Learning as a Machine: Crossovers Between Humans and Machines
DOI:
https://doi.org/10.18608/jla.2017.41.3Keywords:
data protection, data protection by design, privacy, machine learning, beahaviourism, nudging, Pavlov, Simon, Gibson, capture, optimization, affordanceAbstract
This article is a revised version of the keynote presented at LAK ’16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of “learning as a machine,” the article then develops two levels of investigation (processing of personal data and profiling based on machine learning) to assess how data driven education affects privacy, non-discrimination, and the presumption of innocence. Finally, the article discusses how data minimization and profile transparency will contribute to the methodological integrity of learning analytics, while protecting the fundamental rights and freedoms of human learners thus safeguarding the creativity, humour, and contestability of human learning.
References
Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White, (Eds.), Learning analytics: From research to practice (pp. 61–75). Springer: New York. http://dx.doi.org/10.1007/978-1-4614-3305-7_4
Barnes, K. (2014). Big data in the classroom is out of control. The New York Times, 19 December 2014. Retrieved from http://www.nytimes.com/roomfordebate/2014/09/24/protecting-student-privacy-in-online-learning/student-data-collection-is-out-of-control
Berg, A. M., Mol, S. T., Kismihók, G., & Sclater, N. (2016). The role of a reference synthetic data generator within the field of learning analytics. Journal of Learning Analytics, 3(1), 107–128. http://dx.doi.org/10.18608/jla.2016.31.7
Brey, P., & Søraker, J. H. (2009). Philosophy of computing and information technology. In A. Meijers (Ed.) Philosophy of Technology and Engineering Sciences, Vol. 14. D. Gabbay, P. Thagard, & J. Woods (Gen. Eds.) The Handbook for Philosophy of Science. Elsevier. https://dx.doi.org/10.1016/B978-0-444-51667-1.50051-3
Buytendijk, F. J., & Plessner, H. (1936). Die physiologische Erklärung des Verhaltens. Acta Biotheoretica,1(3), 151–172. http://dx.doi.org/10.1007/BF02147637
Campbell, S., & Dawson, A. J. (1995). Learning as embodied action. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 233–249). Springer: Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-57771-0_16
Christian, B. (2011). The most human human: What talking with computers teaches us about what it means to be alive. New York: Doubleday.
Citron, D. K., & Pasquale, F. A. (2014). The scored society: Due process for automated predictions. Washington Law Review, 89(1), 1–33.
Clark, R. C., & Mayer, R. E. (2011). E-Learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. San Francisco, CA: Pffeifer.
Crawford, K., & Schultz, J. (2014). Big data and due process: Toward a framework to redress predictive privacy harms. Boston College Law Review, 55, 93–128.
Dalsgaard, C. (2006). Social software: E-learning beyond learning management systems. European Journal of Open, Distance and E-Learning, 9(2). Retrieved from http://www.eurodl.org/materials/contrib/2006/Christian_Dalsgaard.htm
de Waal, F. (2016). Are we smart enough to know how smart animals are? New York: W. W. Norton & Co.
Dean, W. (2015). Computational complexity theory. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/fall2015/entries/computational-complexity/
Dean, J. (2016). Computer says no: Go champion loses in man v machine. The Times (London), 16 March 2016. Retrieved from http://www.thetimes.co.uk/tto/technology/article4709094.ece
Dennett, D. C. (1989). The intentional stance. Cambridge, UK: Bradford Book.
Drachsler, H., Hoel, T., Cooper, A., Kismihók, G., Berg, A., Scheffel, M., Chen, W., & Ferguson, R. (2016). Ethical and privacy issues in the design of learning analytics applications. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 492–493). New York: ACM. https://dx.doi.org/10.1145/2883851.2883933
Drachsler, H., & Greller, W. (2016). Privacy and analytics: It’s a DELICATE issue a checklist for trusted learning analytics. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 89–98). New York: ACM. https://dx.doi.org/10.1145/2883851.2883893
Dworkin, R. (1991). Law’s Empire. Glasgow, UK: Fontana.
Fiaidhi, J. (2014). The next step for learning analytics. IT Professional, 16(5), 4–8. https://dx.doi.org/10.1109/MITP.2014.78
Floridi, L. (2014). Future/the green gambit. The fourth revolution: How the infosphere is reshaping human reality, Chapter 7. Oxford, UK: Oxford University Press.
Foster, L. H., Watson, T. S., Meeks, C., & Young, J. S. (2002). Single-subject research design for school counselors: Becoming an applied researcher. Professional School Counseling, 6(2), 146–154.
Gibson, J. J. (1986).The ecological approach to visual perception. Mahwah, NJ: Lawrence Erlbaum.
Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Educational Technology & Society, 15(3), 42–57.
Hausman, D. M., & Welch, B. (2010). Debate: To nudge or not to nudge. Journal of Political Philosophy, 18(1), 123–136. http://dx.doi.org/10.1111/j.1467-9760.2009.00351.x
Helbing, D. (2012). Social self-organization: Agent-based simulations and experiments to study emergent social behavior. Springer: Berlin Heidelberg.
Hildebrandt, M. (2012). The dawn of a critical transparency right for the profiling era. Digital Enlightenment Yearbook 2012, 41–56.
Hildebrandt, M. (2015). Smart technologies and the end(s) of law: Novel entanglements of law and technology. Cheltenham, UK: Edward Elgar Publishing.
Hildebrandt, M., & Gutwirth, S. (2008). Profiling the European citizen: Cross-disciplinary perspectives. Dordrecht: Springer.
Hudson, B. (2005). Secrets of self: Punishment and the right to privacy. In E. Claes & A. Duff (Eds.), Privacy and the criminal law (pp. 137–162). Antwerp/Oxford: Intersentia.
Jarvis, P. (2005). Towards a comprehensive theory of human learning. London: Routledge.
Kalampokis, E., Tambouris, E., & Tarabanis, K. (2013). Understanding the predictive power of social media. Internet Research, 23(5), 544–559. http://dx.doi.org/10.1108/IntR-06-2012-0114
Kim, A. (2014). Wilhelm Maximilian Wundt. In E N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/win2014/entries/wilhelm-wundt/
Leijnen, S. (2014). Creativity and constraint in artificial systems. http://www.leijnen.org/
McStay, A. (2011). The mood of information: A critique of online behavioural advertising. New York: Continuum.
Mitchell, T. M. (2006). The discipline of machine learning (Vol. 9). Carnegie Mellon University, School of Computer Science, Machine Learning Department. http://www-cgi.cs.cmu.edu/~tom/pubs/MachineLearningTR.pdf
Nissenbaum, H. (2010). Privacy in context: Technology, policy, and the integrity of social life. Stanford Law Books.
Nussbaum, M. C. (2011). Creating capabilities. Harvard University Press.
Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Translated and edited by G. V. Anrep. Oxford, UK: Oxford University Press.
Pentland, A. (2014). Social physics: How good ideas spread: The lessons from a new science. New York: Penguin Press.
Piatetsky-Shapiro, G. (1996). Advances in knowledge discovery and data mining (Vol. 21). U. M. Fayyad, P. Smyth, & R. Uthurusamy (Eds.). Menlo Park, CA: AAAI Press.
Prinsloo, P., & Slade, S. (2016). Student vulnerability, agency and learning analytics: An exploration. Journal of Learning Analytics, 3(1), 159–182. http://dx.doi.org/10.18608/jla.2016.31.10
Robinson, W. (2015). Epiphenomenalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/fall2015/entries/epiphenomenalism/
Sen, A. (1999). Commodities and capabilities. New York: Oxford University Press.
Simon, H. A. (1983). Why should machines learn? In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning (pp. 25–37). Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-662-12405-5_2
Skinner, B. F. (1976). About behaviorism. New York: Vintage.
Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://dx.doi.org/10.1177/0002764213479366
Solove, D. J. (2004). The digital person: Technology and privacy in the information age. New York University Press.
Sousa, D. A. (Ed.). (2014). Mind, brain, & education: Neuroscience implications for the classroom. Bloomington, IN: Solution Tree Press.
Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. Yale University Press.
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.
Vedder, A. (1999). KDD: The challenge to individualism. Ethics and Information Technology, 1(4), 275–281. http://dx.doi.org/10.1023/A:1010016102284
Vender, D. (2011). Is balancing emblematic of action? Two or three pointers from Reid and Pierce. Humana: Mente Journal of Philosophical Studies, 1(15), 251–270.
Verheul, E. R. (2015). Privacy protection in electronic education based on polymorphic pseudonymization. IACR Cryptology ePrint Archive, 2015, 1228.
Verheul, E. R., Jacobs, B., Meijer, C., Hildebrandt, M., & de Ruiter, J. (2016). Polymorphic encryption and pseudonymisation for personalised healthcare. IACR Cryptology ePrint Archive, 2016, 411.
Watson, J. B. (1930). Behaviorism. University of Chicago Press.
Wolf, M., & Stoodley, C. J. (2008). Proust and the squid: The story and science of the reading brain. Cambridge, UK: Icon.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation,1(1), 67–82. https://dx.doi.org/10.1109/4235.585893
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Learning Analytics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TEST