
Volume 11(2), 23–41. https://doi.org/10.18608/jla.2024.7985
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Abstract
Technology-enhanced learning supported by virtual learning environments (VLEs) facilitates tutors and students.
VLE platforms contain a wealth of information that can be used to mine insight regarding students’ learning behaviour
and relationships between behaviour and academic performance, as well as to model data-driven decision-making.
This study introduces a system that we termed ASIST: a novel Attention-aware convolutional Stacked BiLSTM net-
work for student representation learning to predict their performance. ASIST exploits student academic registry, VLE
click stream, and midterm continuous assessment information for their behaviour representation learning. ASIST
jointly learns the student representation using five behaviour vectors. It processes the four sequential behaviour
vectors using a separate stacked bidirectional long short term memory (LSTM) network. A deep convolutional neural
network models the diurnal weekly interaction behaviour. It also employs the attention mechanism to assign weight
to features based on their importance. Next, five encoded feature vectors are concatenated with the assessment
information, and, finally, a softmax layer predicts the high-performer (H), moderate-performer (M), and at-risk (F)
categories of students. We evaluate ASIST over three datasets from an Irish university, considering five evaluation
metrics. ASIST achieves an area under the curve (AUC) score of 0.86 to 0.90 over the three datasets. It outperforms
three baseline deep learning models and four traditional classification models. We also found that the attention
mechanism has a slight impact on ASIST’s performance. The ablation analysis reveals that weekly event count has
the greatest impact on ASIST, whereas diurnal weekly interaction has the least impact. The early prediction using
the first seven weeks of data achieves an AUC of 0.83 up to 0.89 over the three datasets. In yearly analysis, ASIST
performs best over the 2018/19 dataset and worst over the 2020/21 dataset.

Notes for Practice

• Existing literature based on prediction models relies on simple neural network or statistical analysis,
ignoring different aspects of virtual learning environment (VLE) interaction data and missing the potential of
advanced neural network components like the attention mechanism.

• This study presents a novel attention-aware convolutional bidirectional long short term memory (LSTM)
model, which we termed ASIST (Attention-aware convolutional Stacked BiLSTM), for student representation
learning. It jointly models data based on student demographic data, previous academic performance,
results from continuous assessment, and different aspects of student interaction with the VLE.

• The ASIST model was extended into ASISTearly for early prediction of student progression, which is effective
using only the first seven weeks of VLE interaction data.

• The results of this study demonstrate that deep learning models can be effectively deployed to implement
early intervention protocols and guide pedagogical design to promote student success.
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1. Introduction
Virtual learning environments (VLEs) generate abundant log-file data because they leave “learning traces” (Gasevic et al., 2015),
providing insight into student activities and learning processes. As higher education institutions leverage these online learning
platforms to facilitate content delivery, as well as communicative and assessment aspects of the pedagogical process, learner
interaction with a VLE platform generates a wealth of information, providing a rich source of insight, such as student learning
behaviour and its relationship with student performance. Researchers use this information for different predictive analytic
tasks. The “collection, analysis, and examination of student information to understand the learning environment and student
interaction behaviour, and using these insights to optimize the learning environment” is called learning analytics (LA) (Long &
Siemens, 2011). The challenge with LA often has to do with two main issues: first, deploying robust and practically sustainable
methods for educational data mining (EDM) (Shafiq et al., 2022), and second, using that data to inform student supports in
useful ways. Selwyn (2020) criticizes the propensity of many educational institutions to use LA for institutional surveillance
rather than individual support. Therefore, it is crucial that LA and the educational data be used as an instrument for empowering
the most disadvantaged student cohorts (Essa, 2019). This paper tries to strike that balance—between methodological progress
with EDM and on-the-ground LA application—in ways that are both useful and practicable.

1.1 Predictive Models for LA
The rapid development of tools and generated datasets has fuelled the growth and evolution of EDM over the years (Dowah
et al., 2019; Hernandez-Blanco et al., 2019; Ang et al., 2020). The literature broadly classifies existing LA studies using EDM
into statistical or exploratory analytics and predictive analytics categories (Shafiq et al., 2022). The first group of approaches
collects and analyzes student information to gain insight into their learning behaviour, interaction with the learning environment,
socio-demographic impact, and cognition level. The second category of approaches presents models to predict at-risk, drop-out,
and high-performing students (Ang et al., 2020). The use of platform-generated learning information has been a common
way to conduct statistical and predictive models to predict student performance (Waheed et al., 2020), at-risk students (Chui
et al., 2020), and drop-out students (Santos et al., 2014). Researchers also used socio-demographic, academic, and admission
information to predict student performance (Christian & Ayub, 2014; Mishra et al., 2014; Marbouti et al., 2016). Also, early
performance prediction is vital to designing effective intervention measures and recommending remedial content and strategies.

Within the predictive analysis category, existing models can be classified into two types: (i) classical machine learning
(ML) methods and (ii) deep learning (DL) methods. The classical ML models use hand-crafted features extracted from student
information for predicting student performance. Examples of these early approaches, often based on training classical ML
classifications and regression models to predict student academic success, are multiple in the literature (Huang & Fang, 2010;
Romero et al., 2013; Strecht et al., 2015; Migueis et al., 2018; Rizvi et al., 2019; Wasif et al., 2019; Priya et al., 2021; Palacios
et al., 2021; Jeslet et al., 2021; Yagci, 2022). While it yields interesting results, the main issue with classical ML is that
hand-crafting features is time-consuming, domain specific, and infeasible in a scalable sense. To find more efficient methods of
analysis of big datasets, recent advances in artificial neural networks (ANNs) have been applied to different problem domains
(Young et al., 2018; Zhang et al., 2019; Fazil et al., 2021) in order to make it possible to automatically extract the features
from raw data (Qiu et al., 2018). The existing literature has various DL models with promising results in diverse domains like
socialbot prediction (Fazil et al., 2021; Fazil & Abulaish, 2018) and rumour prediction (Abulaish et al., 2019). Researchers are
also employing neural networks in LA to predict at-risk students (Waheed et al., 2020; Sharada et al., 2018) and early drop out
students (Wang et al., 2017; Xing & Du, 2018), for example.

The development of ANN and DL methods has eased the problem of manual feature engineering to some extent, and while
some use manually designed features as input to deep models, some approaches completely avoid feature engineering. However,
these advanced DL models, completely free from feature engineering, are like “black-box” models and face interpretability
issues (Waheed et al., 2020). Therefore, although some recent approaches for student performance prediction in LA rely on
DL-based models, these studies also train classical ML models due to the use of various categories of features. Examples of
such approaches are multiple: Alam and colleagues (2018) defined features from student activity logs to train a deep belief
network and five classical ML models to classify the students; Raga and Raga (2019) characterized each student using 18
features and created a simple feed-forward neural network for early performance prediction; Hu and Rangwala (2019) trained
course-specific multilayer perceptron and recurrent neural network (RNN) models; Waheed and colleagues (2020) used singular
value decomposition and trained a simple ANN for student performance prediction; Karimi and colleagues (2020) applied a
graph convolution network for student and course representation learning and encoded student behaviour using a long short
term memory (LSTM) network to predict student performance; Hai-tao and colleagues (2021) also used the graph convolution
network for performance prediction; Ramanathan and Thangavel (2021) used a stacked LSTM-based DL model for student
performance prediction; Waheed and colleagues (2022) used socio-economic information and arranged various VLE interaction
information by week and trained four conventional and one DL models (LSTM) for early prediction; and Li and colleagues
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(2022) modelled library use and web-browsing behaviours of students employing LSTM and convolutional neural networks
(CNNs).

All of these approaches are simple deep neural networks with multiple hidden layers, and the application of complex
deep models integrating several neural network components remains under-studied. The existing DL approaches suffer from
two main limitations. First, they are simple RNN and ANN models, ignoring important neural network components like the
attention mechanism, so they generally do not model different behavioural aspects of students using attentional deep neural
networks. Second, they still use complex hand-crafted features to characterize students and suffer the pitfalls of manual feature
engineering. This study bridges this gap and presents a novel attention-aware convolutional bidirectional RNN-based model
(BiLSTM) employing simple feature engineering for student modelling to predict student performance. In doing so, we are
aiming to propose a model that carefully balances the need for engaging with complex deep models integrating various neural
network components while keeping the amount of feature engineering to a minimum to make it practicable in a real-case
scenario.

1.2 Our Contributions
The novelty of the predictive model proposed in this study, which we termed ASIST (Attention-aware convolutional Stacked
BiLSTM), resides in three aspects: (i) existing approaches model all the information as a single sequence, whereas ASIST
models each category of information as a separate component and passes them to an attention-aware BiLSTM/CNN network;
(ii) our model avoids complex feature engineering and uses a straightforward feature design; and (iii) it integrates the strength
of various neural network components into a unified model to uncover fine-grained regularities in student behaviour. ASIST
models students using demographic, continuous assessment, and interaction information, collected from the institutional VLE
at the University of Limerick to predict the high-performing, moderate-performing, and at-risk students in a cohort. The VLE
has various tools to facilitate and manage teaching, assessment and feedback, and collaboration and communication with and
between the students. ASIST models the diurnal interaction behaviour of a student with the VLE as a tensor of order two. ASIST
applies deep CNN on the tensor to find high-level feature maps representing students’ inter-day and inter-week interaction
behaviour. It also investigates the VLE interaction information to observe students’ weekly interaction and events-related
behaviour by modelling these behaviours as sequential information. An attention-aware stacked BiLSTM network is applied to
these behaviour vectors to learn encoded representation. Demographic and academic information is added as a 15-dimensional
auxiliary vector and passed through a BiLSTM network to encode students’ background information. ASIST processes the
behaviour vectors using either CNN or BiLSTM but does not assign any priority score to features. To this end, it applies the
attention mechanism to determine the importance score for each feature. The concatenation layer concatenates the encoded
representations from CNN and BiLSTM networks. Next, the continuous assessment information is added to the concatenated
vector and passed through a dense layer followed by a softmax layer to predict student performance. In summary, the main
contributions of this study are as follows:

• The study presents a novel attention-aware convolutional bidirectional LSTM model, ASIST, for student representation
learning by joint modelling of student demographic and academic information, continuous assessment information, and
different dimensions of VLE interaction information.

• Unlike existing studies, which model all the VLE interaction information as a single sequence, the presented architecture
models different aspects of VLE interaction information using multiple sequence.

• We perform a rigorous evaluation over a real-world dataset from the University of Limerick to observe the efficacy of
ASIST in predicting at-risk, moderate-performing, and high-performing students. We also perform behaviour ablation
analysis to investigate the impact of each behavioural component on the performance of ASIST.

• We extend the proposed model as an early performance prediction model and evaluate it over the given dataset. Also, we
train and evaluate the model over the dataset of each academic year.

2. Method
This study was conducted at an Irish university, in the context of an LA project aimed to analyze the factors leading to student
success. The authors completed a baseline analysis to identify the personal, educational, and learning engagement factors that
contribute to student success. The institution uses a VLE to facilitate all teaching, learning, and assessment interactions with
students. This study obtained student VLE interaction datasets for three large (350–600 students) first-year modules from
business, science, and humanities spanning four academic years from 2018/19 to 2021/22. All of the modules were offered in
the fall semester, and their module leaders volunteered to participate in this study. We sought research ethics approval from
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Figure 1. Architecture of the proposed ASIST model.

the concerned authorities of the respective faculties. The institution’s information technology division provided the dataset,
including the student activity log and academic registry data.

2.1 Dataset
We evaluated ASIST over three large cohort datasets from an Irish university (University of Limerick). The dataset has
demographic, academic, and VLE interaction information for three modules—module-1, module-2, and module-3—spanning
four academic years from 2018/19 to 2021/22. It contains information for 1,557, 2,078, and 2,433 students for module-1,
module-2, and module-3, respectively. In the university, students are assigned to one of the 11 grades based on aggregate
performance in continuous assessments and a final exam. However, we convert the university grades into high-performer (H),
moderate-performer (M), and at-risk (F) categories, as discussed in Section 2.2.1. Table 1 presents the distribution of the three
categories of students in the modules.

Table 1. Dataset statistics.

Module
Student Category

Total Students
High-performer (H) Moderate-performer

(M)
At-risk (F)

Module-1 373 966 218 1,557

Module-2 209 1,693 176 2,078

Module-3 401 1,478 554 2,433

2.2 ASIST Model
Figure 1 depicts the architectural representation of the proposed model. The following subsections introduce each layer of it.

2.2.1 Data Preparation
This layer processes the raw data to filter the noisy content and convert it to the required format. The information technology
division of the university provided the academic registry and VLE interaction information in two files: AcademicRegistry.csv
and VLE.csv. The academic registry is a single file including student demographic and academic information for all three
modules. However, the institutional VLE data has a separate file for each academic year from 2018/19 to 2021/22 for each
module. We created a single file for each module, combining the data from 2018/19 to 2021/22. In the university, students
are assigned to one of the 11 grades A1, A2, B1, B2, B3, C1, C2, C3, D1, D2, and F, depending on their performance. We
filtered the students with other grades. We adjusted the 11 grades into three, as given in Table 2. We assigned A2 students
as high-performers and D1 and D2 students as at-risk because they are adjacent to the highest-performing (A1) and at-risk
(F) categories of students, respectively. We assigned the remaining categories of students to the moderate category. For
example, Figure 2 shows the original and adjusted grade distribution for module-1. It shows that most students fall under
the moderate-performer category, whereas approximately 10% are at risk of failure. We also filtered the duplicate rows and
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Figure 2. Original grade and adjusted grade distribution for module-1.

Figure 3. Grade and adjusted grade distribution for module-1.

extracted the date component from the date-time value. We also filtered the users with missing grade information in the
academic registry file.

Table 2. UL grades and adjusted grades.
UL Grade Adjusted Grade
A1, A2 High-performer (H)

B1, B2, B3, C1, C2, C3 Moderate-performer (M)

D1, D2 and F At-risk (F)

2.2.2 Data Modelling
This layer transforms the preprocessed data to model the five behaviour representations of students. We model the VLE
interaction information using four behaviour vectors rather than a single vector to find patterns from different student behaviours.
To this end, the VLE interaction information is used to model the weekly interaction, weekly event, cumulative event, and
diurnal weekly interaction behaviours of students. Although it is manual feature engineering, it is simple and straightforward.
The following subsections provide a brief description of all of these representations.

2.2.3 Demographic and Academic Behaviour
The existing literature has studies wherein researchers have found a relation between students’ demographic and academic
records and their performance in upcoming courses (Migueis et al., 2018; Waheed et al., 2020). Therefore, this study uses
this information from the university’s academic registry (AR) and extracts 15 features, including three demographic and 12
academic pieces of information. Table 3 lists these 15 attributes and their brief description. We analyze the historical academic
performance of three categories of students using entry score distribution, as shown in Figure 3 for module-1. It shows that
90% of at-risk students got less than 500, whereas only 30% of high-performing students did. The figure shows a significant
difference among the three categories of students considering entry score distribution. This 15-dimensional vector, represented
using D , models the students based on their demographic and academic information.
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Figure 4. Students’ Interactions per week for module-1.

Table 3. Demographic and academic attributes and their descriptions.
Attribute Description
Age Calculated from student’s date of birth

Gender Student’s gender

FDN Class Student’s geographical location

Entry score Sum of student performance in all of the subjects at leaving cert level

Access route Student route, such as HEAR, DARE, LC, to enrollment in higher education in the Irish
education system

SUSI recipient A binary variable representing whether the student has been supported by Student Universal
Support Ireland (SUSI) or not

SEM1 Grade Student’s grade in the first semester

SEM1 #Module Number of courses studied by student in the first semester, representing student’s academic
load

LC English Student’s performance in the English module at leaving cert level

LC Irish Student’s performance in the Irish module at leaving cert level

LC Math Student’s performance in the mathematics module at leaving cert level

LC Chemistry Student’s performance in the chemistry module at leaving cert level

LC Physics Student’s performance in the physics module at leaving cert level

LC Economics Student’s performance in the economics module at leaving cert level

LC Physics with Chemistry Student’s performance in the physics with chemistry module at leaving cert level

2.2.4 VLE interaction Behaviour

The university in this study uses a VLE to help teachers with such academic tasks as uploading resources (e.g., video tutorials),
creating forums, and evaluating assignments. Students use the university’s VLE to access course materials, submit assignments,
track midterm results, chat on forums, and perform other academic activities. This study obtains the VLE interaction dataset
of first-year students for three large cohorts—chemistry (module-1), management (module-2), and economics (module-3)—
spanning four academic years from 2018/19 to 2021/22. All of the modules were offered in the fall semester. The information
technology division at the University of Limerick maintains the student activity log. A session is created every time a student
logs in to the VLE. Also, each activity on the VLE generates a particular event, depending on the underlying action. A log file
is maintained to log all of the activities in the VLE, where each row/instance represents an activity using a set of 10 fields,
briefly described in Table 4. This study uses session, visit, login, and interaction interchangeably. Using the log file, we model
student behaviour using the following four one-dimensional vectors.
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Table 4. Log file attributes and their descriptions.
Field Description
Event date The date and time when this event happened

Username The unique ID of the student who performed the action

Event The particular action performed by the student, e.g., con-
tent.read

Reference The relative path of the accessed resource

Translation The actual resource

IP The IP address of the device used to access the VLE resource

Iporg The Internet service provider used by the student while ac-
cessing the resource

Iplocation The student’s location while accessing the resource

useragent A string containing basic information regarding the accessing
device, such as Web browser and OS

platform The operating system installed in the accessing device

browser The browser used to access the resource

sessionid The unique number assigned to a student every time they log
in to the VLE

Weekly Interaction Behaviour Student interaction with the VLE may be an important indicator of student performance.
Therefore, to analyze the frequency of student access to the VLE, we compute the total VLE logins for a student in a week.
High access frequency represents a student’s consistent effort and persistence. On the contrary, a low value may mean that
the student is at risk and needs immediate intervention, although in some cases, there might be other reasons. To this end, we
first compute the total number of visits (interactions) in a week. To observe the weekly access pattern over the semester, we
find the visit count for each of the 14 weeks to create the weekly interaction behaviour vector IW . We further investigated
the weekly interaction behaviour of three categories of students and found a notable difference among the three categories.
For example, Figure 4 shows the weekly interaction of students for module-1. It depicts that the average access frequency of
high-performing students is seven per week, except for a few weeks. On the other hand, the frequency is only four for at-risk
students. Interestingly, the interaction frequency gap between H, M, and F is significantly reduced in the 13th week (exam
week).

Weekly Event Behaviour Every interaction with the VLE generates an event based on the underlying activity. Once a student
logs in to the VLE, it is important to model the number of activities performed within the environment, to distinguish from
students who may just log out immediately. We tracked this behaviour by computing the event frequency. The frequency and
type of events may be another good indicator to predict student grades. In the log file, each row represents an event. A student
can do multiple events in a session/interaction/visit. We first computed a student’s total event count in a week. We further found
the event count for each of the 14 weeks to find the weekly event behaviour vector, EW . Therefore, the weekly event behaviour
is represented using a 14-dimensional vector. We also investigated the weekly event count of three categories of students,
as shown using a line graph in Figure 5. The figure shows that just like interactions per week, the difference among three
categories of students considering the weekly event count is noteworthy. On average, at-risk students perform approximately
half the weekly events of the high-performer.

Cumulative Event Performance As discussed earlier, every interaction with the VLE generates an event, depending on the
underlying activity. In the VLE, students perform events like content.read and ancc.read. The frequency and type of events
performed may be another indicator of student performance. Some events may be more important than others, so analyzing
different event counts is also vital. To this end, we modelled the cumulative count of each event to observe the student event
performance behaviour. We investigated the cumulative event count of the three categories of students. For example, Figure 6
exhibits the distribution of event count for module-1. It exhibits that events like annc.read, content.read, and calendar.read show
trivial differences in performance frequency among the three categories of students. However, this difference is considerable
for assessment-related events like sam.assessment.submit.checked and sam.assessment.take, where high-performers perform
these events frequently. The cumulative distribution reveals less activity by at-risk students. The cumulative event count, a
24-dimensional vector, is represented using EC.

Diurnal Weekly Interaction The activity log representing student interaction with various VLE resources has rich information.
Every time a student logs in to the VLE, it creates a session with a unique ID. Further, it assigns every activity to the underlying
session ID. The active session ends once the student logs out. We used the students’ daily interaction frequency in the VLE to
model regularity in users’ diurnal interaction. We modelled the diurnal interaction frequency grouped by week. To this end,
we first counted the total interactions on a particular date. To observe the temporal evolution of the student interaction, we
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Figure 5. Students’ Event count per week for module-1.

Figure 6. Cumulative distribution of event count for module-1.
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Figure 7. Architecture of an LSTM cell redrawn from Arbel (2018).

computed it for each day of the week, creating a seven-dimensional vector. At the University of Limerick, an academic semester
runs for 14 weeks, so we computed the interaction count for every day of each week for 14 weeks, creating a seven-dimensional
vector for each week. We model the diurnal weekly VLE interaction, represented by ID, by organizing the 14 constructed
seven-dimensional vectors as a two-dimensional tensor MNw×Nd , where Nw and Nd represent the number of weeks (i.e., 14) and
the number of days in a week (i.e., seven), respectively. This representation encodes the inter-day and inter-week interaction
patterns.

Continuous Assessment In a module, students’ progress is tracked based on their performance in continuous assessment,
either midterm exams or assignments. The student’s performance in these assessments is a good indicator of their progress
and final grade. We considered student performance in the first four assessments, represented using A , and used them as the
auxiliary features at the concatenation layer. In this regard, assessment scores are, first, sorted from highest weight to lowest,
and then the student results in the first four are selected. We chose only four assessments from each module so that the length
of the assessment vector is the same for all modules.

2.3 ConSAT Layer
This section describes neural network components used in the ASIST model to process the identified behaviour representations.
The proposed model employs stacked bidirectional LSTM (BiLSTM) to process the weekly interaction behaviour, weekly event
count, cumulative event count, and academic registry information. It also includes a two-layer CNN to process the diurnal VLE
interaction behaviour. Additionally, the attention layer assigns an importance score to each value of behaviour vectors. The
following subsection presents a detailed description of each of the discussed components.

2.3.1 Stacked BiLSTM Network
The proposed model uses a two-layer stacked RNN to process and encode the four sequential behavioural vectors. We use
BiLSTM, an RNN, to process the four sequential pieces of behaviour information to model temporal dynamic behaviour
(Hochreiter & Schmidhuber, 1997). The BiLSTM network handles the vanishing gradient problem using forget gate and the
additive property. The BiLSTM takes two LSTMs, forward and backward, to capture both the historical and future context in a
temporal sequence vector. In this study, student VLE interaction is modelled using four temporal sequential vectors; therefore,
we use BiLSTM to learn encoded representations from these vectors. The memory block in LSTM uses a memory cell to decide
what to forget and what to remember, enabling it to learn long-range dependencies. Figure 7 shows the internal architecture of
an LSTM cell. It has information in the form of hidden state h(t) and cell c(t) for the current timestamp t that is processed
using forget, input, and output gates. The hidden state and cell state are known as short-term memory and long-term memory,
respectively. An LSTM cell first determines what information to forget from the previous timestamp using a forget gate, ft .
It uses the last hidden state ht−1 and input xt to compute the value determining the amount of forgotten information using
equation 1. The computed value is multiplied by the previous cell state ct−1 to update the amount of the last state information:

ft = σ(Wf · [ht−1,xt ]+b f ) (1)

Further, LSTM computes the amount of new information to be included in the current cell state using an input gate. In
this process, it first finds new information (i.e., current input) using equation 2. Next, the input gate using a tanh function
computes the new information C̃t using equation 3 to the cell state. Finally, the cell state at the current time stamp t, Ct , is
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Figure 8. A simple BiLSTM network (Ihianle et al., 2020).

updated using equation 4, where the first part erases some information from the earlier cell state Ct−1 and the second part adds
the new information:

it = σ(Wi · [ht−1,xt ]+bi) (2)

Ĉt = tanh(WC · [ht−1,xt ]+bc) (3)

Ct = ft ⊗Ct−1 + it ⊗Ĉt (4)

Further, the LSTM cell using the output gate determines what part of the current cell state Ct will be the cell output. First, a
value ot is computed using a sigmoid function as in equation 5 to determine the amount of output information. Next, the current
cell state Ct is passed through a hyper-tangent function and multiplied by the ot to compute the final LSTM hidden state/output
ht as in equation 6. The W and b in the above equations are the weight and bias vectors, respectively, whereas ⊗ performs
element-wise multiplication:

ot = σ(Wo · [ht−1,xt ]+bo) (5)

ht = ot ⊗ tanh(Ct) (6)

This study uses BiLSTM to capture the contextual information in both directions using a pair of forward and backward
LSTMs. In the context of LA and this study, we use BiLSTM to learn the representation incorporating both the forward and
backward context. For example, to learn the representation for a particular weekday, backward LSTM learns the representation
for the day including the VLE information of previous days of that week, whereas forward LSTM learns the representation
including the VLE-extracted information of the remaining days of the week. In the process, the forward and backward LSTM
generates two hidden states,

−→
ht and

←−
ht , using equations 7 and 8, respectively. The BiLSTM network computes the final hidden

representation ht using equation 9. Figure 8 shows an example of a BiLSTM network. In empirical evaluation, researchers
observe that deep RNN is better at learning low-level feature representation with better model complexity (Pascanu et al., 2014).
Therefore, this paper uses a two-layer stacked BiLSTM to process the sequential behavioural vectors:

←−
h t =

−−−→
LST M( ft) (7)

−→
h t =

←−−−
LST M( ft) (8)

ht = σ(
←−
h t ,
−→
h t) (9)
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2.3.2 CNN
The four sequential behaviour representations are processed using separate stacked-BiLSTM networks. BiLSTM efficiently
extracts temporal patterns from sequential information but cannot extract spatial features. We organized the student diurnal
interaction information weekly and modelled it using the CNN to extract the student inter-day and inter-week interaction
patterns. We modelled the student diurnal interaction over the semester as two-dimensional tensor M ∈ RNw×7, where Nw
represents the number of weeks in the semester, which is 14 for the given dataset. CNN efficiently extracts features from grid
data like image (LeCun et al., 2015). In the existing literature, researchers exploit its competency in retrieving good semantic
and spatial features, efficiently employing these features in several natural language processing (NLP) applications. CNN
also extracts local and position-invariant features (Yin et al., 2017). Therefore, we apply CNN over the diurnal interaction
information to extract efficient low-level spatial and position-invariant features. A CNN typically performs convolution and
pooling operations, where a convolution operation extracts local features using different kernels and pooling extracts vital
features from the extracted features maps. A CNN uses kernels of various sizes. In a deep CNN, higher layers capture rich and
complex features from lower-layer feature maps (Roy et al., 2020). Therefore, this study uses a two-layer CNN with a max
pooling layer after the second layer to extract the rich local features.

2.4 Attention Layer
The encoded representations from the stacked BiLSTM and CNN layers are passed through attention layers to assign feature
weights, which are high for important features and low for insignificant ones. In NLP and other computing problems, attention
is a technique to capture the important features from the input feature representation. In the process, it assigns higher weights to
important features for the underlying tasks and lower weights to trivial features. Because NLP represents the text in a sequential
pattern, this study also presents student interaction behaviour in a sequential form. Additionally, each value of every interaction
behaviour vector is not of equal importance; rather some are more important than others. Therefore, the attention mechanism
is suitable for the presented scenario where the attention will assign each interaction value a weight representing its relative
importance within the vector. Attention assigns high weights to important VLE interaction factors. This study uses word-level
attention by Bahdanau and colleagues (2015). If the encoded hidden representation of a behaviour vector f from one of the
BiLSTM/CNN layers is h f , then it is passed to the attention layer for further contextual weight scoring, where h f is passed to
a dense layer using the hyper-tangent activation function to learn the hidden representation h′f as given in equation 10. The
activation function tanh takes the product of a trainable weight matrix Ww and h f added to a bias vector bw. Thereafter, equation
11 computes the normalized similarity, α f , of the hidden representation h′f . Finally, equation 12 computes the product of the
normalized similarity α f and the feature vector h f to find its attention-based representation:

h′f = tanh(Wwh f +bw) (10)

α f =
exp(h′f )

∑ f exp(h′f )
(11)

si =
t

∑
i=1

α f h f (12)

2.5 Concatenation Layer
This layer concatenates the four BiLSTM-encoded representations with the CNN-encoded diurnal weekly behaviour. Further, it
concatenates the continuous assessment information that is passed through a dense layer followed by a softmax layer to classify
student performance into high-performer, moderate-performer, and at-risk categories.

3. Results and Discussion
In this section, we empirically evaluate ASIST over three real datasets. In the following subsections, we discuss the experimental
results, perform comparative analysis, and conduct other empirical evaluations.

3.1 Evaluation Metrics
This study is a classification problem to predict student performance. In the existing literature, researchers generally evaluate
classification models using accuracy, precision, recall, and fscore. The presented model predicts student categorizations into
ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

33



three categories. The datasets for the three modules are greatly imbalanced because they have a relatively small number of high-
performing and at-risk students compared to the moderate-performers. In an imbalanced dataset, performing experimentation
using only accuracy is not considered good evaluation (Mubarak et al., 2021; Wang et al., 2017). Researchers have used
accuracy, including other evaluation measures like area under the curve (AUC) and fscore, to evaluate the efficacy of their
models (Raga & Raga, 2019; Waheed et al., 2020; Hidalgo et al., 2022). Therefore, we evaluate the proposed model using
a comprehensive set of five metrics: accuracy (Acc), precision (Pre), recall (Rec), fscore (Fsc), and area under the receiver
operating characteristic curve (AUC).

3.2 Experimental Setting
During experimentation, we trained ASIST using a learning rate of 0.001 and Adam as the optimization algorithm. The model
was trained on 80% of the dataset and tested on the remaining 20%. The model was trained for 50 epochs using categorical
cross entropy as the loss function because we classify student performance in more than two categories. The proposed model
uses a dropout value of 0.5 to avoid over-fitting. ASIST processes the four sequential behaviour vectors using an attention-aware
stacked BiLSTM network. In the stacked BiLSTM network, the first and second BiLSTM layers use 128 and 64 memory
units, respectively. ASIST employs two CNN layers with a dropout layer after the first layer to process the diurnal weekly
interactions. The first CNN layer uses 128 filters with size 3×3, whereas the second layer uses 64 filters each of size 2×2.
After the two CNN layers, the model applies a max pooling layer with a pooling operation of two. The proposed model adjusts
the batch size to 16 in the training procedure. The output layer uses the softmax function with three neurons to classify student
performance into three categories.

3.3 Comparison Methods
We evaluated ASIST’s performance with the following baseline methods:

BiLSTM CNN: This baseline analyzes the impact of attention on ASIST’s performance. To this end, we remove the attention
layers to retrain ASIST and predict student performance to analyze the impact of the attention layer on the model’s
performance.

LSTM CNN Attn: We created this baseline to analyze the impact of using LSTM instead of BiLSTM. Therefore, we replace
the BiLSTM layers with LSTM to analyze ASIST’s performance.

Simple Model: ASIST uses stacked BiLSTM and CNN. In this baseline, we use a single BiLSTM and a single CNN layer to
investigate the impact of stacked BiLSTM and CNN layers on ASIST’s performance.

ANN: This baseline concatenates four sequential behaviour vectors, D , IW , EW , and EC; diurnal weekly behaviour IW ; and
midterm performance values A into a single vector. Further, the concatenated vector is passed to a deep ANN with two
hidden layers with 100 and 50 neurons, respectively. Finally, the softmax layer predicts student performance.

Decision Tree: In this baseline, we concatenate all of the behaviour representations into a single vector and pass it to a decision
tree using entropy as a splitting criterion for student performance prediction.

SVM: This baseline also concatenates all of the behaviour representations into a single vector and passes it to a support vector
machine with a radial basis kernel to predict student performance.

Random Forest: This baseline also concatenates all of the behaviour representations into a single vector and passes it to a
random forest with 50 decision trees to predict student performance. Random forest is an ensemble classifier that fits
multiple decision trees to various random bootstrap samples. In classification, the final class is the mode value of all of
the decision tree predictions.

XGBoost: This stands for extreme gradient boosting. It is the open-source library of gradient-boosted decision trees under
the gradient boosting framework with improved speed and performance. Like the random forest, it is also an ensemble
learning method for classification and regression problems. This baseline also concatenates all of the behaviour
representations into a single vector.
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Table 5. Performance results of ASIST over University of Limerick dataset.

Approach
Module-1 Module-2 Module-3

Acc Pre Rec Fsc AUC Acc Pre Rec Fsc AUC Acc Pre Rec Fsc AUC

ASIST 0.7519 0.7776 0.7247 0.7491 0.8858 0.8245 0.8442 0.8191 0.8131 0.9040 0.7207 0.6990 0.7083 0.7029 0.8614
BiLSTM CNN 0.7434 0.7391 0.7012 0.7408 0.8682 0.8190 0.8056 0.8245 0.8003 0.9025 0.7125 0.7102 0.6982 0.7051 0.8185

LSTM CNN Attn 0.7492 0.7726 0.7245 0.7478 0.8791 0.8161 0.8401 0.8169 0.8103 0.8994 0.7157 0.7022 0.6879 0.6949 0.8555

Simple Model 0.6987 0.7056 0.6760 0.6901 0.8531 0.8004 0.8030 0.7956 0.7992 0.8988 0.6819 0.6671 0.6589 0.6627 0.8289

ANN 0.6667 0.6664 0.6635 0.6649 0.8529 0.7721 0.7662 0.7644 0.7653 0.8785 0.6529 0.6514 0.6489 0.6502 0.8215

Decision Tree 0.6879 0.6812 0.6859 0.6825 0.7704 0.7587 0.7476 0.7524 0.7496 0.6571 0.5917 0.5949 0.5955 0.5939 0.6987

Random Forest 0.7288 0.7301 0.7212 0.6994 0.8411 0.7929 0.7108 0.8149 0.7446 0.7903 0.7184 0.7150 0.6899 0.6530 0.8186

XGBoost 0.7610 0.7695 0.7564 0.7432 0.8790 0.7954 0.7864 0.8173 0.7597 0.7665 0.6918 0.6943 0.6982 0.6847 0.8434

SVM 0.7519 0.7499 0.7340 0.7131 0.8500 0.7891 0.7411 0.8149 0.7341 0.6983 0.6725 0.6937 0.6530 0.5896 0.7685

3.4 Results
In this section we evaluate ASIST over the three datasets in comparison to the eight baseline models, including four designed
DL models, simple model, BiLSTM CNN, LSTM CNN Attn, and ANN, and four classical ML models, decision tree, random
forest, XGBoost, and support vector machine. Table 5 presents the results of ASIST and baseline models. The best performance
considering each evaluation metric on each dataset is highlighted in bold typeface. The table shows that ASIST outperforms the
comparison methods in all but five cases. ASIST also performs best over the module-2 dataset and worst over the module-3
dataset. The table also shows that considering AUC, the proposed model outperforms the comparison methods over all three
datasets. This is significant because AUC is a good evaluation metric for imbalanced datasets. The second row of the table
shows that the exclusion of the attention mechanism has a minute impact on ASIST’s performance. The third row indicates that
excluding the second BiLSTM and CNN layers significantly impacts ASIST’s performance. We also evaluated how the model
would perform if instead of BiLSTM, LSTM were used; the underlying results are presented in the fourth row of the table. The
result shows that the model performance is slightly decreased, though not significantly; therefore, the presented model uses
BiLSTM. We can also observe from the fifth row that the ANN baseline performs poorly. Among the four classical ML models,
XGBoost performs best, whereas the decision tree shows the worst performance. XGBoost also performs best considering
accuracy and recall over the module-1 dataset. Additionally, the ensemble classifiers XGBoost and random forest show better
performance than decision tree and SVM. This establishes the learning and classification efficacy of ensemble classifiers.

3.4.1 Behaviour Ablation Analysis
The presented DL model employs different categories of information to model different student behaviours. We use these
information sequences separately so that the model can capture patterns from each behaviour. Therefore, this section performs
behaviour ablation analysis to investigate the impact of each behaviour component on ASIST’s performance. We investigate
the effect of a particular behaviour by excluding its underlying information sequence from the proposed model. For example,
we exclude the demographic and academic information sequence, D , to analyze its influence on ASIST. The second row of
Table 6 presents the results of the underlying updated model. The demographic information shows a moderate adverse impact
on ASIST’s performance, in line with the findings of existing literature (Waheed et al., 2022; Selwyn, 2020). However, the
use of demographic information also includes privacy issues and concerns. This process of ablation analysis is repeated for
each behaviour component to analyze their effect on ASIST. We can observe from Table 6 that weekly event count EW has the
highest impact on ASIST’s performance. This behaviour component shows the highest impact considering Acc, Fsc, and AUC
over module-2 and considering Acc and Fsc over module-1. It exhibits a moderate effect on the module-3 dataset. It reflects that
the type of activity also includes the signal to predict its performance. The weekly interaction behaviour, IW , also adversely
impacts ASIST. Table 6 presents the results for behaviour components with the highest impact on ASIST’s performance in
bold typeface. The table also shows that ID has the minimum effect, representing the fact that the daily interaction count
arranged weekly trivially affects the performance. Also, EC and A show moderate impact, reflecting the fact that assessments
and the kind of activity performed over a VLE are good indicators of student performance. An interesting observation is that
excluding some behaviour components improves ASIST’s performance over the module-1 and module-2 datasets. The impact
of component exclusion on the model performance is more significant over module-1 than over the other two modules’ datasets.
However, it is also significant over the module-2 dataset, considering precision. The ablation analysis result is not given for the
A component for the module-2 dataset because continuous assessment information is unavailable for the module.

3.4.2 Early Prediction of Student Performance
The early prediction of performance in LA is relevant because it gives institutions and concerned teachers sufficient time for
early intervention to guide at-risk students. To this end, we extend ASIST to predict student performance early to provide
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Table 6. Experimental results for behaviour ablation analysis with exclusion of demographic and academic behaviour (D),
weekly interaction behaviour (IW ), weekly event behaviour (EW ), cumulative event performance (EC), diurnal weekly

interaction (ID), and continuous assessment (A ).
Approach

Module-1 Module-2 Module-3
Acc Fsc AUC Acc Fsc AUC Acc Fsc AUC

ASIST 0.7519 0.7491 0.8858 0.8245 0.8131 0.9040 0.7207 0.7029 0.8614

ASIST-D 0.7299 (0.022 ↓) 0.7273(0.0218 ↓) 0.8443(0.0415 ↓) 0.8100(0.0145 ↓) 0.8097(0.0034 ↓) 0.8947(0.0093 ↓) 0.6879(0.0328 ↓) 0.6869(0.016 ↓) 0.8344(0.027 ↓)
ASIST-IW 0.7444(0.0075 ↓) 0.7189(0.0302 ↓) 0.8614(0.0244 ↓) 0.8179(0.0066 ↓) 0.8081(0.005 ↓) 0.9010(0.003 ↓) 0.7187(0.002 ↓) 0.6795(0.0234 ↓) 0.8376(0.0238 ↓)
ASIST-EW 0.7231(0.0288 ↓) 0.7098(0.0393 ↓) 0.8529 (0.0329 ↓) 0.8052(0.0193 ↓) 0.8015(0.0116 ↓) 0.8925(0.0115 ↓) 0.7115(0.0092 ↓) 0.6949(0.008 ↓) 0.8566(0.0048 ↓)
ASIST-EC 0.7615(−0.0096 ↑) 0.7593(−0.0102 ↑) 0.8899(−0.0041 ↑) 0.8139(0.0106 ↓) 0.8087(0.0044 ↓) 0.9005(0.0035 ↓) 0.7290(0.0083 ↓) 0.7129(−0.01 ↑) 0.8682 (−0.00682 ↑)
ASIST-ID 0.7568(−0.0049 ↑) 0.7619(−0.0128 ↑) 0.9011(−0.0153 ↑) 0.8084(0.0161 ↓) 0.8154(−0.0023 ↑) 0.9108(−0.0068 ↑) 0.7103(0.0104 ↓) 0.6861(0.0168 ↓) 0.8481(0.0133 ↓)
ASIST-A 0.7423(0.0096 ↓) 0.7331(0.016 ↓) 0.8786(0.0072 ↓) - - - 0.6940(0.0267 ↓) 0.6741(0.0288 ↓) 0.8433 (0.0181 ↓)

(a) Module-1 (b) Module-2 (c) Module-3
Figure 9. Comparative results between ASIST and ASISTearly.

timely intervention to at-risk students. To this end, we executed experiments using only the first seven weeks of information for
IW , EW , EC, and ID. We call the underlying updated model ASISTearly. The demographic and academic behaviour vector is
the same because it has static information. We also drop the continuous assessment because midterm assessments are generally
held late in the semester. Figure 9 presents the comparative results of ASIST with ASISTearly. It shows that considering only
the first seven weeks of interaction information shows a trivial impact on ASIST. Therefore, ASISTearly exhibits comparative
performance with ASIST. The figure also indicates that ASISTearly shows the highest impact over module-3, where Acc, Fsc,
and AUC are reduced by 4, 5, and 3 points, respectively. The figure also demonstrates that impact is greatest considering Fsc
and least considering AUC. Finally, this evaluation establishes ASIST’s efficacy as an early predictor of student performance.

The ASIST module trained on a full semester of data contributes to the scholarly literature, thanks to its methodological
novelty, and from a practical perspective, it enabled us to understand the variables contributing to student success in our context.
However, prediction of end-of-course outcomes using a full semester’s worth of data is not particularly useful if only the
accuracy of the predictions is considered. The potential danger is that by selecting a narrow set of data spanning the first seven
weeks of the semester (when we have an opportunity to intervene in students’ behaviour), we lose the accuracy of the prediction.
The comparison of ASIST (full semester) and ASISTearly (first seven weeks) in Figure 9 provided reassurance that we were
establishing student intervention on solid methodological ground. The fact that a “real-world” implementation of ASIST with
far less data (ASISTearly) holds in terms of comparative performance with the full model reassures us about the suitability of the
model as a tool for student early intervention during the most vulnerable weeks of the transition period to university. Therefore,
presenting results on full-semester data as primary findings and early prediction as secondary results balances the contribution
of this paper to the literature while providing crucial data for decision making.

3.4.3 Yearly Prediction of Student Performance
The datasets of this study were extracted from data accumulated during four academic years, from 2018/19 to 2021/22. The
model was trained and evaluated considering Acc, Fsc, and AUC over the dataset of each academic year to investigate the
performance of ASIST in each academic year. Figure 10 shows the underlying results for each academic year over the three
datasets. It demonstrates that ASIST trained over the 2018/19 dataset performs best and even outperforms the model trained
over the combined dataset, except considering Acc and AUC over module-3. The figure also indicates that ASIST’s performance
degrades considering all metrics except in one instance when trained over module-1 and module-2 datasets from 2018/19 to
2020/21, but it improves over the 2021/22 dataset. Also, ASIST’s performance for each year over the module-3 dataset is
random. We cannot ascertain the reason behind this drift in model performance over the different academic years. The model’s
performance over the dataset of each year, considering AUC, is relatively more stable than Acc and Fsc over all three module
datasets.
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(a) Module-1 (b) Module-2 (c) Module-3
Figure 10. Experimental results of ASIST for each academic year over the three datasets.

Table 7. Experimental results of ASIST over the three datasets with training and validation on first-year data and model
evaluation over the next three years of datasets.

Approach
Module-1 Module-2 Module-3

Acc Fsc AUC Acc Fsc AUC Acc Fsc AUC

ASIST2018−19 0.7783 0.8312 0.8989 0.8459 0.8285 0.9405 0.7018 0.7375 0.8517

ASIST2019−20 0.7012 0.6871 0.7562 0.7345 0.7017 0.8056 0.6381 0.6142 0.7277

ASIST2020−21 0.6590 0.6887 0.7756 0.6629 0.6541 0.7518 0.6211 0.5971 0.6951

ASIST2021−22 0.6443 0.6734 0.7823 0.5961 0.6221 0.7132 0.6081 0.6354 0.7187

More interestingly, however, we trained the ASIST model over the first-year dataset 2018/19 and investigated its performance
over the next three years of datasets to investigate the transfer of model learning capabilities and drift in accuracy. It would be
closer to an important use case when the system is deployed in the future. We represent the model for each academic year
as ASISTyear, where “year” is replaced with the corresponding year. Table 7 presents the underlying results considering the
accuracy, fscore, and AUC. The investigation shows, however, that the model trained over the year 2018/19 dataset performs
poorly when used for prediction in forthcoming academic years. This finding is hardly surprising due to the period in which the
investigation happened, capturing the sudden pivot to remote delivery imposed by the COVID-19 pandemic. While in 2018/19,
the reliance on VLEs was much lower across all modules from a pedagogical design perspective, by 2021, it had become
way more integrated into teaching, learning, and assessment practices across the board in the institution, and the educational
experience and expectations around blended learning of student cohorts had radically changed. Also, delivery and assessment
design of each module evolve from year to year in multiple ways. This showcases the complexities of EDM in real practice
when dealing with contextualized and ever-changing teaching and learning scenarios.

4. Conclusion and Future Works
This study introduces a novel DL model for student performance prediction. The presented model contributes to the existing
knowledge by utilizing and integrating ANN components with minimal manual feature engineering to predict students’
performance at the end of a module in their first year of study. The proposed model, ASIST, uses a basic set of demographic
data, academic records, and VLE interaction information. The results show that (a) integration of stacked BiLSTM and CNN
improves the effectiveness of the model, and (b) the attention mechanism shows little impact but still has an impact on the
model performance. Empirical investigation through ablation analysis also revealed that VLE information showing students’
weekly event performing behaviour has the highest impact on student performance. We also contributed to the existing literature
by demonstrating a real-life example of implementation of the model, presenting an early detection version of ASIST, called
ASISTearly, to predict student performance using only the first seven weeks of the dataset. From an institutional practice
perspective, the results demonstrated the efficacy of the ASIST model and its practical application as an early predictor of
student performance. It also facilitated decision-making around early and contextually relevant interventions for the students of
first-year student cohorts.

The demonstrated efficacy of ANN components can enlighten researchers elsewhere to improve the DL model presented.
The insights from this data-driven study, which demonstrates the possibility of practical application using a reduced dataset,
can also be applied elsewhere as a helpful springboard from which policy stakeholders can formulate pedagogical policies and
support guidelines. However, limitations to the study exist because the institution where this study took place collects a limited
amount of demographic data, which could have a strong impact on student success. While acknowledging this limitation, it was
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comforting to find that the results of ASIST over three datasets demonstrate that student interaction with VLE information and
academic data (entry points to college) are good indicators of student performance. It also provides a workaround solution to
the ethical problems highlighted by critical authors with the use of personal and demographic data (Selwyn, 2020), by selecting
instead a narrow amount of behavioural data, whose use for student support interventions is less likely to provoke unintended
negative consequences related to surveillance and labelling.

We also acknowledge the fact that the investigation of accuracy drift shows that the model performs moderately on
forthcoming academic years’ data. The finding was hardly surprising due to the period in which the investigation happened,
capturing the sudden pivot to remote delivery imposed by the COVID-19 pandemic. While in 2018/19, reliance on the VLE
was much lower across all modules from a pedagogical design perspective, by 2021, it had become widely integrated into
teaching, learning, and assessment practices across the institution, and the educational experience and expectations around
blended learning of student cohorts had radically changed. Also, delivery and assessment design of each of the modules evolved
from year to year in multiple ways, independent of their reliance on the VLE for delivery. It showcases the complexities of
EDM in real practice when dealing with contextualized and ever-changing teaching and learning scenarios and the need for
further testing of the model in a post-pandemic setup.

In future research, prediction results using data spanning entire academic years and even programs of study could be used
to design guidelines for intelligent decision-making. Using complete datasets of students’ journey in higher education could
greatly contribute to mining students’ behaviour and its relationship with their performance. Also, we can strengthen the
analysis by adding other demographic and contextual variables, such as native language and teaching approaches, enabling
targeted supports for specific student populations, as shown by previous contextual evidence (Walsh & Risquez, 2020). Also,
the ASIST model could be augmented to incorporate student feedback data by applying the latest NLP techniques. However,
rather than the time-span of the available dataset, the main contribution of this study is focused on the methodological novelty
of the model presented and its demonstrated application as a useful prediction mechanism to enhance students’ chances of
success.
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