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Associations of Research Questions, Analytical
Techniques, and Learning Insight in Temporal
Educational Research: A Systematic Mapping Study
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Abstract

Learning has a temporal characteristic in nature, which means that it occurs over the passage of time. The research
on the temporal aspects of learning faces several challenges, one of which is utilizing appropriate analytical
techniques to exploit the temporal data. There is no coherent guide to selecting certain temporal techniques to lead
to results that truthfully uncover underlying phenomena. To fill this gap, this systematic mapping study contributes
to understanding the type of questions and approaches in works in the area of temporal educational research. This
study aims to analyze different components of published research and explores the current trends in educational
studies that explicitly consider the temporal aspect. Using the thematic coding method, we identified trends in three
components, including asked research questions, utilized methodological techniques, and inferred insight about
learning. The distribution of codes regarding asked research questions showed that the highest number of studies
focused on method development or proposing a methodological framework. We discussed that methodological
development, with the underlying theory, led to identifying learning indicators that can provide the ability to identify
individual students with respect to the learning concepts of interest. In terms of utilized techniques, there was a
strong trend in visualization analysis and process mining. This study found that to discover insight into learning, it is
important to utilize techniques that are interpretable to characterize temporal patterns.

Notes for Practice

e We reviewed 176 papers to capture trends in asked research questions, utilized techniques, and
inferred insight about learning in temporal studies published between 2017 and 2022.

e We identified two categories of insight about learning, including user-centric and instructor-centric.

e To capture the temporal nature of online behaviours, process mining, clustering, and visualization
techniques were the most prevalent techniques to identify learning indicators.

e Studies that aimed to develop a method or propose a new algorithm for prediction modelling were less
likely to lead to learning insights.
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1. Introduction

The rapid advancement and extensive adoption of technology in education media have generated a copious amount of data
that can provide the knowledge needed to improve learning and education (Bienkowski et al., 2014). To fulfill this promise,
the field of learning analytics (LA) formed to expand our understanding of learning and how to improve it (Gasevi¢ et al.,
2015). According to Zimmerman (1990), learning is the acquisition of knowledge that influences the thinking and behaviour
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of individuals. As for the learning phenomenon itself, it is critical to understand the innate relation between time and learning;
learning has a temporal characteristic, meaning that it occurs over the passage of time (Knight et al., 2017).

The sequence of learning-associated activities can provide insight into understanding the learning process; temporal
analytics is the field dedicated to exploring the learning process and its temporality (Bogarin et al., 2018; Chen et al., 2016;
Knight et al., 2017). Due to the temporal nature of learning, it is crucial to use appropriate techniques to capture this aspect.
Temporal analytics has gotten attention in recent years as many works stated the importance of temporality in educational
studies (Gasevi¢ et al., 2017; Knight et al., 2017; Reimann et al., 2014). For example, the Journal of Learning Analytics
designated a special issue to the topic, and the paper on Critical Issues in Designing and Implementing Temporal Analytics
discussed the importance of temporal analytics in educational studies as well as its current status in the learning analytics
community (Chen et al., 2018).

There are numerous benefits of temporal analytics for education and learning practices as it provides nuanced ways to
explore data (Knight et al., 2017; Reimann et al., 2014). Many researchers utilize the techniques to further identify temporal
patterns that would be unknown without temporal analysis. For instance, a study conducted by Kinnebrew et al. (2014) assessed
the impact of feedback on the learning process, at the cognitive and meta-cognitive levels, during learning engagement among
middle school students. Despite insignificant results from the correlational test, this study highlighted the power of the
exploratory study to understand different aspects of student learning behaviour and relate them with knowledge building over
time.

Despite this clear benefit, temporality has often been neglected in the applied learning research domain (Bogarin et al.,
2018; Knight et al., 2017). As Reimann posited, researchers often overlook the full potential of available information regarding
temporality (Reimann, 2009). He stated that human learning is inherently cumulative, and research on temporality should
consider both quantitative aspects (e.g., duration, transitions) and order. Therefore, it is imperative to obtain an appropriate
methodological approach to exploit the available temporal information.

Many techniques have been used for the temporal exploration of data, such as visualization (Riel et al., 2018), frequent
sequence analysis (Jovanovi¢ et al., 2017; Nazeri et al., 2023), transitional analysis (Mahzoon et al., 2018), network analysis
(Kinnebrew et al., 2014), fuzzy mining techniques (Beheshitha et al., 2015), and others (Bogarin et al., 2018; Hatala et al.,
2023). Although we know about the technical differences between the analytical techniques, it is not clear which type of
questions they are most suitable to address in the educational context, which type of applications they can furnish, or which
type of data they require (Knight et al., 2017; Molenaar, 2014). For instance, a comparison study conducted by Matcha et al.
(2019) on the results from three prominent temporal analytical approaches in the detection of learning tactics and strategies in
a MOOC setting (Matcha et al., 2019) showed that different techniques can yield different results and lead to different
interpretations for the obtained learning strategies. Another comparative study was conducted by Chen et al. (2017) to explore
two prominent sequential mining models, including Lag-sequential Analysis (LsA) and Frequent Sequence Mining (Chen et
al., 2017). The techniques provided different but complementary analyses of temporal patterns. Furthermore, Knight et al.
(2017) noted the research on the temporal nature of learning faced several challenges, one of which is utilizing appropriate
analytical techniques to exploit the temporal data. Overall, these studies showed that there is no coherent guide to selecting
certain temporal techniques to lead to results that truthfully uncover underlying phenomena.

The main contribution of this study is to aid understanding of how temporal educational research is conducted and the
insights it can provide. The study will analyze different components of existing studies and explore current trends in educational
research that explicitly consider the temporal aspect. The study will focus on the research questions that have been answered,
the analytical techniques used, and the types of insights about learning that have been uncovered through temporal educational
research. Specifically, the study will identify and map the research questions addressed through temporal educational research,
as well as the analytical techniques used to answer these questions. This will provide valuable insights about which techniques
are most suitable for different types of research questions, which will be beneficial for researchers conducting future temporal
educational research.

Another contribution of the study is to explore the types of insights about learning that have been uncovered through
temporal educational research. By identifying these insights, the study will provide a better understanding of how temporal
educational research can contribute to our understanding of learning processes and outcomes. Overall, the study will provide
a comprehensive overview of the current state of temporal educational research and its contributions to the field of education.
This will be useful for researchers and educators interested in the temporal nature of learning and who want to better understand
how to incorporate temporal aspects into their research and teaching practices. To reach these goals, we constituted the
following research questions:

RQ1: In educational research that used temporal studies, what (a) research questions have been answered, (b) analytical
techniques were used, and (c) types of insights about learning have been uncovered?
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RQ2: What are the associations between the research questions asked, the analytical techniques used, and the insights about
learning discovered?

2. Methods

Kitchenham et al. (2011) suggested that a systematic mapping study can provide a wide literature review to demonstrate the
quantity and structure of evidence for decision-making. Also, our mapping study can identify the direction of ongoing studies.
The main difference between a systematic mapping study and a literature review is that, in a mapping study, the aim is to
provide classification and structure of the research area. In a systematic literature review, the aim is to synthesize evidence to
address certain research questions (Petersen et al., 2015).

According to Petersen et al. (2008), the key steps to establishing a systematic mapping study in learning analytics are these:
1) defining the protocol for the mapping study, 2) conducting an exploratory study on data collection, and 3) analyzing and
summarizing the data. Figure 1 shows the process of establishing a systematic mapping study.

Step 1 Step 2 Step 3
Defining protocol ‘ Exploring literature " Classifying papers
Formulating research questions Defining keywords Summarizing data

Figure 1. The process of conducting a mapping study.

2.1.Step 1: Defining the Protocol
Defining a protocol in this study includes the following stages: identifying the data sources, describing the search and selection
strategies, and describing the method for extracting and analyzing the studies.

2.1.1. Data Sources

To establish an exploratory search, we used digital libraries and searched through journals, conferences, and workshop
proceedings in the area of education and educational technology from 2017 to 2021. We chose December 31, 2021, as the end
date for the full completed calendar year and we performed yearly searches (see below) backward, until we reached the number
of papers that we could feasibly examine within the timeframe and resources available for this study, which took us back to 1
January 2017. Coincidentally, by 2017, temporal analysis in learning analytics had attracted enough attention for special issues
of the Journal of Learning Analytics, which appeared in late 2017 (Vol. 4, No. 3) and early 2018 (Vol. 5, No. 1). Our digital
search included digital libraries, including our own university library, the ACM digital library, the IEEE digital library, Science
Direct, and Google Scholar. We also manually searched the publishers’ websites for the top 10 publications listed in Google
Scholar’s venue rankings in the category of Educational Technology (Google Scholar, n.d.).* These venues are listed in Table 1.
Although utilizing multiple search strategies yielded many duplicates, varied sources helped us to execute the complex queries.

Table 1. List of Venues Searched Manually via their Google Scholar Web Page Link

Py
()
5
~

Publication

Computers & Education

British Journal of Educational Technology

The Internet and Higher Education

Journal of Educational Technology & Society

Education and Information Technologies

The International Review of Research in Open and Distributed Learning
Educational Technology Research and Development

Interactive Learning Environments

Computer Assisted Language Learning

International Journal of Educational Technology in Higher Education

©CoNoORA~E®WDdDRE

-
©

1 https://scholar.google.ca/citations?view op=top venues&hl=en&vq=soc educationaltechnology
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2.2.Step 2: Retrieving Papers
Our search strategy to identify keywords and construct search queries follows guidelines from Dickersin et al. (1994).

2.2.1.Identifying Query Keywords
We designed the following stages to ensure that our search strategy included a variety of papers covering the area of interest.
Table 2 shows the identified search keywords in each stage.

Identifying the general search keywords and terms based on the study’s research questions. Accordingly, our RQs
generally focus on “temporal analytics” and “learning analytics.”

Finding more keywords and terms used in prominent studies in the area of “temporal analytics” and “learning
analytics.” In this stage, we selected an editorial paper in the special issue of the Journal of Learning Analytics that focuses on
“critical issues in designing and implementing temporal analytics” (Chen et al., 2018). The paper reviewed literature on
temporal analytics, and we extracted the keywords from the paper. Further keywords were also extracted from other papers
within the special issue (Chen et al., 2018, 2017; Knight et al., 2017; Mahzoon et al., 2018; Riel et al., 2018). As a result, we
identified 55 different keywords, and we selected the top 20 of the most frequent and relevant to temporality.

Identifying synonyms and alternatives. To identify synonyms, we searched a different area of educational technology.
For instance, temporal analysis is a commonly used term for the concept of time for analysis in the learning analytics field.
However, there are some closely related terms to temporal analysis, and many authors used those terms interchangeably. For
instance, the term educational process mining is widely used in the educational data mining (EDM) field (Bogarin et al., 2018).
It seems that, in EDM, process mining is analogous to temporal analysis in LA. In the field of behavioural psychology,
Bakeman used sequential analysis for the same purpose as temporal analysis (Bakeman & Gottman, 1997). Furthermore, the
outcome from stage 2 helped us to identify more similar terms. In this stage, we arranged keywords into two subgroups: 1)
keywords that imply learning and theory; 2) keywords associated with analytical techniques.

Simplifying the keywords to comprehend relevant terms. In this stage, we simplified the keywords to cover similar
words that might not have been covered in stage 3. In doing so, we used special characters such as an asterisk (*) to specify
characters in the keywords that can vary without altering meaning. For example, sequen* includes sequence, sequential, or
sequencing. This format is supported by our targeted online databases. In the case of not supporting this format, we manually
inserted all possible keywords.

Table 2. Extracted Keywords to Generate a Search Query
Stage Keywords
1 temporal analytics, learning analytics
learning analytics, sequential analysis, temporal analytics, self-regulated
learning, knowledge building, educational data mining, teaching
methods, discourse, discussion, community of inquiries, frequent
2 sequence mining, sequence data mining, sequence data model, teaching
method, temporal database, process analysis, lag analysis, process,
interaction sequence, predictive model, cluster analysis, context effect,
explanatory power, holy grain
learning analytics, educational technology, educational data mining,
temporal analytics, sequential analysis, process analysis, process mining,
sequential mining, lag analysis, knowledge building, interaction
sequence, cluster analysis, predictive model
learning analy*, educat™ tech*, sequen* analy*, temporal analy*, process
4 analy*, lag analy*, cluster analy*, predic*, predic* model, educat* data
mining, process mining, knowledge building, interaction sequen*

2.2.2. Generating Search Queries
Having the keywords, we used logical operation (AND/OR) to generate search queries (Table 3). We defined three types of
queries, and used a combination of these to construct our search:
i) A query that covers the general area of educational technology
ii) A query for the specific area of temporal research; we aimed to cover the extracted keywords from literature in the
previous stage, using AND/OR operations
iii) Generating the main search query by combining previous queries
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Table 3. Search Queries Used to Extract Relevant Papers
Type Search query
i “learning analy*” OR “educat* tech*”” OR “educat* data
mining” OR “teach*” OR “pedagog™*”
i (“temporal®*” OR “sequen*” OR “process” OR “lag”) AND
(analy* OR “mining” OR “model” OR “cluster” OR “predic*”)
iii Query (i) AND Query (ii)

2.2.3.Inclusion and Exclusion Criteria

To select relevant studies that address our research questions, we applied Search Query (iii) (see Table 3) in all search engines
and venues over the last five years (from January 2017 to December 2021). To ensure the relevance of papers in our corpus,
we excluded studies that did not focus on temporal aspects of learning. Firstly, we removed duplicate papers from different
sources. Next, we carefully reviewed abstracts and selected studies that focus mainly on the temporal aspect of learning, and
eliminated papers without attention to temporality in their abstract. The last excluding stage encompasses scrutinizing papers
and reviewing sections of articles. This stage was accomplished during the qualitative coding of papers (discussed in the next
section). Our main aim in the mapping study was to organize the studies and the information within the studies. However, for
inclusion, a paper had to encompass clear objectives and methodology, as well as have a minimum description of the student

learning progression or temporality in the method. As a result, 176 articles were retained. The flow chart of the selected papers
in each stage can be seen in Figure 2.

Records from automated online library Additional records from manual search in
search (n=598) — top 10 google scholar venues (n=359)
total extracted papers Identifying duplicated records and removing
(n=957) them (286 excluded)
Records after reviewing abstract based on Records after duplication
temporality (n=201) removal (n=691)
Reviewing method section and assessing Remaining paper for analysis
the eligibility (25 excluded) (n=176)

Figure 2. The number of selected papers in each stage.

2.3.Step 3: Developing a Classification Scheme and Summarizing the Results

The classification scheme was designed to characterize studies with respect to their research question focus, analytical
technique, and obtained insights about learning. This study used thematic analysis to create a coding schema. The method has
been widely used in qualitative research and term analysis (Basit, 2010). The thematic coding method is useful for coding
descriptive terms in literature where the authors propose research questions, utilize the analytical technique, and discuss
contributions and insights. At the higher level, the coding method helped us to identify the type of study and its contribution
within each paper. Next, we were able to categorize different aspects of studies to address our research questions. To conduct
a trustworthy thematic analysis, we followed the guidelines of Nowell et al. (2017), which provides a step-by-step approach
including familiarizing ourselves with data, generating initial codes, searching for themes, reviewing themes, defining themes,
and reporting.

2.3.1. Identifying Sections for Coding
In the first step, to familiarize ourselves with the literature, we reviewed different sections of studies and identified those that
matched our RQs. For example, to find out what research questions have been answered, we focused on the introduction and
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research questions. Likewise, to code the utilized analytical technique, we reviewed the methodology section. To code the type
of inferences about learning, the results and discussions were reviewed. In cases where the paper did not follow a mainstream
structure, we searched for the pertinent information in other parts of the paper. The full list of the sections can be seen in
Table 4.

Table 4. Coding Sections Chosen for Addressing RQs

Research coding sections Description

Research questions/Research focus ~ Codes that show the main focus of the research (aims of the research).
Analytical techniques The analytical techniques used in the research (methodology).

Inferences about learning The type of insights and inferences about learning (results and discussion).

2.3.2. Generating the Initial Codes

In this study, we worked with three themes directly mapped to the research questions, as listed in Table 4. In the second step,
through the iterative process, we produced an initial set of codes for each section in Table 4, based on a detailed reading of the
identified sections in 50 papers in our corpus. In this study, the first author conducted all the coding step by step, and the
reliability of the produced codes was assessed iteratively by an expert. To ensure the consistency of the codes, aside from the
expert review, the data was revisited and recoded several times, as described below. As the papers in our corpus were typically
coded with multiple codes in each theme, measures for interrater reliability were not used to measure the quality of the coding
scheme. For full transparency, to support confirmability, Appendix 1 shows the assigned codes for all the papers.

2.3.3. Reviewing and Finalizing the Codes

After the initial codes from 50 papers were stabilized, a random sample of 10 papers was coded independently by two authors,
discrepancies were discussed, and the coding schema and definitions were updated. Most adjustments in this phase involved
determining the boundaries for the codes: how prominent the research question was, the analytical technique, and the level of
theoretical grounding to support assigning the code. Another set of 30 papers was coded independently with the revised set of
codes, and a final adjustment to the schema and code definitions were done. After discarding the codes assigned to papers in
the development stage, the first author used the final schema, shown in the results section, to code all the papers.

2.3.4. Collecting Authors’ Keywords from Studies

Furthermore, by examining the frequency and distribution of authors’ keywords across the published papers, we can gain
insights into the most common topics and themes explored in temporal educational research. We acknowledge that relying on
keywords does not accurately represent all dimensions of the published research (e.g., method and conclusions); however, we
feel it shows the main characteristics of temporal educational research from the authors’ perspectives. It is worth noting that
the trend of illustrating authors’ keywords is commonly seen in mapping studies, which aim to provide an overview of a
particular field or research area (Mohabbati et al., 2013; Petersen et al., 2008). Overall, while keywords are not a perfect
representation, they can still provide valuable information about the overall trends and characteristics of research in the field.

3. Results

The 176 included sources were published between 1 January 2017 and 31 December 2021. We structured the results section
as follows. First, we illustrated the trend in authors’ keywords with a visualization. Then, to address RQ1, we organized three
sections that separately discuss the components of RQ1. Next, we addressed RQ2 by providing relational visualizations for the
pairs.

3.1. Authors’ Keywords

To identify the current trend of the published papers, we explored the authors’ keywords. We identified 571 unique keywords.
Table 5 shows the topmost frequent keywords with the cut-off at n=7. As can be seen, the authors of educational temporal
analysis papers predominantly associated them with the field of learning analytics (LA; n=55 keywords) followed by self-
regulated learning (SRL), which is the most prominent learning theory in our corpus (n=23). The generated word cloud
(Figure 3) shows 114 unique authors’ keywords that appeared more than once.
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Figure 3. Word-cloud of terms that occurred more than once.

3.2.RQ1: Identifying Trends in Temporal Studies

Prior to presenting the annual trend in asked research questions, utilized techniques, and obtained insights, we provided the
total number of published papers based on the published year (Figure 4). The figure shows a slight decrease from 2017 to 2018
by six papers and a sudden increase by 11 in 2019. The number remains constant at approximately 38 papers for 2019, 2020,

and 2021.

Figure 4. Number of published papers per year.
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3.2.1. Identified Research Question Codes and Their Distribution

The result from the qualitative thematic coding shows 7 codes for the focus of studies’ research questions (Table 6), beginning
with exploring socio-dynamic, which captures the dynamic of interaction patterns among peers during the discourse. The next
code aims to develop a method or improve the existing ones. This code also includes proposing a methodological framework.
The next code can also be considered as a subcategory of method development where the studies specifically aim to identify
students at risk of failure. The next code directs the research question to group the users based on their behaviour or
performance. Two more codes, including exploring SRL processes and identifying non-SRL learning indicators, rely on the
theoretical exploration of learning phenomenon.
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Table 6. Focus of Research Questions Being Asked in the Papers

Research Questions
Focus (label)

Description

Exploring socio-dynamics

Analyzing the peer interactions and social dynamics during asynchronous discussion or
collaborative tasks.

Method or algorithm
development

Proposing or improving existing algorithms, methods, or frameworks. Also, authors can
provide a novel framework that includes data collection, cleaning, and analysis approach.
Furthermore, the study can compare the affordance of different analytical technigues.

At-risk student identification

Predicting students at risk of failure (drop out) by using a set of features and prediction
model (the code is a subcategory of method development).

Group emergence/group
comparison by performance

Categorizing the users based on their online behaviour or comparing the group of poor
performing students vs. high-performing ones.

Exploring SRL processes

Identifying and exploring SRL-associated behaviours or engagement with materials.

Non-SRL learning indicators
identification

Finding the indicators that can represent learning phenomenon that needs to be backed
by learning theories (excluding SRL theory).

Time to intervention

Identifying the proper time for feedback or intervention
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Figure 5. The distribution (left) and trend (right) of asked research questions.

Figure 5 presents the frequency of the research question codes in our corpus and their occurrence over the five-year period.
Overall, 226 codes were assigned to 176 papers. The highest RQ focus was method development or proposing methodological
framework (n=88). This suggests that the mainstream trend in educational temporal studies in 2017-2021 was methodological
development. The next trend is exploring behaviours, which can be an indicator of learning but are not based on SRL theory
(n=45). In this category, studies relied on other theoretical background and learning constructs to justify discovered learning
phenomenon. Aiming to group users based on their online behaviour or performance (n=27), exploring SRL-associated
behaviours (n=26), and identifying students at the risk of failure (n=23) are the next frequent categories, respectively. The least
trending focus is to “identify when it is the time to intervene to provide constructive feedback” (n=3). The occurrence of codes
over the five-year period (Figure 5, right) does not show clear increases or decreases. The only two discernible time-related
changes in focus is an increase in exploring SRL processes and a drop in exploring socio-dynamics from the initially higher
count in 2017 to the lows over the next four years.
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3.2.2. Utilized Analytical Techniques

This study identified 10 groups of analytical techniques used in temporal educational research. Table 7 describes the full set
of identified codes; overall, 300 codes were assigned to 176 papers (since a paper can receive multiple codes). Figure 6 shows
the frequency of the codes for the analytical techniques and their distribution over the five-year period. The descriptive analysis
of the codes indicates that process mining (n=70) and visual analysis (n=62) are the most frequently utilized techniques,
followed by statistical analysis (stat) (n=43) and cluster analysis (n=39). The high trend in the use of process mining suggests
the affordance of this technique to reveal the temporal dynamics of these behaviours. Studies often interpreted the identified
temporal behaviours as a study strategy or learning engagement pattern explained by learning theories. Interestingly, the high
use of visual analysis can show the importance of visualization to discover and explain the dynamicity of behaviours. In terms
of yearly trends, we did not identify dramatic shifts. However, slight uptrends in process mining, frequent sequence mining,
and clustering are visible, in contrast to a slight downtrend in statistical analysis.

Table 7. Identified Codes for Analytical Technique
Analytical Techniques Description

Process mining Process mining detects the significance of the transitions between events. Some examples are
lag analysis, fuzzy miner, inductive miner, etc.

Frequent Sequence Different from process mining, this technique detects frequent sequences of events that occur

Mining more often during the defined period. For instance, this technique also looks into the whole
sequence of activities during a week and compares it to other weeks.

Cluster analysis Clustering techniques group data points based on statistical similarity, and are usually followed

by statistical analysis to identify the differences between clusters.
Text mining/Content Text mining or Content analysis is defined as the use of any natural language processing

analysis technigue to model contextual data.

Neural network This technique uses the network of neurons to implement a prediction model. Any type of deep
neural network is considered in this category.

Quialitative analysis Quialitative techniques are used to qualitatively examine and/or discuss the nature of the
phenomenon.

Basic statistical Any statistical standalone test that is not part of another technique (e.g., comparing clusters).

analysis Examples include correlational test, ANOVA, pre-post test, entropy analysis, interaction over
time, time window analysis.

Network analysis The aim is to identify and structure the relations to explain social phenomena using nodes and
relation lines.

Visualization analysis ~ The main aim of visual analysis is to communicate the meaning of data through visualizing it.
We focused on the explanatory power of visualization as this code is assigned if the use of
visualization is crucial to driving conclusions in the research. An example is that the researcher
uses visualization to compare two phenomena to identify any pattern and drive a conclusion.

Other prediction Any other techniques used to develop a prediction model (e.g., random forest, SVM).

models

From a temporality perspective, some analytical techniques work exclusively with time data (process mining, frequent
sequence analysis) while others are more general. In temporal educational studies, the more general techniques, such as
statistics or clustering, were either applied to the outputs of the process mining or frequent sequence mining, or to features
capturing temporal aspects of data, e.g., frequency of learner actions within a time window. Often studies utilized several
techniques together. We presented these cross relations in Figure 7 where the main diagonal shows the number of times a sole
technique was used in the study; other cells show techniques being used together. The high use of visualization analysis
indicates the crucial role of this technique to reveal temporal aspects. Without extensive visualizations, it seems that studies
would not be able to derive their findings; therefore, it was extensively utilized with other techniques, especially process
mining. The second most utilized technique was process mining, one of the “pure” temporal techniques. As Figure 7 shows,
when process mining was used, it was used solely in 23 studies. More often, it was used with other techniques, such as
visualization, to interpret the process models (n=31), cluster analysis (n=18) to cluster either students or discovered processes,
frequent sequence mining (n=11), and basic statistical tests to investigate other aspects of student learning behaviours (n=10).
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Figure 6. The distribution and trend of the utilized technique.

3.2.3.Insights About Learning

Table 8 shows the identified codes for insights about learning. Overall, 212 codes were assigned to the 176 papers. Figure 8
shows the frequency of the codes and their distribution over the five-year period. The highest learning insight trend is
identifying indicators of learning (n=77). The next highest refers to the no-learning-focus-outcome (n=51) in that the studies
did not (sufficiently) show the circumstances of the learning phenomenon. These studies often focused on developing a method
rather than examining the impact on learning. From the time progression chart (Figure 8, right) we can discern a drop from a
high in 2017 in papers contributing insight on collaboration, and a spike in 2019 for studies with no learning focus.

In the next section, we will further discuss the association between the focus of RQs, the utilized techniques, and learning
insights. Overall, our identified learning insights suggest that three codes are user-centric, including learning indicators,
collaboration, and time-and-learning. These codes reflect how student behaviour impacts their learning. Two other codes,
course-design and feedback, are instructor-centric; they imply the role of the instructor to intervene or design learning materials
to impact student learning.
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Table 8. Identified Codes for Insights About Learning
Insights about learning  Description

Course design The researcher shows that specific course design can impact learning. This also includes
scaffolded design experiments.

Learning indicators The researcher identifies a set of theoretically grounded indicators that can characterize
learning.

Feedback The study finds the effect of feedback on learning.

Collaboration The study discovers the effect of collaboration on knowledge building. This also includes

investigating the progression of an idea, the quality of the idea, or the statistics of interactions
during discussion. Studies often investigate how the group of users collaborate to reach a goal.

Time on learning The researcher shows and discusses the effect of time on learning.
No learning focus The study does not provide sufficient justification for showing how learning happens or any
outcome impact on learning.
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Figure 8. The distribution and five-year trend of insights about learning.

3.3.RQ2: Identifying the Associations Between the Research Questions Being Asked, the Analytical
Techniques, and the Insights About Learning

In this section, we first explore the associations between the focus of the research questions and the utilized analytical

techniques (Figure 9). Next, further details will be discussed by adding the dimension of learning insight (Figure 10). Figure

9 shows the relationship between the research questions crosslinked with the techniques utilized to address them. The x-axis

shows our codes regarding research questions; the y-axis represents the codes regarding techniques. Each circle shows the

number of papers that map to a particular RQ addressed by a particular technique.

As discussed in section 3.2, aiming to develop a method is the most common research question focus. In this category,
utilizing visualization technique (n=35), process mining (n=29), other prediction models (n=23), and clustering (n=21) are the
most trending techniques. The figure also shows that process mining is a viable technique for all types of research questions,
except for identifying students at risk of failure. The high trend in utilizing process mining suggests that it can characterize
temporal patterns. This means that any behaviour changes can be measured and interpreted based on underlying theory. In
other words, the theory defines the meaning of each state of a particular behaviour (e.g., clicking on video content, posting a
discussion), and process mining measures the transitions between states (e.g., from viewing a discussion to watching a video).
Studies often visualized and interpreted the transitions to infer how learning happened. Moreover, some studies also
incorporated clustering to provide a deeper comparison between behaviours (Shirvani Boroujeni & Dillenbourg, 2019; Fan &
Saint, 2021; Huang & Lajoie, 2021). Similarly, frequent sequence mining generates sequences from different actions or states
for a defined period. Therefore, the technique has strong explanatory power, especially to show how users interact with the
learning management system to reveal SRL and non-SRL associated activities. For instance, Jovanovi¢ et al. (2017) utilized
this analytical technique to unveil the temporal behaviour associated with the SRL phase in flipped classroom settings.
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Furthermore, it is posited that frequent sequence mining and process mining can complement each other (Chen et al., 2017),
and a study showed how these techniques can reveal different aspects of temporality in SRL-associated behaviours (Matcha et
al., 2019). On the other hand, to identify at-risk students, the main focus is to achieve a high accuracy prediction rate through
incorporating temporal features. Therefore, this category chiefly employed prediction models (n=18), consisting of neural
network (n=3) and other prediction models (n=15), to address their research questions.
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Figure 9. Relationship between asked research questions and utilized techniques.

Further analysis by considering the codes for learning insights (Figure 10) reveals the trend in the association of RQs’ foci
and analytical techniques based on inferred insight about learning. The plot is divided based on the revealed insights about
learning, and the x-axis represents our research question codes, and the y-axis shows the technique codes. Each circle shows
the number of papers that map to a particular RQ addressed by a particular technique respecting revealed learning insights.

Starting with capturing indicators of learning (user-centric insight), which constitutes the highest attentions of research
foci, studies that focus on developing a method mainly utilized visualization (n=15), process mining (n=14), clustering (n=9),
and frequent sequence techniques (n=8). Studies in this category often developed a methodological framework to generate
sequences of activities based on underpinning theory to reveal the dynamicity of learning phenomenon. In this learning insight,
the main difference between exploring SRL processes and exploring non-SRL learning indicators was that SRL studies
substantially used more frequent sequence mining and clustering techniques (n=8, n=9, respectively), in comparison with non-
SRL studies (n=3, n=4, respectively). The comparison suggests that tools such as TraMineR (Gabadinho et al., 2011), based
on frequent sequence mining techniques, are popular to create sequences of activities associated with SRL processes. Then,
these activities can be clustered to characterize and compare student behaviours. Content analysis technique is not used
frequently; it was used most often (n=3) for exploring non-SRL learning indicators. Finally, studies concerned with identifying
students at risk of failure and the time to enter intervention are more action-oriented; they did not result in revealing learning
indicators.

Two other user-centric insights — collaboration and time on learning — had a distinctive trend in terms of the foci of RQs
and the utilized techniques. Studies that illustrate the impact of collaboration in learning focused on exploring socio-dynamic
factors and mainly utilized text mining (n=4), visualization (n=4), process mining (n=3), and network analysis (n=3). These
types of studies trace the progression of the idea through online discourse (Liu et al., 2021; Wang et al., 2020). Network analysis
was utilized relatively more in collaboration. It is likely that the authors reported using this method to show the connections

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

79



SELAR

SOCIETY for

ANALYTICS RESEARCH

of interactions through discourse. This allowed them to follow how adding a new idea can trigger higher discussion activity
(Lee & Tan, 2017; Sher et al., 2020). Overall, the technique can provide a deeper understanding of the construction of
collaboration. On the other hand, studies that inferred the impact of time on the learning process had method development as

an RQ focus, mostly using visualization (n=6) and process mining (n=5).

Two instructor-centric insights (feedback and course design) demonstrated a similar pattern, that method development and
exploring non-SRL indicators were the highest foci of RQs. In course design, authors often proposed a new framework for
learning and then explored the impact of their proposed method on user behaviour, mainly using process mining or basic

statistical tests. A similar rationale was used to examine the impact of feedback.

Lastly, studies without learning insight focus outcomes mainly focused on developing method and identifying students at
risk of failure. These types of studies extensively used methodological description to improve or create a novel approach to
address their research questions. Often found in the area of educational data mining (EDM), which is more algorithm-centric,
these studies pay less attention to studying impacts on learning. In our corpus, EDM constituted 15 papers, nine of which were
coded as having no learning outcome focus. Overall, papers without learning insight aimed to improve the performance of the
existing model by utilizing a new set of temporal features or proposing a new algorithm based on temporal data (h=46 of 51).

Notably, deep neural networks are gaining attention in this category.
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Figure 10. Relationship between research question foci and analytical technique respecting learning insight.
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4. Discussion

Learning is a process that occurs over time. The circumstances of the learning process can provide insight into understanding
the learning phenomenon. Temporal analysis is the field dedicated to exploring the learning process in relation to time. In
recent years, the temporal aspect of learning has received increased attention in the learning analytics community, and studies
have utilized several methods to exploit temporal information. Despite research efforts to date, however, it is not clear what
the associations are between asked research questions, utilized techniques, and inferred insights about learning. In this study,
we investigated the affordance of temporal techniques and showed how authors used them to reveal learning.

The findings in this mapping study can help orient and guide researchers in preparation for conducting their temporal
studies by providing a list of relevant works that can lead them to selecting proper techniques based on their research questions
and what type of insight they are anticipating. For this purpose, before conducting a study, researchers can start their
investigations by exploring the lists of published temporal studies in different categories (provided in Appendixes 1 and 2).
Starting with the type of research questions asked, researchers can look up which of ours are closely related to their own
inquiries. For example, researchers interested in learning indicators for SRL processes using temporal approaches can quickly
identify the list of 22 studies for closer examination, gaining an overview and helping them to select appropriate techniques
and data features to answer their research questions. They can choose a set of papers that developed a sequential model to
characterize learning strategies (Fan & Saint, 2021; Jovanovi¢ et al., 2020, 2017; Saint et al., 2021). These papers defined a
learning strategy as “Any thoughts, behaviors, beliefs or emotions that facilitate the acquisition, understanding, or later transfer
of new knowledge and skills” (Jovanovi¢ et al., 2017). Learning strategies define how students use a different sequence of
activities that show the characteristics of an individual’s learning. They can then compare these papers with approaches used
in another study, where researchers utilized various techniques to explore the temporality of a learning strategy and compare
the results from each technique (Matcha et al., 2019).

Second, we provide a list of inferred insights about learning that can help researchers to explore their own anticipated
insights. Appendix 2 helps researchers locate studies that focus on particular learning insights from the research question
perspective, and what techniques were used to accomplish it. As we discussed earlier, the most prevalent learning insight from
temporal studies was to identify learning indicators in order to develop a method to characterize the online behaviour of users.
In this category, studies often define a set of activities associated with the theoretical background, and then identify temporal
changes or interpret the sequences of activities as learning progression. For instance, studies identified a certain sequence of
student activities to be associated with an SRL phase (e.g., enactment of learning tactics), and the recurrences of the phases to
indicate learning progression (Fan & Saint, 2021; Huang & Lajoie, 2021; Jovanovic¢ et al., 2020; Wang et al., 2021). After
learning indicator insight, the second-largest group of temporal studies were not aimed toward theoretical insights from the
perspective of learning theories. These studies often harnessed the predictive power of temporal features (e.g., time and order
of activity) for their proposed model, contributing new algorithms or proposing a set of new (temporal) features to improve
the performance of their model.

Our findings showed that when conducting temporal studies, researchers often use a combination of techniques. Some
techniques work exclusively with the time data, namely process mining and frequent sequence analysis. These two techniques
differ in several important ways and are complementary in what they can uncover (Chen et al., 2017). Frequent sequence
mining finds concrete sequences of learning actions that can be directly observed in an individual student’s log files or higher-
level derived constructs, such as SRL phases. As a result, the presence of these sequences can indicate that a student belongs
to a particular group or demonstrates certain characteristics, potentially leading to intervention. The outcomes of the process
mining techniques are probabilistic in nature, specifying frequencies or probabilities of transitions between steps in the learning
process, such as frequency of transitions between course activities. Although such models allow us to understand the underlying
learning process, they are generally unsuitable for relating individual student activity to the discovered models. Visualization
techniques, through their affordances, have the power to show temporality by depicting steps of learning activities as they
unfold over time. However, the visualizations were used in this capacity quite rarely. They were often used in combination
with other techniques, as we detailed in the results section.

Other techniques are more general, examining the temporal nature of learning using data features designed to capture
temporality. For example, a study by Du et al. (2022) investigated the temporal pattern in engaging with learning materials by
computing the time and physical location of the students. They then used statistical analysis to show the correlation with
academic performance. Another study used the activity session feature, which included a trace log, based on a 30-minute
threshold, and a clustering technique to differentiate groups of students with different levels of SRL behaviours (de Barba et
al., 2020). As a potential direction for further analysis, our findings can be used to identify data features that capture temporality
to examine particular research questions and learning insights.
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4.1.Limitations

Our mapping study had several limitations. First, the papers were collected through database searches, and some journal
websites might have less accurate search mechanisms. Furthermore, some did not support the search query in Table 3 (e.g.,
using AND, OR, and asterisk (*) operations). To address this issue, we manually inserted combinations of search terms
individually. Second, the relational analysis had redundancy and overlapping issues, which means that a paper can
simultaneously have several codes, and thus the relational codes multiplied. This is why the relational numbers are more than
distribution numbers. However, this issue did not deter showing the trend in associations between the asked research questions,
utilized techniques, and obtained insights. We also provided a cross-relational table to show the techniques used together
(Figure 7). Another limitation is the five-year time frame, for reasons listed in section 2.1.1. We believe the codes provided in
this study to be stable; however, we cannot claim this mapping study to be exhaustive, but rather exploratory in nature. New
codes may be uncovered by expanding the mapped period. Similarly, the relationships between research foci, analytical
techniques, and learning insights are representative only of the period covered.

5. Conclusions

By providing a list of insights gained about learning, we showed how temporal studies could unveil learning processes using
different analytical techniques. This paper contributed to widening the understanding of the current trend in temporal
educational studies. We showed the connections between research questions and analytical techniques while considering the
learning insights. This evolves the field and adds an extra layer to previous overviews of temporality in education (Gasevic et
al., 2017; Knight et al., 2017; Reimann et al., 2014). Knowing what techniques have been used can help researchers in two
ways. First, it can quickly identify effective techniques used before, based on the similarity of research focus and desired
outcomes. Second, it can support exploratory research by selecting novel techniques rarely utilized before, with the aim of
unravelling different aspects of temporality. Furthermore, this study found that to provide learning insights, it is important to
utilize interpretable techniques to demonstrate temporal patterns that represent learning activities. Furthermore, these patterns
should be theoretically justifiable. This finding is aligned with previous studies that discuss the importance of theory in learning
analytics (Gasevi¢ et al., 2017; Wise & Shaffer, 2015).
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