.1177/0002764213498851

Siew, C. S. Q. (2022). Investigating cognitive network models of learners’ knowledge representations. Journal of Learning Analytics, 9(1), 120–129. https://doi.org/10.18608/jla.2022.7671

Snijders, T. A. B., van de Bunt, G. G., & Steglich, C. E. G. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1), 44–60. https://doi.org/10.1016/j.socnet.2009.02.004

Stahl, G., & Hakkarainen, K. (2021) Theories of CSCL. In U. Cress, C. Rosé, A. F. Wise, & J. Oshima (Eds.). International Handbook of Computer-Supported Collaborative Learning. Computer-Supported Collaborative Learning Series, vol 19. Springer. https://doi.org/10.1007/978-3-030-65291-3_2

Stasewitsch, E., Barthauer, L., & Kauffeld, S. (2022). Knowledge transfer in a two-mode network between higher education teachers and their innovative teaching projects. Journal of Learning Analytics, 9(1), 93–110. https://doi.org/10.18608/jla.2022.7427

Traxler, A. (2022). Networks and learning: A view from physics. Journal of Learning Analytics, 9(1), 111–119. https://doi.org/10.18608/jla.2022.7669

Uitermark, J., & van Meeteren, M. (2021). Geographical network analysis. Tijdschrift Voor Economische En Sociale Geografie, 112(4), 337–350. https://doi.org/10.1111/tesg.12480

van Leeuwen, A., van Wermeskerken, M., Erkens, G., & Rummel, N. (2017). Measuring teacher sense making strategies of learning analytics: A case study. Learning: Research and Practice, 3(1), 42–58. https://doi.org/10.1080/23735082.2017.1284252

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Wegerif, R. (2012). Dialogic: Education for the internet age. Routledge. https://doi.org/10.4324/9780203111222

Welles, B. F., & González-Bailón, S. (Eds.). (2020). The Oxford handbook of networked communication. Oxford University Press, USA.

Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. MIT Press.

Wise, A. F. (2014). Designing pedagogical interventions to support student use of learning analytics. Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 203–211). ACM Press. https://doi.org/10.1145/2567574.2567588

Wise, A. F., Cui, Y., & Jin, W. Q. (2017). Honing in on social learning networks in MOOC forums: Examining critical network definition decisions. Proceedings of the 7th International Conference on Learning Analytics and Knowledge (LAK ’17), 13–17 March 2017, Vancouver, BC, Canada (pp. 383–392). ACM Press. DOI

Wise, A. F., Knight, S., & Ochoa, X. (2021). What makes learning analytics research matter. Journal of Learning Analytics, 8(3), 1–9. https://doi.org/10.18608/jla.2021.7647

Zhang, J., Huang, Y., & Gao, M. (2022). Video features, engagement, and patterns of collective attention allocation: An open flow network perspective. Journal of Learning Analytics, 9(1), 32–52. https://doi.org/10.18608/jla.2022.7421

Zhang, R., Hristovski, D., Schutte, D., Kastrin, A., Fiszman, M., & Kilicoglu, H. (2021). Drug repurposing for COVID-19 via knowledge graph completion. Journal of Biomedical Informatics, 115, 103696. https://doi.org/10.1016/j.jbi.2021.103696

Zurn, P., Bassett, D. S., & Rust, N. C. (2020). The citation diversity statement: A practice of transparency, a way of life. Trends in Cognitive Sciences, 24(9), 669–672. https://doi.org/10.1016/j.tics.2020.06.009

Downloads

Published

2022-03-11

How to Cite

Chen, B., & Poquet, O. (2022). Networks in Learning Analytics: Where Theory, Methodology, and Practice Intersect. Journal of Learning Analytics, 9(1), 1-12. https://doi.org/10.18608/jla.2022.7697

Issue

Section

Special Section: Networks in Learning Analytics