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Abstract 

The theory of socially shared regulation of learning (SSRL) suggests that successful collaborative groups can 

identify and respond to trigger events stemming from cognitive or emotional obstacles in learning. Thus, to develop 

real-time support for SSRL, novel metrics are needed to identify different types of trigger events that invite SSRL. 

Our aim was to apply two metrics derived from different data streams to study how trigger events for SSRL shaped 

group linguistic alignment (based on audio data) and physiological synchrony (based on electrodermal activity 

data). The data came from six groups of students (N = 18) as they worked face-to-face on a collaborative learning 

task with one cognitive and two emotional trigger events. We found that the cognitive trigger event increased 

linguistic alignment in task-description words and led to physiological out-of-synchrony. The emotional trigger 

events decreased out-of-synchrony and increased high-arousal synchrony at the physiological level but did not 

affect linguistic alignment. Therefore, different metrics for studying markers and responses to different types of 

trigger events are needed, suggesting the necessity for multimodal learning analytics to support collaborative 

learning. 

 

Notes for Practice 

• Different types of trigger events (e.g., cognitive or emotional) arise in collaborative learning, requiring 
regulatory responses within a group. 

• Collaboration analytics requires metrics to identify these types of trigger events and group responses 
to those to provide support with actionable insights. 

• To identify cognitive and emotional trigger events that invite socially shared regulation of learning, 
we applied two metrics: group linguistic alignment (based on audio data) and physiological synchrony 
(based on electrodermal activity data). 

• Cognitive trigger events increased the linguistic alignment of the task-description words among group 
members. 

• Emotional trigger events became visible in the physiological synchrony of the group members. 
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1. Introduction 

The success of collaborative learning depends on individual- and group-level task engagement, which covers the interplay 

of learners’ cognitive, metacognitive, emotional, motivational, and social processes and is influenced by contextual 

affordances and constraints. This phenomenon has been conceptualized as socially shared regulation of learning (SSRL; 

Hadwin et al., 2017). Due to the complexity of the phenomenon, the regulation of learning in collaborative settings presumes 

shared monitoring and control of these processes at individual and social levels. In collaborative learning, many events 

stemming from the ongoing situation and learning context may serve as catalysts, requiring regulatory responses within a 

group. These events have been designated as “triggers” (Järvelä, Nguyen, & Hadwin, 2023). Accordingly, SSRL theory 

(Hadwin et al., 2017) suggests that a distinguishing characteristic of successful groups is their ability to identify these trigger 

events, whether they pertain to cognitive, emotional, or motivational obstacles, and to adaptively and strategically respond 

to them through joint negotiations. It has been found that linguistically, joint negotiations result in linguistic alignment 

(Dideriksen et al., 2023; Pickering & Garrod, 2004), and physiologically, interacting partners exhibit physiological 

synchrony under certain conditions (Dindar et al., 2020; Schneider et al., 2020). In this paper, we define “negotiated 

sameness” as the co-constructed state within a group that results from joint negotiations that are essential for SSRL. Thus, 

linguistic alignment and physiological synchrony among the group members could be used to operationalize this state. 

Over the past decade, researchers have increasingly studied collaborative learning with various physiological, 

behavioural, and contextual data streams to design and implement adequate, personalized support for learners and groups 

(see recent reviews by Febriantoro et al., 2023; Schneider et al., 2021). From the SSRL perspective, empirical evidence 

concerning the signals that recognize trigger events, as well as traces on student and group responses to these events, is vital 

for providing the necessary support. When viewed through the lens of jointly negotiated goals and (the enactment of) joint 

task plans, these trigger events may temporarily disrupt the negotiated sameness within a group, which can be evidenced at 

the physiological (Schneider et al., 2020) or contextual level (Vuorenmaa et al., 2023). Although methods based on 

multimodal learning analytics can offer real-time insights on collaborative learning processes based on physiological or 

behavioural data (such as electrodermal activity [EDA] or log data, Martinez-Maldonado et al., 2021; Wang et al., 2024), 

contextual data, such as video and audio recordings of group interactions, are essential to derive a meaningful interpretation 

of student behaviours or physiological responses (Schneider et al., 2021). Namely, video and audio recordings enable 

researchers not only to study student behaviours during collaborative learning tasks but also to understand how those 

behaviours are influenced by and embedded in the learning context (Molenaar et al., 2023). 

In response to the challenges associated with the labour-intensive, manual analysis of group interactions from video and 

audio recordings, especially in face-to-face settings (Emara et al., 2021; Järvelä, Nguyen, & Hadwin, 2023; Lämsä et al., 

2021), we apply a novel method for operationalizing the negotiated sameness at the contextual level. This method for 

capturing linguistic alignment relies on a linguistic analysis of transcriptions of group interactions. We employ this method 

with the aim of studying how trigger events for SSRL shape groups’ negotiated sameness at the contextual (linguistic 

alignment) and physiological (physiological synchrony) levels. In the following section, we elaborate on the trigger event 

framework for studying SSRL. Afterward, we introduce how studying linguistic alignment and physiological synchrony can 

help us capture trigger events and group responses to them. 

2. Literature Review 

2.1. Trigger Events for Socially Shared Regulation of Learning 

One of the challenges of studying regulation in collaborative learning is to understand how and when learners regulate their 

cognitive and socioemotional processes in response to changing conditions. SSRL involves multiple individual regulatory 

processes that contribute to joint regulation through negotiation and adaptation, when needed, to overcome challenges and 

achieve a common goal (Hadwin et al., 2017). However, SSRL is not a linear process but rather a dynamic and responsive 

one influenced by different events that occur during collaboration. To identify and make visible the events that invite — or 

“trigger” — regulation, Järvelä, Nguyen, and Hadwin (2023) created a conceptual framework of trigger events that 

empirically identifies specific kinds of events (or triggers) eliciting regulatory responses in collaborative learning, as 

evidenced in recent studies (Sobocinski et al., 2020; Vuorenmaa et al., 2023). 

A trigger event can be classified according to the target of regulation that it invites, which can be cognitive, emotional, 

or motivational (Järvelä, Nguyen, & Hadwin, 2023). Cognitive triggers, whose sources can be either internal or external, are 

events that require learners to monitor and control their cognition. For example, an internal cognitive trigger might be a task 

definition that no longer reflects the group’s understanding of the task. That is, if a group constructs a task definition early 

on that builds on conceptual misconceptions, and when it progresses with the task, it corrects its misconception, leading to a 

need to update the task definition. An external cognitive trigger might be a teacher giving feedback to learners about their 

progress. 
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Emotional triggers are related to events that require the monitoring and control of emotions, and like cognitive ones, their 

source can be either internal or external. Emotional trigger events can arise, for example, from interpersonal conflicts or 

externally scripted activities that create opportunities to monitor and control socioemotional aspects in interaction (Näykki 

et al., 2017). Certain trigger events can have both emotional and cognitive aspects. For example, if an enacted strategy 

repeatedly fails to produce the desired result, this event would require learners to both overcome their frustration (emotion 

regulation) and adapt the strategies they use (cognitive regulation). Trigger events can affect both individual- and group-

level processes by evoking either self- or socially shared regulatory processes. 

The regulation of learning, by definition, requires adaptation or change (Järvelä & Hadwin, 2013). To understand 

individual and group regulatory responses to the trigger events, there is a need to study the regulatory processes that these 

events evoke. These regulatory responses can be either adaptive or maladaptive (Sobocinski et al., 2020). When a discrepancy 

between the current state and judgment about goal attainment is perceived, adaptive regulatory response implies strategic 

changes in cognition, behaviour, motivation, or emotion (Miller & Hadwin, 2015). Adaptive regulatory response occurs 

when individuals’ self-regulatory processes collectively contribute to controlling cognitive or emotional conditions through 

joint negotiations to optimize collaboration (Hadwin et al., 2017; Miller & Hadwin, 2015). In contrast, maladaptive 

regulatory response occurs when individuals or groups do not recognize the need for a regulatory response (i.e., they are not 

metacognitively aware of the trigger event) or they fail to take the regulatory actions needed (i.e., they do not have enough 

metacognitive knowledge to take the necessary control; Sobocinski et al., 2020). During the last decade, multimodal measures 

of collaborative learning have become increasingly affordable for researchers and practitioners, leading to their better 

understanding of the markers of these trigger events (Haataja et al., 2022) as well as the adaptive or maladaptive responses 

to the cognitive (Emara et al., 2021) or emotional trigger events (Törmänen et al., 2023) that groups face. 

2.2. Multimodal Measures for Studying Trigger Events for Socially Shared Regulation of Learning 
“Sharing” is central to collaborative learning, since joint goals and plans to achieve them are not achieved by accident but 

result from purposeful, externalized interactions within a group (Hadwin et al., 2017). Thus, group members’ adaptive 

regulatory responses to trigger events that occur in collaborative learning during task completion and enactment derive from 

joint negotiations (Vuorenmaa et al., 2023). These joint negotiations result in achieving negotiated sameness. However, 

trigger events for SSRL may temporarily disrupt this negotiated sameness; after becoming jointly aware of the trigger event, 

a group must strategically respond and adapt to this event to achieve the negotiated sameness again. In the following section, 

we discuss how linguistic alignment can be used to operationalize this negotiated sameness at the contextual level, facilitating 

the identification of trigger events for SSRL and group responses to these events. 

2.2.1. Linguistic Alignment 

Spoken conversation is a collaborative process by which speakers coordinate their use of language to reach mutual 

understanding (Clark, 1996). This coordination is achieved through multiple cognitive mechanisms, among which is 

linguistic alignment (Pickering & Garrod, 2004). Alignment works as an automatic mechanism by which those who converse 

are primed to reuse their addressees’ linguistic forms, resulting in a shared representations of the situation (Pickering & 

Garrod, 2004). It has been observed that alignment occurs at different linguistic levels across spoken interaction. Studies 

have shown that people tend to reuse their partners’ lexical choices (Brennan & Clark, 1996), syntactic structures (Branigan 

et al., 2000), and accents (Giles et al., 1991), among other communicative signals. 

A central feature of alignment is that the reuse of linguistic and non-linguistic forms occurs during an interaction and not 

in isolation (Pickering & Garrod, 2004), leading partners to take up joint actions together. Previous research has shown there 

to be a relationship between alignment and positive performance in joint tasks, in comparison with partners who do not align 

with each other (Dideriksen et al., 2023). Dideriksen et al. (2023) observed that interlocutors who performed better in task-

oriented conversations showed richer lexical and syntactic alignment, suggesting that alignment permits higher 

complementary actions across dialogue partners. 

Researchers have begun to investigate the implications of linguistic alignment in collaborative learning. For example, 

Haataja et al. (2022) found the equality of participation in metacognitive monitoring in collaborative learning to be associated 

with better group performance. Recent research has also demonstrated the value of investigating various levels of linguistic 

alignment in computer-supported collaborative learning (CSCL) to differentiate the phases of the collaborative learning 

process (Buseyne et al., 2024). Hayashi (2023) found evidence that linguistic alignment is related e.g., to higher reciprocal 

interactions and developing mutual understanding in a collaborative learning task. Likewise, research on collaborative 

learning has demonstrated correlations between linguistic alignment and learning outcomes and strong correlations between 

linguistic alignment and both gestural synchrony (i.e., coinciding changes in gesture) and gestural alignment (i.e., use of the 

same gestures; Sinclair & Schneider, 2021). This association may indicate that verbal data within collaborative learning can 

be used to measure the same underlying processes as nonverbal data, enabling triangulation between multimodal data 

streams. 
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In addition to using linguistic alignment to operationalize negotiated sameness at the contextual level of collaborative 

learning, researchers have also studied the negotiated sameness of groups at the physiological level with the help of 

physiological synchrony. Because the trigger events for SSRL require a group to take a regulatory action and strategically 

adapt to the ongoing situation, previous findings have suggested that physiological arousal and synchrony can also be used 

as metrics to evidence trigger events for SSRL (Haataja et al., 2022; Järvelä, Nguyen, Vuorenmaa, et al., 2023) and a group’s 

adaptive responses to those events (Mønster et al., 2016; Schneider et al., 2020; Sobocinski et al., 2020). 

2.2.2. Physiological Synchrony 

Physiological arousal and synchrony have been related to both (meta)cognitive and emotional learning constructs (see the 

recent systematic literature review by Febriantoro et al., 2023). It is, however, crucial to point out how arousal and synchrony 

differ. Where physiological arousal is often seen as an increased sympathetic nervous system activity (Quadt et al., 2022) 

measured with, for example, EDA or heart rate, physiological synchrony refers to the interdependence or association of such 

signals between individuals (Palumbo et al., 2017). 

In general, it is considered that physiological arousal serves as an adaptive behaviour by affording physiological resources 

to meet the appraised task demands regardless of whether those demands are physical, cognitive, or socioemotional (Quadt 

et al., 2022). An example of manifested physiological arousal might be an increase in EDA, reflected as moist palms due to 

an anticipated exam (Roos et al., 2021), higher perceived task difficulty (Malmberg et al., 2022), higher mental effort (Dindar 

et al., 2020), and intensity of emotion (Roos et al., 2021). In addition to focusing on states with high physiological arousal, 

states with low physiological arousal also deserve attention. For example, changes in a group’s physiological state can 

indicate smooth task progress (Sobocinski et al., 2020) and higher-quality interactions (Schneider et al., 2020) in 

collaborative learning. Similarly, Törmänen et al. (2023) observed changes in group physiological states, especially during 

positive socioemotional interactions and regulation episodes. Altogether, these findings may provide evidence for adaptive 

responses to trigger events for SSRL. 

While physiological arousal has been studied for years, physiological synchrony has gained increasing research interest 

more recently in collaborative learning. It is often evidenced as an alignment of physiological activity between participants 

in social settings. Generally, moments of physiological synchrony with high arousal have been rare in collaborative learning 

(Li et al., 2023; Törmänen et al., 2023). When capturing physiological synchrony among collaborating students, it has been 

related to positive (Sharma et al., 2019) and negative emotional valence (Malmberg et al., 2019), and the associations have 

been absent in some studies (Dindar et al., 2020). Li et al. (2023) found that physiological synchrony with high arousal was 

associated with both the occurrence of emotional trigger events and student regulatory responses to those events. 

In addition to emotional arousal and valence, higher physiological arousal and synchrony among students may also be 

coupled with cognitive trigger events in collaborative learning in which a group becomes aware of the need for a regulatory 

act and strategic adaptation (Haataja et al., 2022). When strategic adaptation manifests as new ways of working, the 

physiological synchrony derived from EDA seems to again decrease (Mønster et al., 2016). Similarly, Järvelä, Nguyen, 

Vuorenmaa et al. (2023) noted that high physiological arousal and synchrony among students followed group actions that 

targeted completing the task (task execution) and preceded interactions that targeted group or individual ongoing cognitive 

processes (metacognitive interaction). 

Several studies (Haataja et al., 2022; Malmberg et al., 2023; Schneider et al., 2020; Sobocinski et al., 2020) have shown 

that physiological synchrony can vary over time. When it comes to trigger events for SSRL, on the one hand, it can be 

hypothesized that triggering a group to adapt by increasing task demands can potentially be reflected as increasing 

physiological synchrony and arousal (Järvelä, Nguyen, Vuorenmaa et al., 2023). On the other hand, a change from high 

arousal synchrony toward an out-of-synchrony state could indicate that the group is able to flexibly adapt to these arising 

task demands (Malmberg et al., 2023; Mønster et al., 2016). In contrast to changing states of synchrony or arousal, continuous 

high arousal synchrony might mean that the group is aware of their challenging situation but is unable to adapt (Haataja et 

al., 2022). 

Even though some studies have found significant associations between physiological metrics (e.g., physiological 

synchrony and high arousal) and collaborative learning constructs (e.g., Liu et al., 2021), these associations have been absent 

(Schneider et al., 2021) or even opposite (Yan et al., 2023) in other studies. Thus, the results regarding associations between 

physiological metrics and collaboration quality and performance have been mixed (Dich et al., 2018; Schneider et al., 2021). 

The results achieved in different studies are not necessarily contradictory per se, but the coupling of temporal changes in 

physiological synchrony with contextual observations might be a more fruitful approach to understanding the phenomenon 

in depth than just coupling the aggregate synchrony measures with outcomes (Sung et al., 2023; Yan et al., 2023). When 

physiological metrics are developed and used for making inferences about the need for regulatory acts or the enactment of 

the needed acts in collaborative learning in the pursuit of designing and implementing support, contextual affordances and 

constraints of collaborative learning should be considered. This argument is supported by the literature review of Schneider 

et al. (2021), who found that metrics based on social interaction data (e.g., linguistic features) providing information about 
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the context in which collaborative learning takes place were significantly associated with the studied collaborative learning 

constructs with only few exceptions. 

Thus, our aim is to study how trigger events for SSRL shape groups’ negotiated sameness at the contextual (linguistic 

alignment) and physiological levels (physiological synchrony). In other words, we demonstrate how linguistic alignment and 

physiological synchrony together can provide evidence for the presence of cognitive and emotional trigger events for SSRL 

and group responses to those events. We address the following research questions (RQs): 

RQ1: How is a group’s linguistic alignment shaped when presented with cognitive and emotional trigger events for 

SSRL? 

RQ2: How is a group’s physiological synchrony shaped when presented with cognitive and emotional trigger events for 

SSRL? 

RQ3: How do a group’s linguistic alignment and physiological synchrony manifest in their interactions when presented 

with cognitive and emotional trigger events for SSRL? 

3. Methods 

3.1. Participants, Context, and Research Design 

We designed a collaborative learning task with cognitive and emotional trigger events for SSRL implemented in a research 

infrastructure for first-year high school students. The participants were from the same Finnish high school and had similar 

socioeconomic backgrounds. We did not use criteria regarding student background information or knowledge when forming 

the groups; instead, the students were divided into small groups of three learners at random. Three groups were 

simultaneously present in the research infrastructure, although each group had a separate room. Each small group worked 

collaboratively on a shared Google document with their own laptops. Interaction among the group members was in face-to-

face format. The task (30–40 min) was to design a nutritious breakfast smoothie for a customer based on the nutritional needs 

described in the document. In addition, the groups were provided with the nutritional information of the different food items 

that they could use in their smoothie recipes. 

To study how trigger events for SSRL shape linguistic alignment and physiological synchrony, in this study, we focused 

on six groups (N = 18 students, comprising 14 males and 4 females) with cognitive and emotional trigger events. Each group 

received a cognitive trigger after 15 minutes of their collaboration that consisted of the customer sending a voice message 

telling them they had an allergy to latex and dairy products. This caused the groups to alter their smoothie recipes to exclude 

any ingredients that included the mentioned products. The groups also received additional emotional triggers every three 

minutes after the cognitive trigger had been introduced. The emotional triggers included the customer sending a voice 

message to the group asking them to hurry up. Even though the research design included three emotional triggers, most of 

the groups completed the task between the second and third emotional triggers. Thus, we decided to focus only on the 

cognitive trigger and two emotional triggers. 

3.2. Data 

To answer RQ1 about linguistic alignment, both group and individual microphones were used to capture audio data from the 

collaborative learning task, and these audio recordings were used for transcribing the interactions within the groups. We also 

used these transcriptions to illustrate how linguistic alignment and physiological synchrony manifest in group interactions 

when presented with cognitive and emotional trigger events for SSRL (RQ3). To answer RQ2 about physiological synchrony, 

physiological data (EDA) were collected with physiological Shimmer GSR3+ sensors. The sensors were synchronized before 

each session and attached to the participants’ non-dominant hands so that gel electrodes were placed on the thenar and 

hypothenar eminences on their palms (Dawson et al., 2016). The sampling rate of the signals was set to 128 Hz. Due to 

problems with the EDA data collection, two groups had to be excluded from the physiological data analysis because EDA 

data were not available from all group members. Thus, we used data from four groups (n = 12) to address RQ2. 

3.3. Data Analysis 

To answer RQ1 about linguistic alignment, we measured levels of lexical alignment between group members. Prior work on 

lexical alignment in pairs of speakers has demonstrated that alignment in proportional usage of the 25 highest frequency 

words in a conversation is a strong proxy for overall alignment in a conversation while avoiding problems caused by sparsity 

of usage for rarer words, with this measure correlating strongly with group task success (Friedberg et al., 2012). Additionally, 

prior work on collaborative problem solving has likewise illustrated the significant relationship between task success and 

alignment on words from the task description (Friedberg et al., 2012; Rahimi et al., 2017). As such, this analysis considers 

alignment on both categories, that is, the 25 highest frequency words in each conversation and the words from the description 

of the task provided to each group. 



 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

202 

Following prior alignment research (Friedberg et al., 2012) for a word (w) in each category, the alignment between a pair 

of speakers was measured using the following formula, where ALL is the total number of words from the respective speaker 

and count(w) is the number of times word w is spoken: 

 
Note that the equation is negated, so that pairs of speakers with higher levels of alignment approach 0, representing 

perfect alignment for a given word, while perfectly misaligned speakers have scores approaching –1 for a given word. As in 

alignment research involving groups of more than two speakers (Friedberg et al., 2012), align(w) is computed for each 

category (c) of words by summing as follows: 

 
This measure of alignment for a category of words was calculated for each pair of students in each group. Pair scores 

within a category were then averaged for that group to attain a single group score per category. Since Friedberg et al. (2012) 

found no significant differences between using a simple or a weighted average for group alignment scores, a simple average 

was used in this analysis. 

While recent work on lexical alignment has extracted automatic measures of alignment at the level of shared expressions 

(Dubuisson Duplessis et al., 2017; Sinclair & Schneider, 2021), those measures have been developed for dyadic conversation 

and are not straightforwardly applied to groups of more than two speakers. Likewise, since those tools were developed for 

English corpora, the automated measurement of shared expressions has not been demonstrated as being fruitful for highly 

inflected languages such as Finnish. 

Transcripts were preprocessed by removing punctuation; converting all words to lower-case; removing stop-words, 

nonspeech noises such as laughter, any part of the transcript indicated as not fully understood by transcribers, and any part 

of the transcript for which the identity of the speaker could not be determined; and lemmatizing all tokens. Tokenization was 

performed using the NLTK Python library version 3.7.1 Where previously, the align(w) measurement has been applied to 

stemmed English-language tokens (Rahimi et al., 2017), lemmatization was performed, rather than stemming, for all tokens 

using the Libvoikko lemmatizer version 4.3.2 Because Finnish is a highly inflected language, retaining the morphological 

equivalence between forms of words has been shown to improve the precision of computational linguistic measures applied 

to Finnish text (Hollink et al., 2004), motivating the decision to lemmatize tokens. 

Changes in alignment were measured before and after the triggers, focusing on the cognitive trigger and the first two 

emotional triggers presented to each group. Three-minute windows of group discussions before and after each type of trigger 

were investigated in depth, following the granular analysis of these windows around triggers in prior work (Dang et al., 

2023). The three-minute windows corresponded to the duration between trigger events, ensuring that all dialogue occurring 

after a trigger event was captured without any contamination from subsequent triggers. Additionally, maintaining consistent 

window sizes across triggers and groups was essential for comparing the effects of the different trigger events. Because the 

interactions differed in length, the mean amount of time per turn was first calculated (4.04 seconds), so these windows were 

operationalized as the 45 utterances immediately before and after a trigger so as to standardize the number of utterances 

included in the analysis of each group. 

To answer RQ2 about physiological synchrony, we first detected the skin conductance responses (SCR) from the EDA 

data using the Ledalab toolbox (Benedek & Kaernbach, 2010). The signals were visually inspected for a lack of electrode 

contact, and we then removed small movement artifacts from the signal by applying the Butterworth low pass filter with 

frequency 1 and order 5. We used a threshold of 0.05 μS for detecting SCR peaks using continuous decomposition analysis 

(Benedek & Kaernbach, 2010; Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures, 

2012). After we had identified the peaks, we analyzed the shared physiological arousal events using the method developed 

by Dindar et al. (2022). We operationalized the events of physiological synchrony with high arousal by detecting the peaks 

of SCR and considered SCR peaks to co-occur within the group if they were manifested within a time window of 1.5 seconds 

by all the group members (Dindar et al., 2022). In addition to the events of physiological synchrony with high arousal, we 

detected the events of physiological synchrony with low arousal whenever no SCR peaks were manifested by any group 

members within the 1.5 second time window. Finally, if a group was not in synchrony with high or low arousal, we assumed 

it to be physiologically out of synchrony. 

 
1 nltk.org  
2 https://github.com/voikko/corevoikko  

file://///lipasto/kotidir02$/jlamsa22/My%20Documents/Papers/SHARP%20Joni/Copyediting/nltk.org
https://github.com/voikko/corevoikko
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To study how the group physiological synchrony was shaped by cognitive and emotional triggers for SSRL, we studied 

the relative amount of time they spent in the three different physiological states (synchrony with high arousal, out of 

synchrony, synchrony with low arousal) three minutes before and after each trigger. As with measuring group linguistic 

alignment, we selected this three-minute time window, since it was the time interval between introducing consecutive trigger 

events. 

Since changes in a group’s physiological state can indicate (mal)adaptive responses to trigger events for SSRL (Schneider 

et al., 2020; Sobocinski et al., 2020; Törmänen et al., 2023), we also calculated transition probabilities among the different 

physiological states for each of the 3-minute time windows. To investigate how the trigger events shaped these transition 

probabilities, we calculated the differences before and after each trigger event. We visualized these differences by plotting 

heatmaps for one cognitive and two emotional trigger events. To investigate which differences in the transition probabilities 

were statistically significant, we applied the bootstrap method (Mooney & Duval, 1993) and created 1,000 shuffled time 

series of the group physiological states (so-called bootstrap samples). We then selected a six-minute segment from these 

shuffled time series and calculated the difference in the transition probabilities in the latter three-minute part of this segment 

compared to the former three-minute part. Finally, we calculated the proportion of times when the observed difference in 

each transition probability around the trigger event was more probable (for positive observed transition probability) or less 

probable (for negative observed transition probability) based on the simulated bootstrap sample. We assumed that the 

difference was statistically significant when p < 0.05, that is, when less than 5% of the observations in the bootstrap sample 

were larger (for positive observed transition probability) or smaller (for negative observed transition probability) than the 

observed sample. 

 To answer RQ3 and illustrate how a group’s linguistic alignment and physiological synchrony manifest in their 

interactions when presented with cognitive and emotional trigger events for SSRL, we selected a transcription excerpt around 

the cognitive trigger and the second emotional trigger event. The duration of the excerpts was approximately two minutes. 

By highlighting task-description words and the most common words from the transcriptions, we elaborated on these excerpts 

from the perspective of (the lack of) changes in the linguistic alignment around these trigger events. We also elaborated on 

the changes in the target group  physiological arousal and synchrony around these events. 

4. Results 

4.1. Linguistic Alignment After the Cognitive and Emotional Trigger Events 
To ensure that linguistic alignment was different from the amount expected due to chance, the corpus of transcripts of the 

six groups was first compared against a shuffled corpus. Following the procedures used in prior alignment research 

(Dubuisson Duplessis et al., 2017; Sinclair & Schneider, 2021), for each transcript, a shuffled version was created by which 

each real utterance in sequence was interleaved with an utterance randomly selected from the real corpus. Overall, mean 

alignment was significantly higher for real interactions than for shuffled interactions both on the 25 most common words in 

the corpus (M align(c)Real = –0.608, M align(c)shuffled = –1.180, Wilcoxon rank-sum test U = 53, p = 0.0025, r = 0.65) and on 

the task-description words (M align(c)Real = –0.197, M align(c)shuffled = –0.392, Wilcoxon rank-sum test U = 55, p = 0.010, r 

= 0.74). 

Likewise, to ensure that alignment immediately before and after triggers was different from the amount expected due to 

chance, the 45 turns ending in the real utterance before each trigger and the 45 turns beginning with the utterance after each 

trigger were selected for comparison. For each trigger and category of words, alignment was significantly higher for real 

scripts than for shuffled scripts (Wilcoxon rank-sum test p < 0.01 in all cases). This indicates that the alignment observed in 

the interactions was not due to chance and that changes in alignment around triggers were not arbitrarily associated with the 

position of a trigger in the script. 

For task-description words, there was a significant difference in alignment before and after cognitive triggers, with 

alignment increasing significantly after cognitive triggers (M align(c)pre-cog = –0.014, M align(c)post-cog = –0.006, Wilcoxon 

rank-sum test U = 23, p = 0.010, r = 0.741). No significant difference in alignment on the most common words was observed 

before and after cognitive triggers (M align(c)pre-cog = –0.077, M align(c)post-cog = –0.073, Wilcoxon rank-sum test U = 36, p 

= 0.630, r = 0.139). For emotional triggers, there were no significant differences in alignment before and after either of the 

emotional triggers on either of the word categories. This result is summarized in Table 1 and visualized in Figure 1. Each 

group’s linguistic alignment is separately presented in the Appendix. 
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Table 1. Group Linguistic Alignment* 

 Pre-

cognitive  

Post-

cognitive  

p-

value 

Pre-

emotional1 

Post-

emotional1 

p-

value 

Pre-

emotional2 

Post-

emotional2 

p-

value 

align(c)25MostCommon –0.077 –0.073 .63 –0.073 –0.067 .20 –0.069 –0.058 .77 

align(c)TaskDescription –0.014 –0.006 .01 –0.007 –0.011 .07 –0.012 –0.010 .57 

 

*Note: Alignment is measured in the 25 most common words and task-description words before and  

after the cognitive trigger event and two emotional trigger events with the associated P-values. 

 

 

 
Figure 1. Group linguistic alignment in the most common words and task-description words 

before and after the cognitive trigger event and two emotional trigger events. 

4.2. Physiological Synchrony After the Cognitive and Emotional Trigger Events 

Figure 2 shows the relative amount of time four groups spent in the different physiological states (synchrony with low 

arousal, out of synchrony, synchrony with high arousal) three minutes before and after the trigger events for SSRL. First, 

between-group comparisons showed that regardless of the phase of the collaborative learning process, whether before the 

cognitive trigger or after the second emotional trigger, groups spent varying amounts of time in synchrony and out of 

synchrony. For example, while Group 2 spent 34% (26%) of the time in high arousal synchrony (low arousal synchrony) 

before the cognitive trigger, Group 4 only spent 17% (39%) of the time in high arousal synchrony (low arousal synchrony). 

Second, within-group comparisons revealed that the physiological synchrony trajectories for some groups remained 

relatively stable before and after the cognitive and emotional triggers for SSRL. For instance, Group 1 consistently spent 18–

23% of the time in high arousal synchrony and 30–35% of the time in low arousal synchrony, regardless of the phase of the 

learning process. In contrast, the amount of time Group 2 spent in high arousal synchrony decreased from 34% to 24% when 

comparing the phases before the cognitive trigger and after the second emotional trigger, with a concurrent increase in out-

of-synchrony time over this period. In particular, the cognitive trigger did not seem to increase synchrony with high arousal, 

while the emotional triggers had the potential to increase synchrony with high arousal within some groups. 
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Figure 2. The relative amount of time the groups were in the three physiological states:  

synchrony with high arousal (red), out of synchrony (orange), and synchrony with low arousal (green)  

three minutes before and after the cognitive trigger (CT) and two emotional triggers (ET1 and ET2). 

Figure 3 shows changes in transition probabilities among three physiological states for four groups before and after each 

trigger event for SSRL. First, the concurrent presence in the out-of-synchrony state (transition from out of synchrony to out 

of synchrony) was more probable after the cognitive trigger than before it (p = .04, Figure 3a). The cognitive trigger also 

reduced synchronous transitions from low/high arousal to low/high arousal (the four cells in the bottom left corner of Figure 

3a) and increased the likelihood of transitions to an out-of-synchrony state. 

Second, the transition from high arousal synchrony to an out-of-synchrony state was less probable after the first emotional 

trigger than before it (p = .05, Figure 3b). The first emotional trigger also promoted synchronous transitions from low/high 

arousal to low/high arousal (Figure 3b). 

Third, the second emotional trigger stimulated transitions to a high arousal synchrony state from low arousal synchrony 

and out-of-synchrony states (Figure 3c; p < .001 for the transition from low arousal synchrony to a high arousal synchrony 

state and p = .02 for the transition from out-of-synchrony to a high arousal synchrony state). This trigger event also decreased 

the concurrent presence in the out-of-synchrony state (indicated by the negative transition probability from out of synchrony 

to out of synchrony in Figure 3c; p < .001) and the low arousal synchrony state (p = .04). Moreover, the transitions from out 

of synchrony to a low arousal synchrony state and from high arousal synchrony to out-of-synchrony states were statistically 

more probable after the second emotional trigger than before it (p = .006 and p = .02, respectively). 
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(a) 

 

(b) 

 

(c) 

 
Figure 3. The heatmaps show differences in transition probabilities among the three physiological states, i.e., synchrony  

with high arousal, synchrony with low arousal, and out-of-synchrony: (a) after the cognitive trigger compared to before it;  

(b) after the first emotional trigger compared to before it; and (c) after the second emotional trigger compared to before it. 

Values in the cells represent the extent of the difference in probability; positive values (red) indicate a higher probability  

and negative values (blue) indicate a lower transition probability after the specific trigger. 
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4.3. Changes in Linguistic Alignment and Physiological Synchrony in Group Interactions 

Figure 4 shows how Group 3’s linguistic alignment manifests in their interactions when presented with cognitive trigger 

event for SSRL (receiving a voice message telling them the customer had an allergy to latex and dairy products). This excerpt 

demonstrates how linguistic alignment appears in the group interaction before and after the cognitive trigger. At the 

beginning of the excerpt, there is a lack of linguistic alignment: both students 1 and 2 used task-description words that other 

group members did not use (marked with red colour Figure 4). For example, when student 1 stated that “We now need fat 

and protein,” student 2 replied that “What about quark — it has 295 calories,” illustrating the lack of linguistic alignment. 

After the cognitive trigger event, the group shows a higher level of linguistic alignment, as they jointly redefined their task 

and worked to replace dairy products with other suitable ingredients. The linguistic alignment of task-description words 

(proteins and contain, marked with blue in Figure 4) coincides with shared task enactment. These changes in the linguistic 

alignment on task-description words did not become visible in the relative amount of time Group 3 spent in the different 

physiological states (Figure 2). After the cognitive trigger event, Group 3 spent longer periods of time in the out-of-synchrony 

state without transitioning to other physiological states compared to before the event: this finding is evidenced by the relative 

number of transitions (34% and 45%) from the out-of-synchrony state to the out-of-synchrony state before and after this 

trigger. 

 
Figure 4. Excerpt of Group 3’s interactions before and after the cognitive trigger event. Task-description words marked in 

red were not used by other group members. Other students utilized the task-description words highlighted in blue. 

Figure 5 shows how Group 4 is finishing the task and fulfilling the rest of the nutrition requirements by adding and removing 

different ingredients to the smoothie around the second emotional trigger event (receiving a voice message asking them to 

hurry up). The linguistic alignment on task-description words did not change after this trigger event even though the 

alignment of the most common words slightly increased (repetitive use of the most common words marked with blue in 

Figure 5). At the same time as the second emotional trigger event, student 1 stated “Oh good timing, be quiet” to the customer, 

indicating frustration with constant hurrying up. After this event, the group continued the task enactment as before and 
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recognized that they have not yet met all the standards of the task “Now it is good, but we need more—calories.” Even 

though linguistic alignment did not significantly change after the second emotional trigger event, the relative amount of time 

the group spent in physiological synchrony with high arousal increased after this event, while out-of-synchrony state was 

observed less (Figure 2). The probability of the transitions from synchrony with low physiological arousal to synchrony with 

high physiological arousal also increased (22% vs. 36%) and the probability of concurrently being in out-of-synchrony state 

decreased (41% vs. 30%) after this trigger event compared to before it. 

 

 
Figure 5. Excerpt of Group 4’s interactions before and after the second emotional trigger event. The most common words 

have been marked in blue and those were used by other group members. 

5. Discussion 

We aimed to study how trigger events for SSRL shape groups’ negotiated sameness at the contextual (linguistic alignment) 

and physiological levels (physiological synchrony). First, we found that the cognitive trigger increased the linguistic 
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alignment of the task-description words (i.e., students used more similar words for describing the task after the cognitive 

trigger than before it; RQs1&3, see Figure 4). The cognitive trigger also more frequently led to a concurrent presence in the 

out-of-physiological-synchrony state (RQ2). Second, neither the first nor the second emotional triggers led to any significant 

changes in linguistic alignment (RQ1s&3, see Figure 5). The first emotional trigger promoted synchronous transitions from 

low/high physiological arousal to low/high physiological arousal and decreased the probability of the transition from high 

arousal synchrony to an out-of-synchrony state (RQ2). The second emotional trigger decreased the probability of being 

concurrently in out-of-synchrony and low arousal synchrony states while stimulating transitions to a high arousal synchrony 

state from low arousal synchrony and out-of-synchrony states (RQ2). 

The trigger events for SSRL were part of the treatment of the groups in this study. Although trigger events for SSRL can 

also originate from external sources in authentic learning environments, such as when a teacher provides revised task 

instructions (cf. the cognitive trigger when the customer sent a voice message telling the students they have an allergy to 

latex and dairy products) or when a group member suddenly needs to leave earlier due to a doctor’s appointment (cf. the 

emotional trigger when the customer sent a voice message to the group asking them to hurry up), previous research has 

primarily concentrated on trigger events stemming from internal sources (Emara et al., 2021; Haataja et al., 2022). In the 

case of trigger events originating from external sources, the source of the trigger event itself facilitates (or co-regulates) 

collective awareness of the need for a regulatory act and invites regulatory response at the group level (Hadwin et al., 2017). 

Instead of an external collective invitation to regulate learning, trigger events originating from internal sources may 

necessitate the gradual development of collective awareness regarding the need for regulatory acts. This awareness can 

emerge through social interactions involving certain group members inviting (i.e., co-regulating) others to engage in 

regulatory activities (Hadwin et al., 2017). 

These differences in the trigger events should be considered when interpreting the findings of this study. In previous 

studies, cognitive trigger events from internal sources have followed group monitoring that they are not progressing in the 

task according to the standards (metacognitive monitoring with negative valence; Haataja et al., 2022). In our study, external 

cognitive trigger (a voice message telling them the customer had an allergy to latex and dairy products) only updated the 

standards of the task. This difference may explain the difference in the physiological arousal and synchrony: That is, while 

the cognitive trigger following metacognitive monitoring with negative valence has increased high arousal physiological 

synchrony (Haataja et al., 2022), the external cognitive trigger in this study did not lead to an increase in physiological 

synchrony. Since the linguistic alignment of the task-description words increased after the external cognitive trigger, this 

might have related to the adaptive regulatory response to achieve the negotiated sameness by joint revision of group task 

understanding and enactment of task plans (evidenced in Figure 4 as the students’ joint enactment to replace dairy products 

with other ingredients after the cognitive trigger), which has been shown to decrease physiological synchrony (Mønster et 

al., 2016). It has also been found that higher linguistic alignment of task-description words is associated with success 

(Friedberg et al., 2012; Rahimi et al., 2017) and developing mutual understanding in a collaborative learning task (Hayashi, 

2023). 

When Buseyne et al. (2024) studied linguistic alignment in a CSCL task, they did not find significant differences in it 

between all the task phases. Similarly, we found the lack of significant changes in the linguistic alignment after both 

emotional trigger events (voice messages to the groups asking them to hurry up). These findings may relate to the content of 

these trigger events that might not necessitate the need to renegotiate and adapt the joint goals or (enactment of) task plans 

that would have become visible at the contextual level. Instead, these triggers might only have led the groups to hurry in 

accomplishing their current goals with already negotiated task plans, maintaining the negotiated sameness within a group 

(Dang et al., 2023). This interpretation is also evidenced in our excerpt after the second emotional trigger event as shown in 

Figure 5. In contrast, the emotional trigger events increased transitions to high arousal physiological synchrony in the groups. 

These events can be considered as feedback to the groups that they are not progressing as fast as they should according to 

the standards. This feedback could induce metacognitive monitoring with negative valence within groups (see Figure 5), 

contributing to the existing empirical evidence that if a group monitors it is not progressing in the task according to the 

standards, high arousal physiological synchrony increases (Haataja et al., 2022). These findings also align with those of Li 

et al. (2023), who found that physiological synchrony with high arousal was more common during emotional trigger events 

(and related regulatory responses) than during cognitive ones. 

When interpreting our findings relating to the second emotional trigger event, the general progress of the task might also 

be associated with the changes in the physiological synchrony. Namely, it has been noted that both high physiological arousal 

(Blikstein et al., 2017) and physiological synchrony (Malmberg et al., 2023) are more frequent at the beginning and at the 

end of a task. Thus, when we found that especially the second emotional trigger stimulated transitions to high arousal 

physiological synchrony, this may be related to the shared anticipation of a need to complete the task, which might have been 

further amplified by the second emotional trigger event. Moreover, the accumulating role of the trigger events (cognitive 
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trigger and the first emotional trigger) might also have affected the more frequent physiological synchrony with high arousal 

after the second emotional trigger event (Galy et al., 2012). 

When interpreting the findings of this study, the following limitations should be considered. First, the sample size (six 

groups, N = 18) was small, and since EDA data was not available from all the participants, we could only use data from four 

groups (n = 12) for physiological data analysis to address RQ2. Despite the small sample size, we were able to find 

statistically significant associations between the presence of trigger events for SSRL and linguistic alignment and 

physiological synchrony. A larger sample size would probably have made more difference, especially in the linguistic 

alignment visible at the level of statistical significance. Moreover, a larger sample size would have allowed us to perform 

comparative analyses among the conditions that received external cognitive and emotional trigger events and those that did 

not. Future studies with a larger sample size could also explore the effects of individual external trigger events to avoid 

potential effects from the accumulation of such events (one cognitive trigger event and two emotional trigger events in our 

study). In the future, human–AI collaboration and the use of automated measures for studying linguistic alignment and 

physiological synchrony could mitigate this limitation by enabling the scaling of these investigations with larger sample sizes 

(Järvelä, Nguyen, & Hadwin, 2023). Second, the collaborative learning task and associated trigger events for SSRL might 

not have been engaging enough (i.e., too easy or too complex) to stimulate physiological responses among all the participants 

(Törmänen et al., 2023). As task difficulty may be related to student physiological responses (Malmberg et al., 2022), future 

studies could use tasks with varying difficulty levels to better capture the range of cognitive and emotional obstacles that 

different types of tasks elicit. Moreover, multimodal measures of group learning traces could be used to personalize these 

learning tasks and associated trigger events (Hayashi, 2023), mitigating this limitation. Third, we aggregated investigations 

of the linguistic alignment and physiological synchrony over three-minute time windows. We chose this time interval as it 

was the duration between the presence of the different trigger events. Even though we were able to find statistically significant 

associations over these three-minute time windows, in the future, sensitivity analysis of different window sizes and a 

temporally more fine-grained analysis of linguistic alignment and physiological synchrony could provide further insights 

into how the trigger events shaped the negotiated sameness at the contextual and physiological levels. For more fine-grained 

analysis of linguistic alignment, measures of alignment across other linguistic levels such as prosodic (e.g., pitch or tonal 

alignment) and syntactic (e.g., alignment of sentence structures) may help reveal how the negotiated sameness develops 

dynamically around trigger events. We operationalized physiological synchrony using three physiological states, which we 

determined based on the (non-)co-occurrence of SCR peaks. We considered those peaks to co-occur within the group if they 

were manifested within a time window of 1.5 seconds (Dindar et al., 2022). This operationalization allows for the study of 

the relative amount of time the groups spend in the three different physiological states over a time window of any size, 

thereby enabling a more fine-grained analysis. Fourth, spoken interactions and linguistic analysis were in Finnish. This 

presents limitations to both the methods available for analysis and to generalizability. Insofar as automatic tools for detection 

of shared expression are built for English, a language that follows stricter word-order rules than Finnish, tools like dialign 

(Dubuisson Duplessis et al., 2017) have not yet been developed and limited linguistic research exists that could support the 

development of such tools in Finnish. Likewise, although linguistic findings mirror those found in similar research performed 

in an English-language collaborative learning study (Sinclair & Schneider, 2021), further research across other language 

contexts is needed to understand how particular our linguistic findings are to Finnish. 

Despite these limitations, our study has important implications for supporting collaborative learning and SSRL with 

multimodal learning analytics. Our findings contribute to the existing empirical evidence that multimodal learning analytics 

can be used to interpret cognitive, emotional, and social processes in learning (Giannakos & Cukurova, 2023). However, the 

lack of learning theoretical underpinnings has limited the provision of plausible explanations for observed phenomena in the 

field of multimodal learning analytics (Giannakos & Cukurova, 2023). Our study and its research design were based on our 

theoretical understanding on SSRL (Hadwin et al., 2017) and empirical evidence on how trigger events stemming from 

collaborative learning situation may serve as catalysts, requiring regulatory responses within a group (e.g., Li et al., 2023). 

We showed how the contextual data (audio recordings from which the linguistic alignment was studied) and physiological 

data (EDA data from which the physiological arousal and synchrony were studied) may be sensitive to the different types of 

trigger events and group regulatory responses to those. Specifically, when looking at the negotiated sameness of the groups 

at the physiological level, we found that three different physiological states of the groups (synchrony with low arousal, out 

of synchrony, synchrony with high arousal) were needed to evidence the trigger events, instead of focusing only on the 

physiological synchrony with high arousal. Since the groups spent different amounts of time in physiological synchrony 

(with high or low arousal) and out of synchrony and their physiological responses, especially to the emotional triggers, varied 

(see Figure 2), this challenges between-group comparisons and the reliability and validity of physiological synchrony alone 

as an indicator of trigger events for SSRL. Our findings show that when combining physiological and contextual data about 

learning processes, linguistic alignment and physiological synchrony can together provide insights into the presence of 

cognitive and emotional trigger events for SSRL and group responses to those events. Audio and physiological data are also 
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unobtrusive to collect in classrooms or other ecologically valid settings, which is crucial in practical implementations of 

multimodal (collaborative) learning analytics (Worsley et al., 2021). In terms of linguistic alignment analysis, online 

automatic speech recognition and alignment analysis would enable scaling and practical implementation, making alignment 

changes more visible in real time. Recent studies have also explored the potential of different natural language processing 

models, including large language models, to detect cognitive and emotional trigger events from student discourse 

(Suraworachet et al., 2024). For studying physiological synchrony, the development of cheaper, less intrusive, and wearable 

sensors (Ates et al., 2022), along with advancements of estimating heart rate from facial video recordings (Liu et al., 2024), 

could enable the scaling and practical implementation of physiological synchrony measurements. 

6. Conclusion 

This study shows how trigger events for SSRL shape groups’ negotiated sameness at the contextual (linguistic alignment) 

and physiological (physiological synchrony) levels. In particular, we contribute by empirically verifying the trigger event 

conceptual framework (Järvelä, Nguyen, & Hadwin, 2023) as a theory-guided way to empirically evidence modes of 

regulation (self-regulation, co-regulation, and socially shared regulation) during learning and collaboration episodes. Our 

study also addresses the need for collaboration between the fields of CSCL and multimodal learning analytics not only by 

focusing on a core theoretical concept in collaborative learning, namely negotiated sameness, but also by searching for new 

methodological and analytical means to understand it. 

It is still important to remember that any data stream or signal, such as physiological arousal or synchrony, is not an 

indicator of regulation in and of itself. However, the signal provides information about the internal, external, or shared 

contextual conditions that may trigger a purposeful strategic response. We were able to see this in our study, for example, in 

terms of the emotional triggers that increased a group’s probability of moving physiologically to a high arousal synchrony 

state without significant differences in linguistic alignment. The lack of changes in linguistic alignment might indicate that 

groups strategically act not to renegotiate their task understanding or plans in response to the emotional trigger event but to 

focus on the enactment of current learning strategies to hurry up the task accomplishment, which has been shown to relate to 

increased high arousal physiological synchrony (Dindar et al., 2020; Sobocinski et al., 2020). 

The findings of this study can be applied to how various data streams can be used in studying trigger events and eventually 

in developing metrics for AI-enabled real-time support for SSRL. For example, future AI agents could help students to 

become aware of the cognitive triggers (indicated, e.g., by an increase in linguistic alignment in task-description words) and 

emotional triggers (indicated, e.g., by physiologically decreased presence in out of synchrony), after which students can 

adaptively and strategically respond to these situations through joint negotiations. Moreover, with the help of multimodal 

measures, these AI agents could help students in taking adaptive regulatory response if they do not have enough 

metacognitive knowledge to take the necessary control themselves. However, more research is needed to better understand 

what factors show evidence of the impact of trigger events stemming from internal and external sources. As was seen in this 

study, multidisciplinary efforts are needed to make progress in this research. We had expertise from the learning sciences, 

educational psychology, learning analytics, information systems, and human–computer interaction fields collaborating in 

this study. 
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Appendix 

Group Linguistic Alignment 

This appendix shows the data— in one table and six figures—for group linguistic alignment in the most common words and 

task description words before and after the cognitive trigger event and two emotional trigger events. 

Table A.1 Linguistic Alignment Variables by Group 

Group pre-

cog 

post-

cog 

pre-

cog 

task 

post-

cog 

task 

pre-

emo 

post-

emo 

pre-

emo 

task 

post-

emo 

task 

pre-

emo2 

post-

emo2 

pre-

emo2 

task 

post-

emo 2 

task 

1 -0.079 -0.059 -0.014 -0.003 -0.074 -0.065 -0.004 -0.011 -0.071 -0.057 -0.011 -0.009 

2 -0.070 -0.076 -0.012 -0.011 -0.07 -0.069 -0.007 -0.013 -0.064 -0.030 -0.013 -0.003 

3 -0.080 -0.071 -0.015 -0.008 -0.074 -0.058 -0.013 -0.012 -0.058 -0.056 -0.008 -0.012 

4 -0.063 -0.084 -0.012 -0.004 -0.074 -0.062 -0.002 -0.007 -0.071 -0.062 -0.016 -0.015 

5 -0.079 -0.068 -0.005 -0.004 -0.083 -0.071 -0.009 -0.011 -0.066 -0.062 -0.009 -0.011 

6 -0.095 -0.081 -0.024 -0.004 -0.062 -0.077 -0.005 -0.012 -0.081 -0.079 -0.013 -0.011 
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