Designing Affirmative Action Policies under Uncertainty
DOI:
https://doi.org/10.18608/jla.2022.7463Keywords:
algorithmic fairness, affirmative action, predictive analytics, research paperAbstract
We study university admissions under a centralized system that uses grades and standardized test scores to match applicants to university programs. In the context of this system, we explore affirmative action policies that seek to narrow the gap between the admission rates of different socio-demographic groups while still accepting students with high scores. Since there is uncertainty about the score distribution of the students who will apply to each program, it is unclear what policy would have the desired effect on the admission rates of different groups. We address this challenge by using a predictive model trained on historical data to help optimize the parameters of such policies. We find that a learned predictive model does significantly better than relying on the ideal parameters for the last year. At the same time, we also find that a large pool of historical data yields similar results as our predictive approach for our data. Due to the more complex nature of the predictive approach, we conclude that a simpler approach should be preferred if enough data is available (e.g., long-standing, traditional university programs), but not for newer programs and other cases in which our predictive strategy can prove helpful.
References
Abdulkadiroğlu, A. (2005). College admissions with affirmative action. International Journal of Game Theory, 33(4), 535–549. https://doi.org/10.1007/s00182-005-0215-7
Abdulkadiroğlu, A., & Sönmez, T. (2003). School choice: A mechanism design approach. American Economic Review, 93(3), 729–747. https://doi.org/10.1257/000282803322157061
Bacharach, V. R., Baumeister, A. A., & Furr, R. M. (2003). Racial and gender science achievement gaps in secondary education. Journal of Genetic Psychology, 164(1), 115–126. https://doi.org/10.1080/00221320309597507
Balafoutas, L., & Sutter, M. (2012). Affirmative action policies promote women and do not harm efficiency in the laboratory. Science, 335(6068), 579–582. https://doi.org/10.1126/science.1211180
Bastarrica, M. C., Hitschfeld, N., Marques Samary, M., & Simmonds, J. (2018). Affirmative action for attracting women to STEM in Chile. Proceedings of the Workshop on Gender Equality in Software Engineering (GE 2018), 27 May–3 June 2018, Gothenburg, Sweden (pp. 45–48). ACM. https://www.computer.org/csdl/proceedings-article/ge/2018/573801a045/13l5NXW7OuR
Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Ramamurthy, K. N., Richards, J., Saha, D., Sattigeri, P., Singh, M., Varshney, K. R., & Zhang, Y. (2018). AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. https://doi.org/10.48550/arXiv.1810.01943
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brest, P., & Oshige, M. (1995). Affirmative action for whom? Stanford Law Review, 47(5), 855–900. https://doi.org/10.2307/1229177
Cabalin, C. (2012). Neoliberal education and student movements in Chile: Inequalities and malaise. Policy Futures in Education, 10(2), 219–228. https://doi.org/10.2304/pfie.2012.10.2.219
Crosby, F. J., Iyer, A., & Sincharoen, S. (2006). Understanding affirmative action. Annual Review of Psychology, 57, 585–611. https://doi.org/10.1146/annurev.psych.57.102904.190029
Davies, R. (2019, November 13). Why is inequality booming in Chile? Blame the Chicago Boys. The Guardian. https://www.theguardian.com/commentisfree/2019/nov/13/why-is-inequality-booming-in-chile-blame-the-chicago-boys
DEMRE. (n.d.). Puntaje Ranking [Accessed on 10/28/2019]. https://psu.demre.cl/proceso-admision/factores-seleccion/puntaje-ranking
Dickson, L. M. (2006). Does ending affirmative action in college admissions lower the percent of minority students applying to college? Economics of Education Review, 25(1), 109–119. https://doi.org/10.1016/j.econedurev.2004.11.005
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59(2), 77. https://doi.org/10.1037/0003- 066X.59.2.77
Faucon, L., Olsen, J. K., Haklev, S., & Dillenbourg, P. (2020). Real-time prediction of students’ activity progress and completion rates. Journal of Learning Analytics, 7(2), 18–44. https://doi.org/10.18608/jla.2020.72.2
Friedler, S. A., Scheidegger, C., & Venkatasubramanian, S. (2016). On the (Im)possibility of Fairness. arXiv:1609.07236. https://doi.org/10.48550/arXiv.1609.07236
Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The American Mathematical Monthly, 69(1), 9–15. https://doi.org/10.1080/00029890.1962.11989827
Hafalir, I. E., Yenmez, M. B., & Yildirim, M. A. (2013). Effective affirmative action in school choice. Theoretical Economics, 8(2), 325–363. https://doi.org/10.3982/TE1135
Hertweck, C. (2020). Designing Affirmative Action Policies under Uncertainty (Master’s thesis). University of Helsinki. Helsinki, Finland. http://urn.fi/URN:NBN:fi:hulib-202005202223
Hoxby, C. M., & Avery, C. (2012). The Missing “One-Offs”: The Hidden Supply of High-Achieving, Low Income Students (tech. rep.). National Bureau of Economic Research. https://www.brookings.edu/wp-content/uploads/2016/07/2013a_hoxby.pdf
Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422–446. https://doi.org/10.1145/582415.582418
Kawagoe, T., Matsubae, T., & Takizawa, H. (2018). The skipping-down strategy and stability in school choice problems with affirmative action: Theory and experiment. Games and Economic Behavior, 109, 212–239. https://doi.org/10.1016/j. geb.2017.12.012
Kojima, F. (2012). School choice: Impossibilities for affirmative action. Games and Economic Behavior, 75(2), 685–693. https://doi.org/10.1016/j.geb.2012.03.003
Lancaster, A., Moses, S., Clark, M., & Masters, M. C. (2020). The positive impact of deliberate writing course design on student learning experience and performance. Journal of Learning Analytics, 7(3), 48–63. https://doi.org/10.18608/jla. 2020.73.5
Long, M. C. (2004). College applications and the effect of affirmative action. Journal of Econometrics, 121(1), 319–342. https://doi.org/10.1016/j.jeconom.2003.10.001
Mathioudakis, M., Castillo, C., Barnabo, G., & Celis, S. (2020). Affirmative action policies for top-k candidates selection: With an application to the design of policies for university admissions. Proceedings of the 35th Annual ACM Symposium on Applied Computing (SAC 2020), 30 March–3 April 2020, Brno, Czechia (pp. 440–449). ACM. https://doi.org/10.1145/3341105.3373878
McEwan, P. J. (2004). The indigenous test score gap in Bolivia and Chile. Economic Development and Cultural Change, 53(1), 157–190. https://doi.org/10.1086/423257
Meneses, F., & Cáceres, J. T. (2012). Predicción de notas en Derecho de la Universidad de Chile: ¿sirve el ranking? ISEES: Inclusión Social y Equidad en la Educación Superior, 2012(10), 43–60. https://www.fundacionequitas.cl/publicaciones/isees/10/4420036.pdf
Ministerio de Educación de Chile. (2009). Bases para una pol ́ıtica de formación técnico-profesional en Chile. Informe de la Comisión para el Estudio de la Formación Técnico-Profesional en Chile [Executive Summary]. https://ciperchile.cl/wp- content/uploads/documento-link-4.pdf
OECD & World Bank. (2009). Reviews of National Policies for Education: Tertiary Education in Chile. https://openknowledge.worldbank.org/bitstream/handle/10986/10219/527530BRI0En1B10Box345577B01PUBLIC1.pdf
Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. In W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, & V. Honavar (Eds.), Proceedings of the First Annual Conference on Genetic and Evolutionary Computation—Volume 1 (GECCI 1999), 13–17 July 1999, Orlando, FL, USA (pp. 525–532). Morgan Kaufmann Publishers. https://dl.acm.org/doi/10.5555/2933923.2933973
Reardon, S. F. (2013). The widening income achievement gap. Educational Leadership, 70(8), 10–16. https://www.ascd.org/el/articles/the-widening-income-achievement-gap
Ríos, I., Larroucau, T., Parra, G., & Cominetti, R. (2014). College Admissions Problem with Ties and Flexible Quotas. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2478998
Rothstein, R. (2015). The racial achievement gap, segregated schools, and segregated neighborhoods: A constitutional insult. Race and Social Problems, 7(1), 21–30. https://doi.org/10.1007/s12552-014-9134-1
Tsoumakas, G., & Katakis, I. (2008). Multi-label classification: An overview. In J. Wang (Ed.), Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications (pp. 64–74). IGI Global. https://www.igi-global.com/chapter/multi- label-classification/7632
Universidad de Chile. (n.d.). Programa de Ingreso Prioritario de Equidad de Género (PEG) [Accessed 28 October 2019]. https://www.uchile.cl/portal/presentacion/asuntos-academicos/pregrado/admision-especial/96722/ingreso-prioritario-de-equidad-de-genero-peg
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Learning Analytics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TEST