Knowledge Transfer in a Two-Mode Network Between Higher Education Teachers and Their Innovative Teaching Projects
DOI:
https://doi.org/10.18608/jla.2022.7427Keywords:
social network analysis, knowledge transfer, diffusion of innovation, educational innovation, higher education, two-mode network, small world, research paperAbstract
Knowledge transfer (KT) and innovation diffusion are closely related to each other because it is knowledge regarding an innovation that gets adopted. Little research in learning analytics provides insight into KT processes in two-mode networks, especially in the context of educational innovations. It is unclear how such networks are structured and whether funding can create a network structure efficient for KT. We used a case-study approach to analyze a two-mode network of 208 university members (based on archival data) who worked together on 91 innovative teaching projects. Our results show that the two-mode network displays a decentralized structure and more clustering than can be assumed by chance, promoting KT and learning. To gain a deeper understanding of the kind of knowledge that is transferred in the network, we analyzed the effects of different educational innovation elements (e.g., game-based learning) as attributes of higher education teachers. Overall, our results suggest that funding and the creation of project structures in the context of educational innovation is a sustainable way to create KT, and therefore organizational change. Furthermore, the results imply that university practitioners need to implement networking interventions to create more connections between subgroups in teacher-related networks.
References
Amabile, T. M. (2012). Componential Theory of Creativity. Harvard Business School Working Paper, 12-096. Retrieved from https://www.hbs.edu/ris/Publication%20Files/12-096.pdf
Ansell, C., Lundin, M., & Öberg, P. O. (2017). Learning networks among Swedish municipalities: Is Sweden a small world? In J. Glückler, E. Lazega, & I. Hammer (Eds.), Knowledge and Networks (pp. 315–336). New York, NY: Springer. https://doi.org/10.1007/978-3-319-45023-0_15
Argote, L., & Fahrenkopf, E. (2016). Knowledge transfer in organizations: The roles of members, tasks, tools, and networks. Organizational Behavior and Human Decision Processes, 136, 146–159. https://doi.org/10.1016/j.obhdp.2016.08.003
Argote, L., & Ingram, P. (2000). Knowledge transfer: A basis for competitive advantage in firms. Organizational Behavior and Human Decision Processes, 82(1), 150–169. https://doi.org/10.1006/obhd.2000.2893
Arrow, H., McGrath, J. E., & Berdahl, J. L. (2000). Small Groups as Complex Systems: Formation, Coordination, Development, and Adaptation. New York, NY: Sage Publications. https://doi.org/10.4135/9781452204666
Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning, 20(2), 13–29. https://doi.org/10.24059/olj.v20i2.790
Bassett-Jones, N. (2005). The paradox of diversity management, creativity and innovation. Creativity and Innovation Management, 14(2), 169–175. https://doi.org/10.1111/j.1467-8691.00337.x
Battelle for Kids (2021). Annual Report 2020. Retrieved from http://static.battelleforkids.org/Documents/BFK/BFK-Annual-Report-2020.pdf
Benz-Gydat, M., Jütte, W., Lobe, C., & Walber, M. (2021). Neue Lehre in der Hochschule. Verstetigung innovativer Lehrprojekte in sozialen Hochschulwelten [New teaching in higher education. Continuation of innovative teaching projects in social university environments]. WBV. https://doi.org/10.3278/6004902w
Böhme, S., Othmer, J., & Herrmann, C. (2019). PlayING und Holistic: ein spielbasiertes Lehr-Lern-Konzept zur Vermittlung eines ganzheitlichen Life Cycle Management [PlayING and Holistic: A game-based teaching-learning concept for teaching holistic life cycle management]. In S. Kauffeld & J. Othmer (Eds.), Handbuch Innovative Lehre [Handbook of innovative teaching] (pp. 255–268). New York, NY: Springer.
Borgatti, S. P. (2002). NetDraw: Graph Visualization Software. Harvard, MA, USA: Analytic Technologies.
Borgatti, S. P., & Everett, M. G. (1999). Models of core/periphery structures. Social Networks, 21(4), 375–395. https://doi.org/10.1016/S0378-8733(99)00019-2
Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002). UCINET 6 for Windows: Software for Social Network Analysis. Harvard, MA: Analytic Technologies.
Campbell, J. P., DeBlois, P. B., & Oblinger, D. G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 42(4), 40. Retrieved from https://er.educause.edu/-/media/files/article-downloads/erm0742.pdf
Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science, 334(6060), 1269–1272. https://doi.org/10.1126/science.1207055
Centola, D. (2015). The social origins of networks and diffusion. American Journal of Sociology, 120(5), 1295–1338. https://doi.org/10.1086/681275
Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3), 702–734. https://doi.org/10.1086/521848
Cowan, R., & Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control, 28(8), 1557–1575. https://doi.org/10.1016/j.jedc.2003.04.002
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9. Retrieved from https://igraph.org
Dado, M., & Bodemer, D. (2017). A review of methodological applications of social network analysis in computer-supported collaborative learning. Educational Research Review, 22, 159–180. https://doi.org/10.1016/j.edurev.2017.08.005
Daly, A. J., & Finnigan, K. S. (2010). A bridge between worlds: Understanding network structure to understand change strategy. Journal of Educational Change, 11(2), 111–138. https://doi.org/10.1007/s10833-009-9102-5
Daly, A. J., Liou, Y. H., & Moolenaar, N. M. (2014). The principal connection: Trust and innovative climate in a network of reform. In D. Van Maele, P. B. Forsyth, & M. Van Houtte (Eds.), Trust and School Life (pp. 285–311). New York, NY: Springer. https://doi.org/10.1007/978-94-017-8014-8_13
Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.
Euler, D., & Seufert, S. (2005). Change Management in der Hochschullehre: Die nachhaltige Implementierung von e- Learning-Innovationen [Change management in university teaching: the sustainable implementation of e-Learning innovations]. Zeitschrift für Hochschulentwicklung, 3, 3–15. Retrieved from https://zfhe.at/index.php/zfhe/article/view/187
Everett, M. G., & Borgatti, S. P. (1999). The centrality of groups and classes. The Journal of Mathematical Sociology, 23(3), 181–201. https://doi.org/10.1080/0022250X.1999.9990219
Federal Ministry of Education and Learning (2021). Qualitätspakt Lehre [Quality Teaching Act]. Retrieved from https://www.bmbf.de/bmbf/de/bildung/studium/qualitaetspakt-lehre/qualitaetspakt-lehre.html
Feixas, M., Martínez-Usarralde, M. J., & López-Martín, R. (2018). Do teaching innovative projects make a difference? Assessing the impact of small-scale funding. Tertiary Education and Management, 24(4), 267–283. https://doi.org/10.1080/13583883.2017.1417470
Ferguson, R., Clow, D., Macfadyen, L., Essa, A., Dawson, S., & Alexander, S. (2014). Setting LA in context: Overcoming the barriers to large-scale adoption. In Proceedings of the Fourth International Conference on Learning Analytics and Knowledge (LAK 2014), 24–28 March 2014, Indianapolis, IN, USA (pp. 251–253). ACM. https://doi.org/10.1145/2567574.2567592
Fleming, L., King III, C., & Juda, A. I. (2007). Small worlds and regional innovation. Organization Science, 18(6), 938–954. https://doi.org/10.1287/orsc.1070.0289
Froehlich, D. E., Rehm, M., & Rienties, B. C. (2020). Mixed methods social network analysis: Theories and methodologies in learning and education. New York, NY: Routledge. https://doi.org/10.4324/9780429056826
García-Peñalvo, F. J., Blanco, Á. F., & Sein-Echaluce, M. L. (2015, October). Educational innovation management: a case study at the University of Salamanca. In Proceedings of the Third International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2015), 7–9 October 2015, Porto, Portugal (pp. 151–158). ACM. https://doi.org/10.1145/2808580.2808604
Gasevic, D., Jovanovic, J., Pardo, A., & Dawson, S. (2017). Detecting learning strategies with analytics: Links with self-reported measures and academic performance. Journal of Learning Analytics, 4(2), 113–128. https://doi.org/10.18608/jla.2017.42.10
Gehrke, S., & Kezar, A. (2017). The roles of STEM faculty communities of practice in institutional and departmental reform in higher education. American Educational Research Journal, 54(5), 803–833. https://doi.org/10.3102/0002831217706736
Glerum, D. R., Joseph, D. L., McKenny, A. F., & Fritzsche, B. A. (2021). The trainer matters: Cross-classified models of trainee reactions. Journal of Applied Psychology, 106(2), 281–299. https://doi.org/10.1037/apl0000503
Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Journal of Educational Technology & Society, 15(3), 42–57. Retrieved from https://www.jstor.org/stable/jeductechsoci.15.3.42
Grohmann, A., Schulte, E.M. & Kauffeld, S. (2021). Entwicklung und Erprobung eines Kurzfragebogens zurBeurteilung von Trainer/innenkompetenzen in beruflichen Weiterbildungsmaßnahmen [Development and testing of a short questionnaire for the assessment of trainer competencies in professional development measures]. Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO), 52(1), 79–90. https://doi.org/10.1007/s11612-021-00562-0
Gruzd, A., Paulin, D., & Haythornthwaite, C. (2016). Analyzing social media and learning through content and social network analysis: A faceted methodological approach. Journal of Learning Analytics, 3(3), 46–71. https://doi.org/10.18608/jla.2016.33.4
Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing knowledge across organization subunits. Administrative Science Quarterly, 44(1), 82–111. https://doi.org/10.2307/2667032
Hasanefendic, S., Birkholz, J. M., Horta, H., & Van der Sijde, P. (2017). Individuals in action: Bringing about innovation in higher education. European Journal of Higher Education, 7(2), 101–119. https://doi.org/10.1080/21568235.2017.1296367
Hauschildt, J., & Salomo, S. (2004). Innovationsmanagement [Innovation management] (2. Aufl.). Munich, Germany: Vahlen.
Herodotou, C., Rienties, B., Verdin, B., & Boroowa, A. (2019). Predictive learning analytics “at scale”: Guidelines to successful implementation in higher education based on the case of the Open University UK. Journal of Learning Analytics, 6(1), 85–95. https://doi.org/10.18608/jla.2019.61.5
Hobson, E. A., Silk, M. J., Fefferman, N. H., Larremore, D. B., Rombach, P., Shai, S., & Pinter-Wollman, N. (2021). A guide to choosing and implementing reference models for social network analysis. Biological Reviews, 96(6), 2716–2734. https://doi.org/10.1111/brv.12775
Jütte, W., Walber, M., & Lobe, C. (2017). Das Neue in der Hochschullehre: Erweiterung des Blickes [The new thing in university teaching: Broadening the perspective]. New York, NY: Springer. https://doi.org/10.1007/978-3-658-13777-9_5
Kauffeld, S. (2017). Diskussionspapier “Gute Lehre an der TU Braunschweig” [Discussion paper “Good teaching at the TU Braunschweig”]. Retrieved from https://www.tu-braunschweig.de/fileadmin/Redaktionsgruppen/Studium/Lehre_und_Medienbildung/Veroeffentlichungen/Papiere/diskussionspapier_gute_lehre_de.pdf
Kauffeld, S., & Othmer, J. (2019). Handbuch innovative Lehre [Handbook of innovative teaching]. Berlin, Germany: Springer. https://doi.org/10.1007/978-3-658-22797-5
Kauffeld, S., Spurk, D., Barthauer, L., & Kaucher, P. (2018). Auf dem Weg zur Professur? Laufbahnen im wissenschaftlichen Kontext [On the way to a professorship? Career paths in an academic context.] In S. Kauffeld & D. Spurk (Eds.), Handbuch Laufbahnmanagement und Karriereplanung [Career management and planning handbook]. New York, NY: Springer. https://doi.org/10.1007/978-3-662-48750-1_10
Kauffeld, S., Stasewitsch, E., de Wall, K., & Othmer, J. (2019). Innovationen in der Hochschullehre—das Beispiel Technische Universität Braunschweig [Innovations in university teaching—The example of the Technical University of Braunschweig]. In S. Kauffeld & J. Othmer (Eds.), Handbuch innovative Lehre [Handbook of innovative teaching] (1–42). New York, NY: Springer. https://doi.org/10.1007/978-3-658-22797-5_1
Kezar, A. (2014). Higher education change and social networks: A review of research. The Journal of Higher Education, 85(1), 91–125. https://doi.org/10.1080/00221546.2014.11777320
Kolleck, N. (2014). Innovations through networks: Understanding the role of social relations for educational innovations. Zeitschrift für Erziehungswissenschaft, 17(5), 47–64. https://doi.org/10.1007/s11618-014-0547-9
Kozma, R. B. (2005). National policies that connect ICT-based education reform to economic and social development. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 1(2), 117–156. Retrieved from https://humantechnology.jyu.fi/archive/vol-1/issue-2/kozma1_117-156
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511815355
Leitner, P., Khalil, M., & Ebner, M (2017). Learning analytics in higher education—A literature review. In A. Peña-Ayala (Ed.), Learning Analytics: Fundaments, Applications, and Trends (pp. 1–23). New York, NY: Springer International Publishing. https://doi.org/10.1007/978-3-319-52977-6_1
Ma, S., Herman, G. L., West, M., Tomkin, J., & Mestre, J. (2019). Studying STEM faculty communities of practice through social network analysis. The Journal of Higher Education, 90(5), 773–799. https://doi.org/10.1080/00221546.2018.1557100
McGrath, J., & Argote, L. (2001). Group processes in organizational contexts. In M. Hogg & R. Tindale (Eds.), Blackwell Handbook of Social Psychology: Group Processes (603–627). Malden, MA: Blackwell. https://doi.org/10.1002/9780470998458.ch25
Milgram, S. (1967). The small world problem. Psychology Today, 1(1), 61–67. Retrieved from http://snap.stanford.edu/class/cs224w-readings/milgram67smallworld.pdf
Mirriahi, N., Dawson, S., & Hoven, D. (2012). Identifying key actors for technology adoption in higher education: A social network approach. Future challenges, sustainable futures. In Ascilite 2012 Proceedings, 25–28 November 2012, Wellington, New Zealand (pp. 664–574). https://www.ascilite.org/conferences/Wellington12/2012/images/custom/mirriahi,_negin_-_identifying_key.pdf
Newman, M. E. (2001). Scientific collaboration networks. Network construction and fundamental results. Physical Review E, 64(1), 1–8. https://doi.org/10.1103/PhysRevE.64.016131
Newman, M. E. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54. https://doi.org/10.1016/j.socnet.2004.11.009
Opsahl, T., Colizza, V., Panzarasa, P., & Ramasco, J. J. (2008). Prominence and control: the weighted rich-club effect. Physical Review Letters, 101(16), 168702. https://doi.org/10.1103/PhysRevLett.101.168702
Opsahl, T. (2011). R Package “tnet.” Version 3.0.5. Comprehensive R Archive Network, R Foundation for Statistical Computing.
Opsahl, T. (2012a). Projection. Retrieved from https://toreopsahl.com/tnet/two-mode-networks/projection/
Opsahl, T. (2012b). Clustering in two-mode networks. Retrieved from https://toreopsahl.com/tnet/two-mode networks/clustering/
Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. SocialNetworks, 35(2), 159–167. https://doi.org/10.1016/j.socnet.2011.07.001
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortestpaths. Social Networks, 32(3), 245–251. https://doi.org/10.1016/j.socnet.2010.03.006
Opsahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social Networks, 31(2), 155–163. https://doi.org/10.1016/j.socnet.2009.02.002
Opsahl, T., Vernet, A., Alnuaimi, T., & George, G. (2017). Revisiting the small-world phenomenon: Efficiency variation and classification of small-world networks. Organizational Research Methods, 20(1), 149–173. https://doi.org/10.1177/1094428116675032
Orfield, G., Kim, J., Sunderman, G., & Greer, B. (2004). No Child Left Behind: A Federal, State, and District Level Look at the First Year. Retrieved from https://www.gse.harvard.edu/news/04/02/no-child-left-behind-federal-state-and-district-level-look-first-year
Padrón, B., Nogales, M., & Traveset, A. (2011). Alternative approaches of transforming bimodal into unimodal mutualistic networks. The usefulness of preserving weighted information. Basic and Applied Ecology, 12(8), 713–721. https://doi.org/10.1016%2Fj.baae.2011.09.004
Pauna, M. J. (2017). Calculus course assessment data. Journal of Learning Analytics, 4(2), 12–21. https://doi.org/10.18608/jla.2017.42.3
Phelps, C., Heidl, R., & Wadhwa, A. (2012). Knowledge, networks, and knowledge networks: A review and research agenda. Journal of Management, 38(4), 1115–1166. https://doi.org/10.1177%2F0149206311432640
Portes, A. (1998). Social capital: Its origins and applications in modern sociology. Annual Review of Sociology, 24(1), 1–24. https://doi.org/10.1146/annurev.soc.24.1.1
Quardokus, K., & Henderson, C. (2015). Promoting instructional change: Using social network analysis to understand the informal structure of academic departments. Higher Education, 70(3), 315–335. https://doi.org/10.1007/s10734-014-9831-0
Rau, M. A. (2017). How do students learn to see concepts in visualizations? Social learning mechanisms with physical and virtual representations. Journal of Learning Analytics, 4(2), 240–263. https://doi.org/10.18608/jla.2017.42.16
Rice, R. E., & Rogers, E. M. (1980). Reinvention in the innovation process. Knowledge, 1(4), 499–514. https://doi.org/10.1177/107554708000100402
Rienties, B., Herodotou, C., Olney, T., Schencks, M., & Boroowa, A. (2018). Making sense of learning analytics dashboards: A technology acceptance perspective of 95 teachers. The International Review of Research in Open and Distributed Learning, 19(5). https://doi.org/10.19173/irrodl.v19i5.3493
Rogers, E. M. (2003). Diffusion of innovations. New York, NY: Free Press.
Rogers, J. D., Bozeman, B., & Chompalov, I. (2001). Obstacles and opportunities in the application of network analysis to the evaluation of R&D. Research Evaluation, 10(3), 161–72. https://doi.org/10.3152/147154401781777033
Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27. https://doi.org/10.1002/widm.1075
Rowley, J. (2002). Using case studies in research. Management Research News, 25(1), 16–27. https://doi.org/10.1108/01409170210782990
Scheffel, M., Drachsler, H., Stoyanov, S., & Specht, M. (2014). Quality indicators for learning analytics. Journal of Educational Technology & Society, 17(4), 117–132. Retrieved from https://www.jstor.org/stable/jeductechsoci.17.4.117
Schomburg, H., Flöther, C., & Wolf, V. (2012). Wandel von Lehre und Studium an deutschen Hochschulen–Erfahrungen und Sichtweisen der Lehrenden. Projektbericht [Changes in teaching and academic studies at German universities—experiences and perceptions of teachers. Project report]. INCHER-Kassel. Retrieved from https://www.hrk-nexus.de/uploads/media/HRK_nexus_LESSI.pdf
Scott, J. (2017). Social network analysis. Thousand Oaks, CA: Sage.
Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining: Towards communication and collaboration. In S. B. Shum, D. Gasevic, & R. Ferguson (Eds.), Proceedings of the Second International Conference on Learning Analytics and Knowledge (LAK 2012), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 252–254). ACM. https://doi.org/10.1145/2330601.2330661
Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns. Management Science, 51, 756–770. https://doi.org/10.1287/mnsc.1040.0349
Škerlavaj, M., & Dimovski, V. (2006). Social network approach to organizational learning. Journal of Applied Business Research, 22(2), 89–98. https://doi.org/10.19030/jabr.v22i2.1440
Stasewitsch, E., Handke, L., Kauffeld, S., Mumm, O., Thomidou, A. & Carlow, V. M. (2021). Architektur trifft auf Psychologie: vom Potenzial eines besonderen Spannungsfeldes: Forschendes Lernen im interdisziplinären Kontext [Architecture meets psychology: about the potential of an exceptional field: research-based learning in an interdisciplinary context]. Die Hochschullehre, 7(25), 265–278. https://doi.org/10.3278/HSL2125W
Stasewitsch, E., & Kauffeld, S. (2021). Akademische Fachzirkel: Können gruppenbasierte Interventionen zu nachhaltigen Veränderungsprozessen in Hochschulen beitragen? [Academic circles: Can group-based interventions contribute to sustainable change processes in universities?] Das Hochschulwesen, 69(3), 103–110.
Steen, J., Macaulay, S., & Kastelle, T. (2011). Small worlds: The best network structure for innovation? Prometheus, 29(1), 39–50. https://doi.org/10.1080/08109028.2011.567125
Technische Universität Braunschweig (2016). Strategiepapier für den Bereich Medien in Lehre und Studium [Strategy paper for the area of media in teaching and learning]. Retrieved from https://www.tu-braunschweig.de/fileadmin/Redaktionsgruppen/Verwaltung/Abteilung_16/Dateien-aus-Medien-DB-gdp/strategiepapier_medien_in_lehre_und_studium.pdf
Technische Universität Braunschweig (2021). Innovationsprogramm Gute Lehre [Innovation program good teaching]. Retrieved from https://www.tu-braunschweig.de/lehreundmedienbildung/konzepte/lehrprojekte/innovationsprogramm-gute-lehre
Towndrow, P. A., Silver, R. E., & Albright, J. (2010). Setting expectations for educational innovations. Journal of Educational Change, 11(4), 425–455. https://doi.org/10.1007/s10833-009-9119-9
Uzzi, B., Amaral, L. A., & Reed-Tsochas, F. (2007). Small-world networks and management science research: A review. European Management Review, 4(2), 77–91. https://doi.org/10.1057/palgrave.emr.1500078
Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem. American Journal of Sociology, 111(2), 447–504. https://doi.org/10.1086/432782
Valente, T. W. (2012). Network interventions. Science, 337(6090), 49–53. https://doi.org/10.1126/science.1217330
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442. https://doi.org/10.1038/30918
Wenger, E. C. (1998). Communities of practice: Learning as a social system. Systems Thinker, 9(5), 1–10. Retrieved from https://participativelearning.org/pluginfile.php/636/mod_resource/content/3/Learningasasocialsystem.pdf
Wenger, E., McDermott, R., & Snyder, W.M. (2002). Cultivating Communities of Practice. Boston, MA: Harvard Business School Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Learning Analytics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TEST