Adaptive Interventions Reducing Social Identity Threat to Increase Equity in Higher Distance Education

A Use Case and Ethical Considerations on Algorithmic Fairness

Authors

DOI:

https://doi.org/10.18608/jla.2024.8301

Keywords:

algorithmic fairness, higher education, student diversity, social identity threat, non-traditional students, research paper

Abstract

Educational disparities between traditional and non-traditional student groups in higher distance education can potentially be reduced by alleviating social identity threat and strengthening students’ sense of belonging in the academic context. We present a use case of how Learning Analytics and Machine Learning can be applied to develop and implement an algorithm to classify students as at-risk of experiencing social identity threat. These students would be presented with an intervention fostering a sense of belonging. We systematically analyze the intervention’s intended positive consequences to reduce structural discrimination and increase educational equity, as well as potential risks based on privacy, data protection, and algorithmic fairness considerations. Finally, we provide recommendations for Higher Education Institutions to mitigate risk of bias and unintended consequences during algorithm development and implementation from an ethical perspective.

References

Altman, A. (2020). Discrimination. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2020 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2020/entries/discrimination/

Aronson, E., Blaney, N., Stephen, C., Sikes, J., & Snapp, M. (1978). The jigsaw classroom. SAGE Publications.

Bick, N., Froehlich, L., Friehs, M.‑T., Kotzur, P. F., & Landmann, H. (2022). Social evaluation at a distance: Facets of stereotype content about student groups in higher distance education. International Review of Social Psychology, 35(1), 12. https://doi.org/10.5334/irsp.686

Bick, N., Froehlich, L., Voltmer, J.‑B., Raimann, J., Reich-Stiebert, N., Seidel, N., Burchart, M., Martiny, S. E., Nikitin, J., Stürmer, S., & Martin, A. (2024). Virtually isolated: Social identity threat predicts social approach motivation via sense of belonging in computer-supported collaborative learning [Manuscript submitted for publication].

Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 23–24 February 2018, New York, NY, USA (pp. 149–159). Proceedings of Machine Learning Research. https://proceedings.mlr.press/v81/binns18a.html

Binns, R. (2020). On the apparent conflict between individual and group fairness. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20), 27–30 January 2020, Barcelona, Spain (pp. 514–524). ACM Press. https://doi.org/10.1145/3351095.3372864

Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. Nature Human Behaviour, 5(8), 980–989. https://doi.org/10.1038/s41562-021-01143-3

Cerratto Pargman, T., McGrath, C., Viberg, O., & Knight, S. (2023). New vistas on responsible learning analytics: A data feminist perspective. Journal of Learning Analytics, 10(1), 133–148. https://doi.org/10.18608/jla.2023.7781

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2007). The BIAS map: Behaviors from intergroup affect and stereotypes. Journal of Personality and Social Psychology, 92(4), 631–648. https://doi.org/10.1037/0022-3514.92.4.631

d’Alessandro, B., O’Neil, C., & LaGatta, T. (2017). Conscientious classification: A data scientist’s guide to discrimination-aware classification. Big Data, 5(2), 120–134. https://doi.org/10.1089/big.2016.0048

Drachsler, H., & Greller, W. (2016). Privacy and analytics: It’s a DELICATE issue: A checklist for trusted learning analytics. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ’16), 25–29 April 2016, Edinburgh, UK (pp. 89–98). ACM Press. https://doi.org/10.1145/2883851.2883893

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS ’12), 8–10 January 2012, Cambridge, MA, USA (pp. 214–226). ACM Press. https://doi.org/10.1145/2090236.2090255

FernUniversität in Hagen. (2023a). Hochschulstatistik [University statistics]. https://www.fernuni-hagen.de/uniintern/organisation/statistik/index.shtml

FernUniversität in Hagen. (2023b). Studieren mit behinderung [Studying with disabilities]. https://www.fernuni-hagen.de/studium/fernuni_fuer_alle/behinderung.shtml

Fleisher, W. (2021). What’s fair about individual fairness? Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’21), May 19–21, 2021, Virtual Event, USA (pp. 480–490). ACM Press. https://doi.org/10.1145/3461702.3462621

Franssen, M., Lokhorst, G.‑J., & van de Poel, I. (2023). Philosophy of technology. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Spring 2023 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/entries/technology/

Froehlich, L., Brokjøb, L. G., Nikitin, J., & Martiny, S. E. (2023). Integration or isolation: Social identity threat relates to immigrant students’ sense of belonging and social approach motivation in the academic context. Journal of Social Issues, 79(1), 264–290. https://doi.org/10.1111/josi.12548

Froehlich, L., Martiny, S. E., Deaux, K., & Mok, S. Y. (2016). “It’s their responsibility, not ours”: Stereotypes about competence and causal attributions for immigrants’ academic underperformance. Social Psychology, 47(2), 74–86. https://doi.org/10.1027/1864-9335/a000260

Johns, M., Schmader, T., & Martens, A. (2005). Knowing is half the battle: Teaching stereotype threat as a means of improving women’s math performance. Psychological Science, 16(3), 175–179. https://doi.org/10.1111/j.0956-7976.2005.00799.x

Kizilcec, R. F., & Lee, H. (2021). Algorithmic fairness in education. arXiv. https://doi.org/10.48550/arXiv.2007.05443

Kizilcec, R. F., Reich, J., Yeomans, M., Dann, C., Brunskill, E., Lopez, G., Turkay, S., Williams, J. J., & Tingley, D. (2020). Scaling up behavioral science interventions in online education. Proceedings of the National Academy of Sciences, 117(26), 14900–14905. https://doi.org/10.1073/pnas.1921417117

Krischler, M., Pit-ten Cate, I. M., & Krolak-Schwerdt, S. (2018). Mixed stereotype content and attitudes toward students with special educational needs and their inclusion in regular schools in Luxembourg. Research in Developmental Disabilities, 75, 59–67. https://doi.org/10.1016/j.ridd.2018.02.007

Ladjal, D., Joksimović, S., Rakotoarivelo, T., & Zhan, C. (2022). Technological frameworks on ethical and trustworthy learning analytics. British Journal of Educational Technology, 53(4), 733–736. https://doi.org/10.1111/bjet.13236

Liu, S., Liu, P., Wang, M., & Zhang, B. (2021). Effectiveness of stereotype threat interventions: A meta-analytic review. Journal of Applied Psychology, 106(6), 921–949. https://doi.org/10.1037/apl0000770

Lockee, B. B. (2021). Online education in the post-COVID era. Nature Electronics, 4(1), 5–6. https://doi.org/10.1038/s41928-020-00534-0

Müller, V. C. (2023). Ethics of artificial intelligence and robotics. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Fall 2023 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/entries/ethics-ai/

National Commission. (1979). The Belmont report: Ethical principles and guidelines for the protection of human subjects of research. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, U.S. Department of Health and Human Services. https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

Nissenbaum, H. (2009). Privacy in context: Technology, policy, and the integrity of social life. Stanford University Press. https://doi.org/10.1515/9780804772891

Pardo, A., & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438–450. https://doi.org/10.1111/bjet.12152

Prinsloo, P., & Slade, S. (2017). Ethics and learning analytics: Charting the (un)charted. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), The handbook of learning analytics (pp. 49–57). Society for Learning Analytics Research. https://doi.org/10.18608/hla17.004

Prinsloo, P., Slade, S., & Khalil, M. (2022). The answer is (not only) technological: Considering student data privacy in learning analytics. British Journal of Educational Technology, 53(4), 876–893. https://doi.org/10.1111/bjet.13216

Schmader, T., & Hall, W. M. (2014). Stereotype threat in school and at work: Putting science into practice. Policy Insights from the Behavioral and Brain Sciences, 1(1), 30–37. https://doi.org/10.1177/2372732214548861

Sclater, N. (2015, March 3). A taxonomy of ethical, legal and logistical issues of learning analytics v1.0. Jisc Involve. https://analytics.jiscinvolve.org/wp/2015/03/03/a-taxonomy-of-ethical-legal-and-logistical-issues-of-learning-analytics-v1-0/

Sclater, N. (2016). Developing a code of practice for learning analytics. Journal of Learning Analytics, 3(1), 16–42. https://doi.org/10.18608/jla.2016.31.3

Simbeck, K. (2022). Künstliche intelligenz und fairness im bildungskontext [Artificial intelligence and fairness in education]. In D. Verständig, C. Kast, J. Stricker, & A. Nürnberger (Eds.), Algorithmen und autonomie: Interdisziplinäre perspektiven auf das verhältnis von selbstbestimmung und datenpraktiken [Algorithms and autonomy: Interdisciplinary perspectives on the relationship between self-determination and data practices] (pp. 91–100). Verlag Barbara Budrich.

Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366

Spencer, S. J., Logel, C., & Davies, P. G. (2016). Stereotype threat. Annual Review of Psychology, 67, 415–437. https://doi.org/10.1146/annurev-psych-073115-103235

Steele, C. M., Spencer, S. J., & Aronson, J. (2002). Contending with group image: The psychology of stereotype and social identity threat. Advances in Experimental Social Psychology, 34, 379–440. https://doi.org/10.1016/S0065-2601(02)80009-0

Stoessel, K., Ihme, T. A., Barbarino, M.‑L., Fisseler, B., & Stürmer, S. (2015). Sociodemographic diversity and distance education: Who drops out from academic programs and why? Research in Higher Education, 56(3), 228–246. https://doi.org/10.1007/s11162-014-9343-x

Stürmer, S., Ihme, T. A., Fisseler, B., Sonnenberg, K., & Barbarino, M.‑L. (2018). Promises of structured relationship building for higher distance education: Evaluating the effects of a virtual fast-friendship procedure. Computers & Education, 124, 51–61. https://doi.org/10.1016/j.compedu.2018.05.015

Tajfel, H., & Turner, J. C. (1979). An integrative theory of intergroup conflict. In W. G. Austin & S. Worchel (Eds.), The social psychology of intergroup relations (pp. 33–47). Brooks/Cole.

Walton, G. M. (2014). The new science of wise psychological interventions. Current Directions in Psychological Science, 23(1), 73–82. https://doi.org/10.1177/0963721413512856

Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92(1), 82–96. https://doi.org/10.1037/0022-3514.92.1.82

Walton, G. M., Murphy, M. C., Logel, C., Yeager, D. S., Goyer, J. P., Brady, S. T., Emerson, K. T. U., Paunesku, D., Fotuhi, O., Blodorn, A., Boucher, K. L., Carter, E. R., Gopalan, M., Henderson, A., Kroeper, K. M., Murdock-Perriera, L. A., Reeves, S. L., Ablorh, T. T., Ansari, S., … Krol, N. (2023). Where and with whom does a brief social-belonging intervention promote progress in college? Science, 380(6644), 499–505. https://doi.org/10.1126/science.ade4420

Walton, G. M., & Wilson, T. D. (2018). Wise interventions: Psychological remedies for social and personal problems. Psychological Review, 125(5), 617–655. https://doi.org/10.1037/rev0000115

Walton, G. M., & Yeager, D. S. (2020). Seed and soil: Psychological affordances in contexts help to explain where wise interventions succeed or fail. Current Directions in Psychological Science, 29(3), 219–226. https://doi.org/10.1177/0963721420904453

Willis, J. E., III., Slade, S., & Prinsloo, P. (2016). Ethical oversight of student data in learning analytics: A typology derived from a cross-continental, cross-institutional perspective. Educational Technology Research and Development, 64(5), 881–901. https://doi.org/10.1007/s11423-016-9463-4

Downloads

Published

2024-07-04

How to Cite

Froehlich, L., & Weydner-Volkmann, S. (2024). Adaptive Interventions Reducing Social Identity Threat to Increase Equity in Higher Distance Education: A Use Case and Ethical Considerations on Algorithmic Fairness. Journal of Learning Analytics, 11(2), 112-122. https://doi.org/10.18608/jla.2024.8301

Issue

Section

Research Papers