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Abstract 
Integrating learning analytics in digital game-based learning has gained popularity in recent decades. The interactive 
nature of educational games creates an ideal environment for learning analytics data collection. However, past 
research has limited success in producing accessible and effective assessments using game learning analytics. In 
this study, a mathematics educational game called The Nomads was designed and developed to train learners’ 
adaptive expertise in rational number arithmetic. Players’ game log data were captured and fitted to a cognitive 
diagnostic model (CDM) — CCM (continuous conjunctive model). CCM lends itself well to the complex and dynamic 
nature of game learning analytics. Unlike traditional CDMs, CCM generates parameters at an attribute level and 
offers more parsimonious diagnoses using continuous variables. The findings suggest that learners’ attribute 
mastery improved during the gameplay and that learners benefit from using the scaffolds for three of the attributes 
instructed by the game. This study presents the application of a powerful new tool for game learning analytics. Future 
studies can benefit from more generalized analytics models and more specified learning attributes and game tasks. 
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1. Introduction 
Digital game-based learning (DGBL) is viewed by many as an effective alternative to traditional classroom mathematics 
instruction (Devlin, 2011). DGBL can provide visual representations and demonstrations of abstract mathematics concepts 
(Heckenberg et al., 2004; Rhyne, 2000), making it more accessible to learners (Brandt, 1997; Lopez-Morteo & Lopez, 2007). 
Chen et al. (2021) conducted an integrated bibliometric analysis and literature review of the advantages and trends of game-
based learning in science and mathematics from 1991 to 2021. They found that DGBL can be highly effective at improving 
learning outcomes, engagement, and motivation in science and mathematics (Alrehaili & Al Osman, 2019; Bressler & Bodzin, 
2013; Chen et al., 2016; Ku et al., 2014). Furthermore, it can improve self-confidence and reduce learning anxiety in STEM 
education (Pareto et al., 2012; Verkijika & De Wet, 2015). Researchers point out that many of the skills used in DGBL are 
inherently mathematical, such as goal-oriented decision making, spatial navigation, and sequential thinking skills (Piu et al., 
2015; Lowrie & Jorgensen, 2015). 

Notes for Practice 

• This study presents the use of a CCM (continuous conjunctive model) for game learning analytics. 

• The findings suggest improved attribute mastery throughout the gameplay. 

• The findings indicate the benefits of scaffolding for some of the attributes instructed in the game. 

• Future studies can benefit from more generalized analytics models and more specified learning 
attributes and game tasks. 
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DGBL can cultivate higher-level mathematics proficiency as learners interact with the symbolic representation of abstract 
mathematical concepts in a meaningful way (Beavis, 2015; Devlin, 2011). DGBL research has emphasized automatic 
assessment. In educational game research, automatic assessment serves as a stealth assessment that unobtrusively measures 
student performance, as well as drives adaptive learning support (Shute et al., 2021). Automatic assessment in educational 
games aims at avoiding interruptions to the flow state triggered by external measures and predicting students’ current skill 
mastery evidenced by gameplay actions (Shute & Kim, 2014). Whereas emerging research on learning analytics has sought 
ways to integrate automatic assessments into DGBL, current research has had limited success in providing educators with 
transparent, useful assessments in DGBL (Serrano-Laguna et al., 2014; Steiner et al., 2015). 

To address this gap, a game learning analytics system using the continuous conjunctive model (CCM), a specific type of 
CDM, was developed and tested. CDMs are latent variable models for evaluating learners’ postulated skills or attributes 
embedded in the test items. By assuming the skills or attributes to be measured are dichotomous latent variables, CDMs classify 
learners into different latent classes based on their attribute patterns. Compared with item response theory (IRT), CDMs can 
often accommodate a larger number of attributes at the same time and provide diagnostic information about learner mastery. 
In this study, a DGBL application (The Nomads) that trains adaptive expertise in rational number arithmetic was designed and 
developed to track students’ skill mastery. The study fit the game log data to the CCM to estimate learners’ skill mastery 
profiles. The section below provides some background on the key concepts introduced in this paper. 

1.1. Adaptive Expertise in Arithmetic 
Adaptive expertise in arithmetic is defined as the ability to apply procedures flexibly and adaptively to solve mathematics 
problems (Hatano & Oura, 2003; McMullen et al., 2019). Adaptive expertise in arithmetic consists of two main 
components — flexibility and adaptability (Nunes et al., 2016). Flexibility refers to the ability to use multiple strategies for 
arithmetic problem solving; adaptivity refers to the ability to select the most appropriate strategy to solve the problem 
(Verschaffel et al., 2009). Several conditions must be considered when practising adaptivity, such as the problem 
characteristics, one’s skills, and the sociocultural settings (McMullen at el., 2016). 

Adaptive expertise in arithmetic requires a rich, malleable, transferable, interconnected network of numerical knowledge. 
McMullen et al. (2016) defined such abilities as adaptive number knowledge. More specifically, adaptive number knowledge 
refers to one’s proficiency in numerical characteristics and relations among numbers. Adaptive number knowledge entails a 
variety of mathematic skills such as the ability to locate magnitude representation and find “nice numbers” (conduct 
estimations; McMullen et al., 2016). It is the underlying ability that allows one to choose the best problem-solving strategy 
from a range of available options (McMullen et al., 2019). Adaptive number knowledge can better equip students to think 
adaptively and flexibly to choose the best solution in different problem-solving contexts (McMullen et al., 2016). 

In recent decades, there has been an effort to redirect the training of arithmetic competencies through adaptive expertise 
rather than routine expertise (Blöte et al., 2000; Hatano & Oura, 2003; National Council of Teachers of Mathematics, 2014; 
Nunes et al., 2016). To cultivate students’ adaptive expertise in rational number arithmetic, mathematics educators should 
encourage students to explore different number operation combinations and problem-solving strategies (Blöte et al., 2000; 
Brezovszky et al., 2019; Rittle-Johnson & Star, 2009; Star & Seifert, 2006). However, there are very few pedagogical strategies 
that develop students’ adaptive expertise in arithmetic within traditional classroom settings (Verschaffel et al., 2009). 
Traditional classrooms fail to equip students when they must apply what they learned from the classroom to novel problem-
solving scenarios if they are not given direct instructions (Blöte et al., 2000; Gaschler et al., 2013). Mathematics teachers are 
often limited to teaching a finite number of strategies due to the restrictions of time and curriculum (Baroody, 2003; Siegler & 
Lemaire, 1997; Verschaffel et al., 2009). Moreover, research suggests that textbook writers are accustomed to a certain 
instructional approach that explicitly directs learners to apply a predetermined strategy type with the problem type rather than 
allowing them to develop their own choices (Verschaffel et al., 2009). 

Digital game-based learning (DGBL) can be a potential solution to this problem. Research suggests that educational games 
can be highly beneficial for addressing challenges in mathematics education (Devlin, 2011). In educational games, students 
can gain a more concrete grasp of the abstract ideas embedded in the mathematical concepts as they interact with the game 
items through situated problem solving (Devlin, 2011; Gee, 2004; Whitton, 2014). DGBL can offer a more open-ended, 
flexible, engaging environment to cultivate adaptive expertise in arithmetic through intensive and repeated training 
(Brezovszky et al., 2019; Devlin, 2011). Well-designed DGBL applications can provide learners with immediate feedback, 
learning scaffolds, and cognitive apprenticeship, which can reduce cognitive load and offer learners a greater sense of flow in 
the learning process (Whitton, 2014). 

1.2. Learning Analytics in DGBL 
Learning analytics can provide educators or students with meaningful information that helps to assess learning progression, 
engagement, and appreciation, as well as game quality (Hauge et al., 2014; Westera et al., 2008). There are two main types of 
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game learning analytics: 1) online real-time and 2) offline after intervention (Wiemeyer et al., 2016). The first collects players’ 
real-time data while performing data analysis, modelling, prediction, and optimization during the gameplay process (Ifenthaler 
& Widanapathirana, 2014; Loh et al., 2015). In some cases, real-time intervention, scaffolds, and feedback are provided based 
on real-time data analytics to provide personalized learning assistance (Westera et al., 2008). Offline game learning analytics 
is a more commonly used method in prior studies (Smith et al., 2015) where data are collected before and after the gameplay 
and analyzed asynchronously (Hauge et al., 2014). 

Learning analytics in DGBL can be used to measure or predict student learning outcomes (Kosmas et al., 2018; Mavridis 
et al., 2017). In DGBL, variables connected to game performance such as scores, kills, coins, and failures can potentially 
indicate student learning progress and skill acquisition during gameplay (Freire et al., 2016). A game system also captures 
context information, such as demographic data, to improve the accuracy of the prediction model (Kickmeier-Rus, 2018; Owen 
& Baker, 2019). Learning analytics in DGBL has evolved to capture various gameplay data to estimate student learning paths. 
According to Freire et al. (2016), game learning analytics can send data using two main strategies: 1) event-based or 2) state-
based. Event-based strategy logs data when a pre-specified event occurs in the game. The state-based strategy sends game 
states constantly at a pre-defined frequency. Freire et al. (2016) indicate that most of the learning analytics systems in DGBL 
utilize event-based strategies. The two most common attributes recorded in event-based data are event timestamps and user 
IDs (Adamo-Villani et al., 2013; Qudrat-Ullah, 2010). Some DGBL studies record players’ in-game choices, the time spent 
making the choice, and the correctness of the choice. Seif El-Nasr et al. (2013) argued that using only basic game data such as 
timestamps and success rates can be restrictive; future studies should extract more complex, nuanced gameplay data inherent 
to knowledge and skill acquisition. In DGBL, players often must apply content knowledge or skills to make the right choice 
in the gameplay; their in-game choices can indicate their mastery of the skills and knowledge being trained (Berkovsky et al., 
2010; López-Martínez et al., 2011; Zin et al., 2009). 

It is costly and time-consuming to build a DGBL application with a learning analytics system from scratch (Freire et al. 
2016). Thus, several researchers have turned to pre-existing games to conduct learning analytics studies (Levy, 2014; Dede, 
2012) and identified several challenges of using pre-existing games (Dede, 2012; Levy, 2014; Liu et al., 2017). Most 
prominently, it is hard to track players’ mastery of content knowledge due to the lack of task-specific data across the game 
levels (Ke & Shute, 2015). Researchers have thus promoted implementing evidence-based assessment models at the early stage 
of game development (Dede, 2012; Shute & Ventura, 2013). Some also proposed building distinctive learning analytics models 
for DGBL that vary from the more prevalent game analytics systems applied in entertainment games (Freire et al., 2016; Loh 
et al., 2015). The primary goal of game analytics in entertainment games is to improve game design and the gameplay 
experience. Game analytics is used to help inform decision-making in maintaining and acquiring customers and generating 
more revenue (Ifenthaler, 2015). However, in serious games, game learning analytics is primarily concerned with improving 
players’ learning outcomes and skill acquisition. Insights from game learning analytics are indicative of evidence for game 
design and development to improve the learning experience and learning outcomes (Ifenthaler, 2015). 

Prior game learning analytics research has applied a wide range of data science techniques, including both supervised and 
unsupervised models (Alonso-Fernández et al., 2019). Bayesian networks are one of the most popular and effective models of 
game learning analytics that can also calculate multiple skills and attributes (Levy, 2014; Rowe et al., 2020; Shute et al., 2016). 

Bayesian network researchers must construct an acyclical graph that denotes the hierarchical relationships among variables 
using prior information and domain knowledge before data collection. The new data collected will be used to update the model 
and create a new synthesis (Ohri, 2021). Thus, Bayesian networks can handle small or incomplete datasets and avoid the 
overfitting of data (Heckerman, 2008). However, Bayesian learning can be computationally expensive, especially when it 
comes to dealing with complicated high-dimensional data (Ohri, 2021). It is also challenging to generate interpretations for 
Bayesian networks since it requires copula functions to separate effects and causes (Ohri, 2021). The manual construction of 
a Bayesian network carries strong assumptions on the causal relationships among the variables despite the lack of consensus 
on effective methods of constructing networks from prior information (Lucas, 2004; Uusitalo, 2007). Moreover, Bayesian 
networks can only cope with continuous variables in a limited manner (Friedman & Goldszmidt, 1996; Jensen & Nielsen, 
2007). 

1.3. Cognitive Diagnostic Models 
Cognitive diagnostic models (CDMs) have gained significant recognition in educational assessments (von Davier & Lee, 
2019). Assessing mastery of skills and knowledge is a fundamental component of educational research. CDMs offer an 
advantageous assessment framework that can diagnose more fine-grained and complete student learning profiles. CDMs are 
often compared to IRT models. Despite the existence of multidimensional IRT models, most are developed and used to assess 
learners on a unidimensional continuum. In contrast, CDMs are developed to diagnose the presence or absence of multiple 
fine-grained skills/attributes embedded in a test. In CDM research and literature, skills are often denoted as attributes, and they 
are depicted by binary vectors. Based on learner responses to the test items, CDMs can be used to estimate learner skill profiles 
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that reflect their mastery or nonmastery of the attributes. Q-matrix (Tatsuoka, 1983) is an essential component of CDMs. A Q- 
matrix is a J × K binary matrix that specifies the attributes required by each test item. J represents the total number of test items 
and K represents the total number of attributes measured by the test. 

CDMs are psychometric tools for modelling cognitive processes in problem-solving (Ma & de la Torre, 2020). CDMs 
differ in their assumptions about how learners use attributes to solve each item. In a compensatory-type model, the presence 
of one skill or attribute can compensate for the absence of another skill or attribute. In a noncompensatory model or a 
conjunctive model, all skills or attributes must be present for the learner to complete an item correctly. For example, the 
deterministic input noisy-and-gate (DINA) model is a conjunctive CDM model in that it assumes that test takers must master 
all attributes measured by an item to answer the item correctly (Haertel, 1989; Junker & Sijtsma, 2001). In contrast, the 
deterministic input noisy-or-gate (DINO) model is a compensatory model because it assumes that the test taker can answer an 
item correctly if they master at least one of the attributes (Templin & Henson, 2006). Some more general CDMs incorporate 
both compensatory and noncompensatory models. For example, the generalized DINA model subsumes a variety of widely 
used models such as DINA and DINO (de la Torre, 2011). A significant feature of those CDMs is that they all involve 
parameters defined at the item level. This allows researchers to capture important psychometric characteristics of items but, 
on the other hand, it requires that a few learners answer each item. Such a requirement may not be met in the DGBL. For 
example, in the learning analytic system introduced below, all items are randomly generated, and each is answered by only 
one learner. To analyze such data, we consider CDMs that do not involve item parameters. 

1.3.1. Noisy inputs, deterministic “and” gate model 
The noisy inputs, deterministic “and” gate model (NIDA; Junker & Sijtsima, 2001) defines two parameters for each attribute, 
namely, guessing and slip parameters. Suppose there are K attributes and the guessing parameter of attribute k or gk is defined 
as the probability of learners who do not master attribute k but apply it successfully. Similarly, the slip parameter of attribute 
k, or sk is defined as the probability of learners who master attribute k but do not apply it successfully. The probability of 
completing an item correctly is the probability of successfully applying all attributes measured by the item (also referred to as 
the item response function or IRF). Let 𝑌!" be the response of learner n with attribute profile 𝜶! = (𝛼!#, … , 𝛼!$ , … , 𝛼!%), 
where 𝛼!$ ∈ {0,1}, to item j, and assume item j has a q vector 𝒒" = /𝑞"#, … , 𝑞"$ , … , 𝑞"%1, where 𝑞"$ ∈ {0,1}. The item 
response function of the NIDA model can be written as 

 

𝑃"𝑌!" = 1&𝜶!, 𝑠, 𝑔+ = 	- .(1 − 𝑠#)$!"𝑔#
%&$!"2

'#"(

#)%
. 

 
The NIDA model estimates 2 × 𝐾	attribute parameters, as well as an attribute profile for each learner. 

 

1.3.2. Continuous Conjunctive Model 
A limitation of the NIDA model is that attributes are assumed to be binary. Although this allows for straightforward 
interpretations (e.g., mastery and non-mastery), it may not capture the finer levels of mastery. The continuous conjunctive 
model (CCM) is an extension of the NIDA model. Unlike the NIDA model, however, CCM utilizes continuous variables 
instead of binary latent variables to represent attributes, thus it offers a more generalized diagnosis (Hong et al., 2015). Since 
the CCM assumes conjunctive relations among latent attributes, learners must apply all the attributes required to answer an 
item correctly. Let qnk be the probability that the nth participant applies the kth skill correctly. Let qjk be the (j, k) element in the 
Q matrix that depicts the skills needed for the items (j item, k attribute). The item response function of the CCM can be 
illustrated using the equation below: 

𝑃	"𝑌!" = 1&𝜃!	) = 	-𝜃!#
'#"

(

#)%

 

Like the NIDA model, the CCM does not involve any item-level parameters and thus greatly simplifies the statistical 
inferences. As an extension of the NIDA model, the CCM can fit data at least as well as the NIDA model (Hong et al., 2015). 
Because learner skill profiles are estimated directly from their responses to the test, the CCM lends itself well to DGBL, where 
items are randomly generated, and the number of attributes is often large (i.e., high dimensions). The CCM provides clear 
interpretations and simple parameterization and offers useful diagnostic information using continuous variables. Despite its 
potential usefulness, few studies have investigated the integrations of the CCM into game learning analytic systems. In Hong 
et al.’s (2015) study, they fitted Tatsuoka’s (1990) fraction subtraction data with 12 models including DINA, DINA-NIRT, a 
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three-parameter logistic IRT model, and the CCM. The data consists of the responses of 536 subjects to an instrument that 
consists of eight attributes. The CCM has the overall best fit for score distribution. 

1.4. The Current Study 
This study aimed to explore applying stealth assessment in a mathematics DGBL application using the CCM. A DGBL 
application called The Nomads was designed and developed. The game can track pre-specified and task-related game log data 
in the process of gameplay. The game simulates the experience of a board game; players’ actions are determined by the number 
randomly generated by the dice and the choices they make in the gameplay. Pathways in the game are random, therefore, the 
numerical values in each game item are entirely different for individual players. In other words, during gameplay, players do 
not follow the same path or perform the same game items. Considering this game system feature, this study applied Hong et 
al.’s (2015) CCM. Unlike traditional CDMs, the item level parameters are eliminated in the CCM, and the game items with 
the same attribute patterns share the same psychometric properties. Participants’ attribute profiles were estimated from their 
response patterns (Hong et al., 2015); they were thus unaffected by the estimation error of item parameters. 

There is an advantage of the CCM in designing game-based assessments. First, compared to dominant uses of Bayesian 
networks, the CCM offers a more accessible approach for researchers and educators to implement learning analytics in DGBL. 
Although Bayesian networks have been integrated, tested, and validated in previous research, applying Bayesian network 
approaches to various game design and development contexts is still limited since it requires prior expertise in graphically 
represented competency model development, which limits game designers’ capabilities to flexibly design and refine game-
based assessments. Unlike with Bayesian networks, researchers using the CCM do not have to construct hierarchical 
relationships and causal probabilities among latent variables before data collection. Specifically, Bayesian networks require 
designers to invest extensive effort in building a higher-order graphic model that contains subcompetency structures; the CCM 
is advantageous at quickly prototyping and testing game tasks and assessment items in a time-efficient manner. Additionally, 
the CCM directly generates learner skill proficiency using continuous variables; there is no need to apply additional data 
science procedures to interpret the data. Last, the CCM does not involve any item-level parameters, thus a learner’s attribute 
profile can be easily estimated even when the number of skills involved is large. Such benefits of CCM could expand game 
designers’ capability in building game-based assessments. Whereas Bayesian network-driven game-based assessment has been 
tested widely, however, a lack of empirical studies hampers the building and integrating of CCM-based assessments in a math 
game. 

This study addresses this gap as it explores stealth assessments in The Nomads using the CCM. In this study, student game 
log data in The Nomads were captured and fitted with the CCM to generate learners’ skill mastery profiles in the first and 
second half of gameplay. This study sought to answer the following research questions: 

1. How effective is CCM in assessing student learning in The Nomads? 
2. How does playing the game affect students’ skill mastery profiles generated by the CCM? 
3. How does scaffolding affect students’ skill mastery profiles? 

2. Method 
2.1. Participants 
The 84 participants in this study were fourth to sixth graders (male = 35, female = 49) from a public school district in West 
Alabama. The game tasks in The Nomads demand basic understanding of arithmetic facts associated with whole numbers, 
which aligns with the Common Core Mathematics Standards for fourth graders (National Governors Association, 2010). 

2.2. Procedure 
For data collection, authorization from the public school system in West Alabama and the Institutional Review Board (IRB) 
were obtained. Moreover, consent was obtained from schools and teachers to conduct the study while consent  from study 
participants was obtained from parents or guardians. Only students who had received consent were asked to be a part of the 
study and no demographic data were collected. 

Data collection took place within a normal classroom setting over the period of two class sessions. In the first session, 
students learned how to play the game. The researcher circled the classroom to help answer student questions about gameplay. 
In the second session, students played the game by themselves during the entire class (45 minutes). Only the game log data 
from the second session were collected and analyzed since student game performance in the first session cannot predict their 
mastery of skills. 
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2.3. Instrument 
2.3.1. The Nomads 
The Nomads is a 3D math game designed to train adaptive expertise in rational number arithmetic. Game participants serve in 
the role of tribal leader as they bring their people through the mountains, plains, and deserts. Players must collect resources 
 
along the journey and sustain the survival of their people with food and lodging. They are requested to exchange resources 
with players of the same tribe and conduct bartering with players of the other tribe (see Figure 1). 

 

 
Figure 1. Main interface. 

 
To play the game, players throw the dice by clicking the Go button and then moving their game piece according to the 

number generated. They then perform one of the six major game tasks associated with the square they land on: 1) collect 
berries, 2) hunt buffalo, 3) collect logs, 4) mine gems and ore, 5) trade gems, and 6) wild cards (see Figure 2 and Table 1). In 
collecting berries, students must produce an arithmetic expression using the six numbers on the red buttons and four arithmetic 
symbols on the green buttons to equal the number on the berries. For hunting buffalo, players must use arrow cards and spear 
cards. The spears and arrows are assigned different attack points and the game automatically generates the attack points needed 
to hunt the buffalo. The number of weapon cards in each scenario is limited; players must use the weapon efficiently so that 
the number of attack points produced by the weapon card will be equal to or greater than that required to hunt the buffalo. For 
log collecting, players must adjust the length so that the final volume of the log cut will be approximately equal to the desired 
volume generated by the arithmetic expression displayed. To mine gems or ore, players must compose arithmetic expressions 
to move around. In each round, the system automatically generates six numbers and displays them on the left column; ore or 
gems will be generated on the field. Players use these numbers to produce arithmetic expressions that move them from their 
starting position to the number where the gem or ore is located. To trade gems at a trading post, players must select the objects 
they own and the object that they want. After evaluating the value of each item, they press TRADE. Finally, players might also 
draw a wild card to encounter mythological Lakota figures and creatures. 
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Figure 2. Game tasks (hunt buffalo, collect berries, cut logs, mine gems and ore, folklore encounter, trading post). 

 
After completing the task, players must calculate the amount of energy their tribes have spent by multiplying the number 

of steps and the amount of energy per step (automatically generated). Then, they should feed their tribe by supplying portions 
of buffalo meat and berries. Resources must be assigned strategically so that the right amount of energy is provided without 
wasting any food or harming the health or morale of the tribe (see Figure 3). Players should also build tipis using buffalo skins 
and logs every 12 steps. They must also make arrows and spears with ore and logs to hunt buffalo (see Figure 4). 
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Figure 3. Feed tribes. 

 
 

 
Figure 4. Make weapons. 
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All tasks are designed to train adaptive expertise in arithmetic problem-solving. The answers in the games are not fixed; 
players have multiple ways to solve the problems every time. The successful completion of the tasks depends on players’ 
adaptive and strategic use of numbers to solve context-bound mathematics problems. After completing the tasks associated 
with the square on which they land, the player can repeat the same game cycle. To facilitate student learning, instructional 
scaffolds were built into The Nomads (see Table 1). 
 

Table 1. Game Tasks and Instructional Scaffolds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2. Game log data 
The Nomads utilizes a data-tracking system using event-based learning analytics (Freire et al., 2016) and recorded participant 
responses every time they complete a game item. The game first registers players’ choices of level and game character and 
then sends a line of game logs to the server every time a player completes a game item. Each line includes six key parameters: 1) 
the task number, 2) the timestamp of when the task was performed, 3) the time it took the player to solve the task, 4) the skills 
required to solve the task, 5) the correctness of the answer, and 6) if students used scaffolds to solve the task. As seen in Table 
2, The Nomads trains the following six key math skills (attributes): 

A1. Using the four operations with whole numbers to solve problems. 
A2. Flexibility and adaptivity in arithmetic problem-solving (McMullen et al., 2016). 
A3. The ability to find the “nice number” (approximate based on number characteristics; McMullen et al., 2016). 
A4. Algebraic thinking skills (associate symbols with values). 
A5. Using ratio concepts and reasoning to solve problems. 
A6. Using concepts of area, surface area, and volume. 
Since skills 3 and 6 only simultaneously appear in the Cut Logs game tasks, they are not distinguishable in the game 

context. Thus, they are combined into attribute 3 in the Q matrix. 
 

  

Game Task Instructional Scaffolds 
Calculate 
Energy 

In the scaffolding mode, learners can drag and 
drop a symbolic block as many times as the steps 
they have taken to generate the total amount of 
energy consumed in this round. 

Feed the 
Tribe 

In the scaffolding mode, the total amount of energy 
accumulated by the berries and buffalo meat, along 
with the energy still needed, will update 
automatically as players drag and drop different 
portions of berries and buffalo meat in the 
consumption area. 

Hunt 
Buffalo 

In the scaffolding mode, the total number of attack 
points generated by the arrows and spears, and the 
attack points still needed to capture the buffalo, 
will update automatically as players drag and drop 
arrows and spears in the attack area. 

Collect 
Berries 

The game shows all the potential solutions after 
players complete the task. 

Mine Gems 
and Ore 

The game shows all the potential solutions after 
players complete the task. 

Cut Logs In the scaffolding mode, the system generates the 
desired log volume and shows the actual log 
volume as players drag the saw and adjust the log 
length. 

Make 
Weapons 

None. 

Build Tipis None. 
Trading Post The system automatically generates the formula to 

apply to the rate of trading and calculates the 
amount one can trade for. 
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Table 2. Game Tasks and Attributes 
 

Game Task Game Mechanics Skills/Attributes 
1 Calculate Energy Calculate how much energy used in each round. A1 
2 Feed the Tribe Drag and drop different portions of buffalo meat and 

berries so that the total energy points amount to the 
total energy spent. 

A1, A2, A4 

3 Hunt Buffalo Drag and drop different portions of arrows and spears 
so that the total attack points equal that required to 
hunt the buffalo. 

A1, A2, A4 

4 Collect Berries Use two or three numbers provided and any 
combination of operations to produce an arithmetic 
expression to account for the desired value of berries. 

A1, A2 

5 Mine Gems and Ore Use one or two numbers provided and any 
combination of operations to produce an arithmetic 
expression that equals the number where the gem or 
ore is located. 

A1, A2 

6 Cut Logs Determine the length of the log given the area so that 
the volume is approximately equal to the desired 
volume on the interface. 

A1, A3, A6 

7 Make Weapons Use different proportions of ore and logs to make 
arrows or spears. 

A1, A4, A5 

8 Build Tipis Use different proportions of buffalo skins and logs to 
build tipis. 

9 Trading Post Trade objects based on their exchange rates. A4, A5 
 

2.3.3. Pre- and post-tests 
Pre- and post-tests were conducted to validate the assessment generated by the CCM. Four specific instruments were applied 
in the pre- and post-tests: 1) arithmetic production task, 2) arithmetic fluency assessment, 3) arithmetic conceptual knowledge 
task, and 4) ten approximation questions to test learner ability to find the “nice number” (McMullen et al., 2016). 

The arithmetic production task is an instrument developed by McMullen et al. (2016; see appendix A). In the measurement, 
students are asked to produce arithmetic expressions with four or five given numbers. They can use any combination of four 
basic arithmetic operations to produce a given solution. There are two types of items in this measurement, dense items and 
sparse items. In a dense item, a relatively large number of arithmetic expressions can be produced with the given numbers to 
achieve the given solution (e.g., 2, 4, 8, 12, 32 -> 16). In a sparse item, only a few arithmetic expressions can be configured to 
produce the given solution (e.g., 1, 2, 3, 4, 5, 30 ->59). Although a dense item can capture a larger quantity of solutions, it 
offers less complexity compared to a sparse item. Sparse items demand that test takers produce more mathematically complex 
arithmetic expressions requiring multi-operational solutions (McMullen et al., 2016). The arithmetic production task was used 
to evaluate learner attribute 2 (flexibility and adaptivity in arithmetic problem-solving). 

This study also adopted Woodcock and colleagues’ (2001) mathematics fluency sub-test for arithmetic fluency. This test 
is composed of 160 basic arithmetic problems — 40 addition items, 40 subtraction items, 40 multiplication items, and 40 
division items. These test items are placed sequentially and participants are to complete as many as they can within three 
minutes. The arithmetic fluency test was used to measure attribute 1 (using the four operations with whole numbers to solve 
problems). 

The arithmetic conceptual knowledge test is adapted from McMullen and colleagues’ (2017) study. McMullen et al. (2017) 
devised this instrument to measure students’ pre-algebra skills. This measurement is composed of ten multiple choice questions 
with missing value equations (e.g., 30 + 20 + __ = 6 × 9). Participants are given ten minutes to complete the task by choosing 
the correct value from the given choices. There are ten items in the pre-test and ten in the post-test. This instrument was applied 
to measure attribute 4 (algebraic thinking skills). 

Additionally, ten questions were applied to measure attribute 3 (the ability to find the “nice number” by approximating the 
characteristics of the numbers). The item asks participants to solve an arithmetic equation and choose the number that 
approximates the result of the equation. For example, participants are given an arithmetic expression, such as 5 × 12 + 99, and 
given four choices (130, 140, 150, 160) from which to choose the option that is approximately equal to the result of the 
arithmetic expression. 
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2.3.4. The Q-matrix 
To fit the CCM (Hong et al., 2015) to our gameplay log data and make inferences about learner attributes, it is critical to 
identify which attributes are measured by which game task. The Q-matrix (Tatsuoka, 1983) that specifies the skills measured 
in The Nomads is determined by subject experts. As discussed in section 2.3.2, since skills 3 and 6 only simultaneously appear 
in the Cut Logs game tasks, they are not distinguishable in the game context. Thus, they are combined into attribute 3 in the Q 
matrix. Table 3 displays the Q matrix used in the analysis. Compared to the standard Q-matrix in general CDMs, the items in 
the left column of Table 3 indicate types of game tasks instead of individual test items. 

Table 3. Q Matrix 

 A1 A2 A3 A4 A5 
1 Calculate Energy  1 0 0 0 0 
2 Feed the Tribe 1 1 0 1 0 
3 Hunt Buffalo 1 1 0 1 0 
4 Collect Berries 1 1 0 0 0 
5 Mine Gems and Ore 1 1 0 0 0 
6 Cut Logs 1 0 1 0 0 
7 Make Weapons 1 0 0 1 1 
8 Build Tipis 1 0 0 1 1 
9 Trading  0 0 0 1 1 

 

2.3.5. The CCM and its extension 
The CCM was used for estimating learner skills. Since it was assumed that students were learning the game in the first session 
and their game performance would not reflect their true skill mastery, only game log data from the second session were 
extracted for the data analysis. This confines the study to only 45 minutes of game log data from each participant. The Nomads 
contains nine different game tasks, so it is important to include all nine in the dataset to generate predictions of student skill 
mastery. Due to all these circumstances, participant responses were divided into two halves to examine if playing the game 
had an impact on learning outcomes. One limitation of the CCM is that it assumes learners cannot answer an item correctly by 
guessing. Based on the evaluation of subject experts, one might be able to answer items in tasks 7 and 9 correctly by guessing. 
To accommodate this possibility, a revised CCM with a guessing parameter was adopted. The probability of success for a 
learner n answering an item generated from game task j (j=7 or 9) is defined as 

 

𝑃	"𝑌!" = 1&𝜃!	) = 	𝑔" + "1 − 𝑔"+-𝜃!#
'#"

(

#)%

, 

 
where 𝑔" represents the guessing parameter of items generated based on game task j. All model parameters were estimated 
simultaneously with a maximum likelihood estimation via the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm in R. 
As mentioned above, the game data were split into two halves and learner skill profiles for both were estimated jointly. Like 
Wang et al. (2018) and Corbett and Anderson (1994), we assume that learner skills will not decrease during this short game 
period. Note that not all skills were measured in each half for each learner and thus not all skills can be estimated. 

2.3.6. Model-data fit evaluation 
To evaluate whether the CCM can fit data, we compared the observed and model-implied total score distributions. We also 
calculated the weighted and unweighted mean absolute residual (MAR) between the observed and expected proportion of 
success for each type of item, where the unweighted mean absolute deviation (MAD) is calculated as 
 

𝑢𝑀𝐴𝐷" =	
∑ |𝑝*" −	𝜋*"|*

𝑁
 

with N as the sample size, and the weighted MAD is calculated as 
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𝑤𝑀𝐴𝐷" =	
∑𝑤*"|𝑝*" −	𝜋*"|

∑ 𝑊*"*
 

 
where pij and πij are the observed and expected probabilities of student i answering items of type j correctly with wi as the 
number of times that student i was given items of type j. The weighted MAD might be preferred since pij tends to be less 
accurate when wij is small and thus the corresponding residuals should have less weight. 

3. Results 
This study assumes that students’ skill mastery in each half of the game (22.5 minutes each) did not differ significantly. 
Appendix A demonstrates the number of items participants completed in each half. Next, the study participants’ game log data 
in each half were fitted with CCM (Hong et al., 2015) to produce skill mastery profiles. Appendix B illustrates the study 
participants’ skill mastery estimates in the first and second halves of the gameplay. Since CCM produces a continuous variable, 
these skill profiles are represented by vectors composed of decimal numbers from 0 to 1, with 1 indicating complete mastery 
of the attribute. 

3.1. Information on the Game Tasks 
We aggregated all the game log data and generated some descriptive statistics to produce general information on student 
performance on the game tasks. Table 4 shows the frequency of each task, the average time spent on each task, the rate students 
applied scaffolds in the task, and the accuracy rate of each task. It shows that task 5 was the most frequently used task in this 
game, followed by tasks 1, 6, 2, and 3. Tasks 7, 8, and 9 appeared least frequently; consequently, the average time students 
spent on tasks 7, 8, and 9 is longer than on other tasks due to lack of exposure, familiarity, and understanding. 

In this game, students can opt to use learning scaffolds in tasks 1, 2, 3, and 6. Table 4 shows that students did not need 
scaffolds much for task 1. However, participants applied scaffolds more than half the time for task 6, indicating that it was 
extra challenging. The accuracy rate in Table 4 indicates that for tasks 1, 2, 3, and 6, the more often participants used 
instructional scaffolds, the more accurate their overall answers. The accuracy rate was highest for task 9, which is logical since 
players only needed to exchange items and make sure that the number they entered did not exceed the number of items they 
possessed. Task 4 also had a high accuracy rate, followed by tasks 5, 7, 6, 1, 2, and 3. Task 8 had the lowest accuracy rate. In 
The Nomads, tasks 2 and 3 share similar mechanics and produced similar accuracy rates. Tasks 4 and 5 also share similar 
mechanics and have similar accuracy rates, with task 4 having a slightly higher accuracy rate. Although tasks 7 and 8 share 
similar mechanics, their accuracy rates are very different. Task 7 allows players to build weapons at will; they only need to 
produce the right proportion of logs and ore. For task 8, there is a definitive answer; players must apply the right amount of 
logs and buffalo skins to build the desired number of tipis, which is more challenging. 

Table 4. Game Tasks and Descriptive Statistics 

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 
Frequency 1509 943 943 1251 1616 1410 351 407 322 

Percentage 16.3% 10.2% 10.2% 13.5% 17.5% 15.3% 3.8% 4.4% 3.5% 

Average 
time spent 

26.7s 28.3s 35.6s 25.7s 29.9s 16.9s 145.7s 56.9s 84s 

Scaffold 
use rate 

6% 42% 35% auto auto 56% none none auto 

Accuracy 
rate 

39% 37% 36% 66% 59% 55% 56% 11% 79% 

3.2. Model Evaluation 
The usefulness of CCM has been evaluated both internally and externally. The internal evaluation involves the assessment of 
model-data fit. We compared the observed total score and the model-implied total score for each student. Figure 5 compares 
the histogram of observed total scores and the density plot of model-implied total scores. The observed and model-implied 
total scores are similar, suggesting that the model can fit data. 
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Figure 5. Model fit comparison graph. 

 

Table 5 gives the weighted and unweighted MAD for both the first and second half data. The values of MAD are on a scale of 
0 to 1 and all values were less than .25, except those related to tasks 7 and 9, suggesting that the model can fit most data 
adequately. 

Table 5. Game Tasks and Weighted and Unweighted Mean Absolute Deviation (MAD) 

 First half Second half 
Game task unweighted MAD weighted MAD unweighted MAD weighted MAD 

 
1 0.22 0.20 0.20 0.18 
2 0.20 0.18 0.22 0.21 
3 0.18 0.15 0.20 0.18 
4 0.22 0.17 0.19 0.15 
5 0.19 0.17 0.23 0.18 
6 0.17 0.16 0.15 0.15 
7 0.34 0.30 0.36 0.34 
8 0.20 0.18 0.23 0.21 
9 0.23 0.27 0.24 0.22 

 

The external evaluation of the model involves the use of pre- and post-test data. The pre- and post-tests captured only four 
attributes (A1, A2, A3, A4). Table 6 gives the correlation coefficients between the pre-test score and CCM-estimated skills 
based on first-half data and the correlation coefficients between post-test score and CCM-estimated skills based on second-
half data. The correlations ranged from .018 to .495, with most being significantly different from zero, but a few 
nonsignificantly different from zero. 
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Table 6. Game Tasks and Correlation Coefficients 
 

r1 95% CI of r1 r2 95% CI of r2 
A1 0.287* [0.061,0.485] 0.495* [0.299,0.651] 
A2 0.228 [-0.003,0.435] 0.212 [-0.019,0.421] 
A3 0.350* [0.080,0.573] 0.287* [0.006,0.525] 
A4 0.018 [-0.213,0.247] 0.336* [0.114,0.525] 
Note: r1 is the correlation between pre-test score and CCM-estimated skills based on first-half 
data; r2 is the correlation between post-test score and CCM-estimated skills based on second-
half data; * indicates a correlation that is significantly different from 0.  

 

3.3. Change in Skill Profile 
Figure 6 demonstrates the study participant distribution patterns of the five attributes in the first and second halves of the 
gameplay. More students acquired higher levels of mastery in the second half compared to the first across all five attributes. 
For attributes 2 and 3, more participants had a higher mastery rate in the second half. For attributes 1, 4, and 5, although the 
number of students with higher mastery increased in the second half of the gameplay, most students fell into the interval 
between 0 and 0.6. The density distribution of mastery levels was not bimodal for most study participants with extreme mastery 
levels so the binary variables in traditional CDMs may not be optimal for the current dataset. The CCM used in this study 
allows for assessing participants on a non-mastery to mastery continuum and thus could provide more diagnostic information. 
 

 

Figure 6. Participant distribution for the five attributes. 
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As shown in the graph, participants’ skill mastery patterns in each half of the gameplay is not distributed symmetrically. 
To further explore the game’s impact on student learning outcomes, we compared the quantiles of the distributions of the level 
of mastery for each attribute estimated from the first and second half data using the method D2 (Wilcox & Erceg-Hurn, 2012). 
D2 refers to a percentile bootstrap approach in conjunction with the Harrell–Davis estimator and a robust alternative to the 
paired-sample t-test. Table 7 gives the D2 tests for quantiles of each attribute based on 200 bootstrap samples based on the 
WRS R package. This method allows us to compare the number of students between the first and second half of the gameplay 
based on their skill mastery levels — e.g., the number of high-performing participants in the first half of the gameplay 
compared to the second half by comparing upper quantile points. All quantiles differed significantly at the .05 nominal level. 
The quantiles of levels of mastery estimated from the second half data were higher, though some differences had narrow 95% 
confidence intervals. 

Table 7. Quantiles of the Distributions for the Five Attributes 

Attribute Percentile rank Percentile Points 95% CI of difference 
in percentile points 

  first-half second-half Difference lower upper 
1 25 0.354 0.400 0.046 -0.088 -0.012 
 50 0.488 0.573 0.085 -0.174 -0.030 
 75 0.758 0.934 0.176 -0.269 -0.084 
2 25 0.565 0.709 0.144 -0.219 -0.078 
 50 0.787 0.908 0.121 -0.212 -0.063 
 75 0.952 0.998 0.046 -0.106 -0.009 
3 25 0.414 0.497 0.083 -0.304 -0.005 
 50 0.762 0.959 0.197 -0.374 -0.017 
 75 0.998 1.000 0.002 -0.039 -0.001 
4 25 0.444 0.463 0.019 -0.038 -0.004 
 50 0.489 0.622 0.133 -0.255 -0.025 
 75 0.779 0.959 0.180 -0.299 -0.075 
5 25 0.465 0.474 0.010 -0.020 -0.002 
 50 0.489 0.503 0.014 -0.136 -0.003 
 75 0.680 0.872 0.192 -0.338 -0.052 

Note: CI is a confidence interval. 

3.4. Impacts of Scaffolding 
We also examined the impact of scaffolding on the level of mastery. In particular, the use of scaffolding for attribute k was 
defined as the number of scaffoldings used for all items measuring attribute k. The correlations between the use of scaffolding 
and the mastery level were calculated for all five attributes. The 95% bias-corrected accelerated confidence intervals were also 
calculated based on 999 bootstrap samples. As shown in Table 8, the use of scaffolding is significantly correlated with 
Attributes 1, 3, and 4 at a .05 nominal level, but not significantly related with attributes 2 and 5. 

Table 8. Correlation between Scaffolding and the Level of Mastery 

Attribute Correlation 95% confidence interval of the correlation P value 
1 0.468 [0.277,0.6080] 0.000 
2 0.131 [-0.0614,0.2949] 0.237 
3 0.537 [0.3778,0.6534] 0.000 
4 0.425 [0.2258,0.5807] 0.000 
5 -0.211 [-0.377,0.0179] 0.068 
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4. Discussion 
One of the key challenges of applying DGBL in classrooms is the lack of information on the impacts of a game on student 
learning. For many educators, an educational game is like a black box. Most educational games only produce a final state in 
the form of levels or scores with simple metrics. The rich data of student learning processes in the game are obscured (Alonso-
Fernández et al., 2017). Whereas an increasing number of learning analytics studies have explored generating automatic 
learning assessments using in-game interaction data in DGBL, there is limited success in producing transparent and accessible 
results for educators (Serrano-Laguna et al., 2017; Steiner et al., 2015). Moreover, prior research on in-game learning analytics 
suggests a need to design educational games that incorporate task-specific performance tracking (Ke & Shute, 2015) and 
distinctive learning analytics models to track learning progress (Loh et al., 2015; Freire et al., 2016). 

This study addressed the gaps as it explored stealth assessment in DGBL using an application we designed and developed 
from scratch, called The Nomads. In the game, an event-based strategy (Freire et al., 2016) was applied to send data to the 
server, and players’ interactions with the pre-specified events were coded and registered in the game log database. The game 
also registered the skills required in the “event,” the timestamp of the event, the time it takes to finish the event, if students 
solved the event correctly, and if students utilized scaffolds in the game. Since the numbers in the game tasks are randomly 
generated and players’ pathways are arbitrary, we adopted the continuous conjunctive model (CCM; Hong et al., 2015) in the 
game system. In the CCM, item-level parameters are eliminated, and participants’ skill mastery is represented by continuous 
variables (Hong et al., 2015). Without the constraints of item-level parameters, the randomly generated game items can be 
categorized into item types using the type of task participants are to perform. Moreover, since the hierarchical relationships 
and probabilities among the attributes and game items remain unknown, the CCM was chosen over the more popular Bayesian 
networks to assess student performance in The Nomads. In the CCM, researchers do not have to construct the hierarchical 
relationships and the causal probabilities among variables before data collection. Furthermore, the CCM predicts learner skill 
proficiency using continuous variables, which offers more diagnostic and accessible performance assessments to educators 
and researchers. By fitting the game log data with the CCM, this study investigated the model-data fit and explores how playing 
the game affects participants’ skill mastery profiles. 

4.1. RQ1. How effective is CCM in assessing student learning in The Nomads? 
To evaluate the effectiveness of CCM in assessing student learning performance in the game, we evaluated the model both 
internally and externally. In the internal evaluation, we compared the observed total score and the model implied total score 
for each student and generated a graph comparing the histogram of observed total scores and the density plot of the model 
implied total scores. The results suggest that the model can fit the data. To further explore the effectiveness of CCM at assessing 
game performance, weighted and unweighted MAD were generated for each task in the first and second halves of the gameplay. 
The results show that all the values were under .25 except the values for task 7 and the first half of the data for item 9. 

It is important to note that the model-data fit is affected by several factors — the number of items players complete in the 
game, how well the game item assesses participants’ skill mastery, etc. To achieve a better model-data fit, participants must 
understand what to do in the task, apply the skills required to solve it, and complete sufficient game items in the task. The more 
items participants complete in the task, the better the fit indices are. One possible reason contributing to the lack of model-data 
fit for tasks 7 and 9 was the lack of game item frequency, as shown in the descriptive data. 

Moreover, we further validated the model by comparing the skill profiles generated with external pre- and post-tests 
collected in the study. The pre- and post-instruments only captured four of the attributes — A1, A2, A3, and A4. Correlation 
coefficients were generated comparing the pre- and post-tests with participants’ skill mastery profiles in the game. The 
correlations ranged from .018 to .495, with most being significantly different from zero, but a few nonsignificantly different 
from zero, indicating minor positive correlations between the model-predicted skill mastery and the pre- and post-test results. 
It is important to acknowledge the limitations of the pre- and post-test instruments in validating the CCM model. While CCM 
captures fine-grained attributes embedded in each game item in The Nomads, the instruments in the pre- and post-tests are IRT 
models that only generate unidimensional continuum of student learning performance, they fail to consider the multiple fine-
grained skills and attributes embedded in each of the test items. 

4.2. RQ2. How does playing the game affect students’ skill mastery profiles generated by the CCM? 
To explore how playing the game affected participants’ skill mastery profiles, the study split the participants’ log data in half 
and generated a graph describing learners’ skill profiles and their skill mastery profile distribution patterns. The number of 
students with lower skill mastery decreased and the number of students with higher skill mastery increased in the second half 
of the gameplay for all five attributes. For Attributes 2 and 3, a greater proportion of students had higher skill mastery compared 
to the proportion of students with a lower level of skill mastery in the second half of the gameplay. For Attributes 1, 4, and 5, 
although the number of students with higher mastery of the skills increased in the second half of the gameplay, there was still 
a greater number of students who fell into the mastery interval between 0 and 0.6 than those who had a higher mastery rate in 
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the second half of the gameplay. Additionally, this study also compared the quantiles of the distribution of the level mastery 
from the first and second halves of the gameplay using D2 (Wilcox & Erceg-Hurn, 2012). The results showed that all quantiles 
differed significantly at a .05 nominal level, indicating that students’ skill mastery for all five attributes improved in the process 
of the gameplay. 

4.3. RQ3. How does scaffolding affect students’ skill mastery profiles? 
In addition to game-based assessment, the study also suggested the implication of data-driven decisions of in-game scaffolding. 
Besides basic game data on timestamps and the correctness of the answers, we also collected game log data on players’ use of 
scaffolds. The correlations between the use of scaffolding and the mastery level were calculated for all five attributes. The 
results indicated that the use of scaffolding was significantly correlated with Attributes 1, 3, and 4 at a .05 nominal level, but 
not significantly related with Attributes 2 and 5. This finding explains that The Nomads can benefit from more effective 
scaffolding activities that develop learner flexibility and adaptivity in arithmetic problem solving and their ratio concepts and 
use ratio reasoning to solve problems. Also, the results suggest that the current game-based assessment helped to explain how 
many in-game scaffoldings could be adaptively presented aligned with the nature of the game attributes. These data project 
evidence of what kinds of in-game scaffolding appears effective in fostering student mastery of math comprehension during 
their play. In other words, it helps game designers to further think of ways to design sequences and message design of in-game 
scaffolding. 

5. Limitations and Future Directions 
There are several limitations to this study. First, we had a limited sample size — only 83 participants — which is not sufficient 
to generalize the study findings. Moreover, although each participant played the game for 90 minutes, only 45 minutes of game 
log data were applied for data analysis since we assumed that students were learning the game in the first session and their 
game performance could not predict their skill mastery. The lack of sample size and playtime can result in limited power and 
accuracy in the model’s prediction of learner skill mastery, reducing the validity of the findings and the impact of the game on 
student learning. It also confined the study to splicing the game log data in half since any more segmentations would make it 
impossible to produce predictions of learner profiles. Future studies can benefit from a bigger sample, longer gameplay time, 
and more segmentations to track learning progress. 

Second, this study failed to capture the participants’ demographics. As research indicates, demographic data provides 
crucial insights into the model and results and enriches study findings (Kickmeier-Rus, 2018; Owen & Baker, 2019). Future 
studies can benefit from demographic surveys and integral analysis of demographic data and learning analytics data. 

Third, CCM provides more flexibility for multidimensional and randomly generated game items in The Nomads and 
diagnostic prediction of students’ skill mastery using continuous variables. It has several inherent limitations, however. While 
more adaptable to the randomly generated game items in The Nomads, CCM cannot capture learning progress over time. To 
fit the game log data in The Nomads to CCM, this study assumed that students’ skill mastery in the first and second halves of 
the gameplay did not vary significantly. Moreover, CCM presumed that all skills were required for participants to complete an 
item correctly. However, some of the game items are compensatory rather than conjunctive. For example, while collecting 
berries, it is possible for learners to complete the task if they have full mastery of attribute 1, but very little experience with 
attribute 2. Future studies are essential to explore a more comprehensive model that considers both the conjunctive and non-
conjunctive game items and tracks learner skill mastery over time. 

Fourth, this study operated on the assumption that the Q-matrix was accurate. We recognize the potential issue related to 
misspecifications of Q-matrix due to content knowledge experts’ subjective bias (de la Torre & Chiu, 2016). While many have 
explored various approaches, there is no suitable method available for validating Q-matrix in a digital game-based learning 
scenario in which test items are automatically generated. Future efforts are also needed to find a way to validate the Q-matrix 
in the free flow settings of DGBL. 

It is also important to acknowledge that adaptive expertise in rational number arithmetic is not comprehensively defined 
and operationalized under the current measurement. While many of the attributes in The Nomads are dominantly derived from 
McMullen et al.’s (2016) literature about adaptive number knowledge, it appears limited to fully capturing adaptive expertise 
in rational number arithmetic. Producing more comprehensive and fine-grained skill classifications with game items aligned 
with the current math skill will be considered in future research. 
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Appendix A 
ID first.half second.half 
100M 20 21 
103F 56 56 
104M 46 47 
10F 31 32 
11M 59 60 
12M 34 35 
14F 22 23 
15F 42 42 
16F 16 16 
17M 67 68 
18F 34 34 
1F 24 25 
20M 16 17 
21M 18 18 
22M 24 25 
23F 18 19 
24M 11 12 
25F 33 33 
26F 51 51 
27F 55 56 
28M 29 29 
2F 24 25 
30M 39 39 
31F 63 63 
32M 52 53 
33F 16 17 
34F 16 17 
35M 42 43 
36M 20 20 
37F 23 24 
38F 48 48 
39F 12 12 
3F 36 37 
40M 48 48 
41F 54 54 
42F 17 18 
43M 63 63 
45F 17 17 
4M 30 30 
50F 44 45 
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51F 46 46 
52F 33 34 
53F 40 40 
54F 14 14 
55F 26 27 
57F 46 46 
58F 74 75 
59F 43 43 
5M 33 34 
60F 52 53 
61F 27 28 
62F 45 45 
63F 27 28 
64M 43 43 
65F 78 79 
66F 56 57 
67M 112 113 
68M 40 40 
69M 37 38 
70F 48 49 
71F 54 54 
72F 59 60 
73F 46 46 
74M 56 57 
75M 68 68 
76F 55 56 
77M 44 45 
79M 69 69 
80M 57 58 
81M 52 53 
82M 21 22 
83F 34 34 
84M 59 60 
85M 58 58 
86M 24 25 
87M 38 38 
88M 29 29 
90F 61 62 
92F 56 57 
95M 26 26 
96F 59 60 
97F 40 41 
98F 28 29 
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Appendix B 

 A1 A2 A3 A4 A5 
100M 0.1999404 0.9999900 NA 0.0029049 0.0331930 
103F 0.5789632 0.4357149 0.9999900 0.4242778 0.0000614 

104M 0.7333291 0.9545536 0.9999900 0.9999900 0.0001028 
10F 0.3247801 0.5521423 NA 0.9999202 0.9999900 

11M 0.5544569 0.9999900 0.9999900 0.9999900 0.5636179 
12M 0.5386476 0.4421528 NA 0.9993333 0.9999608 
14F 0.7142807 0.0000100 0.0000100 0.9999899 0.9999900 
15F 0.8495774 0.5797672 0.9999775 0.0000628 0.0006804 
16F 0.5454966 0.9998195 0.2328003 0.4798860 0.9999900 

17M 0.3847185 0.9999900 0.3713073 0.3643750 0.9998739 
18F 0.6666556 0.7902867 NA 0.3376100 0.8227667 
1F 0.4615390 0.9999900 NA 0.1805601 0.9999689 

20M 0.4618152 0.9986250 NA 0.9999831 0.9999900 
21M 0.1200000 0.7576042 NA 0.9999900 0.9999900 
22M 0.1333735 0.9999900 0.9999744 0.0024284 NA 
23F 0.3854702 0.2391544 NA 0.9999853 0.9999900 

24M 0.5146405 0.5308327 NA 0.9999753 0.9999900 
25F 0.5789457 0.9999900 0.0000100 0.5454704 0.9999103 
26F 0.7078375 0.9996712 0.9999900 0.2749220 0.9998814 
27F 0.5734111 0.9999900 NA 0.9221986 0.7048015 

28M 0.3333380 0.9999900 0.0000100 0.9999160 0.0000405 
2F 0.2653044 0.9999900 NA 0.9999547 NA 

30M 0.3344655 0.9999900 NA 0.2135681 0.9999012 
31F 0.4120092 0.8291006 0.1867152 0.7117117 0.5578043 

32M 0.4380967 0.9999851 0.0000318 0.3210010 0.9999900 
33F 0.6666659 0.0001405 0.0000100 0.0563232 NA 
34F 0.3333271 0.3000471 NA 0.9999582 0.9999900 

35M 0.4166667 0.2666606 0.0000133 0.9999719 0.9999900 
36M 0.9999784 0.4921033 NA 0.3637053 0.9999900 
37F 0.4242470 0.9999797 0.0000180 0.9999900 0.9999900 
38F 0.1542457 0.9999802 0.2315321 0.0011993 NA 
39F 0.4205490 0.8608912 NA 0.3120642 0.9999900 
3F 0.5728249 0.4107728 0.0005753 0.9999838 0.9999900 

40M 0.9999706 0.5312644 0.8571439 0.9999900 0.6363855 
41F 0.8388515 0.9996439 0.7947558 0.9274787 0.0019805 
42F 0.9999900 0.5853549 0.5000035 0.0000100 0.9072007 

43M 0.9999900 0.8000234 0.9999900 0.9999776 0.5000769 
45F 0.1333335 0.9999754 NA 0.0001118 NA 
4M 0.5349041 0.9997801 0.0000100 0.5609629 0.9999674 
50F 0.5244085 0.6070806 NA 0.4410174 0.9999363 
51F 0.0689641 0.9999900 0.0001094 0.9999900 0.9999900 
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52F 0.7189452 0.9998927 0.9999900 0.7268124 0.3827548 
53F 0.2093021 0.9999900 0.2388924 0.0000176 NA 
54F 0.1108079 0.9999900 NA 0.0055543 NA 
55F 0.8474608 0.8767161 0.9999900 0.8411133 0.0000100 
57F 0.7340346 0.7023362 NA 0.9999376 0.9999900 
58F 0.8186094 0.9999595 0.9999840 0.9999900 0.4408592 
59F 0.6666754 0.9999824 0.2142847 0.5495734 0.4753629 
5M 0.3000059 0.9999900 0.4764454 0.9999900 0.9998776 
60F 0.9333345 0.9740201 0.0000100 0.3110560 0.8575831 
61F 0.3846168 0.9999900 0.9999900 0.8785736 NA 
62F 0.9999900 0.7323369 0.9411966 0.4143797 0.9999787 
63F 0.5001690 0.9067993 NA 0.3195865 NA 

64M 0.9408963 0.8756407 0.9869756 0.9995450 0.4483886 
65F 0.6626810 0.1910245 0.9999900 0.9998195 0.1571633 
66F 0.9999900 0.8245624 NA 0.7818807 0.1157424 

67M 0.9477266 0.8856864 0.9999900 0.7907297 0.1569900 
68M 0.8333532 0.7082389 0.9999473 0.8353686 0.9999718 
69M 0.2857177 0.9999900 0.0000100 0.0000100 0.3285764 
70F 0.1794826 0.9999872 0.7427478 0.0000100 0.3303645 
71F 0.6756480 0.7266260 0.9999900 0.0000214 0.9977864 
72F 0.7750014 0.7590288 0.1382496 0.6475869 0.4982899 
73F 0.9999900 0.7586325 NA 0.3954570 0.0000463 

74M 0.6108289 0.8646539 0.0000100 0.9999900 0.6647736 
75M 0.9999900 0.7750197 0.8333316 0.9999330 0.1666704 
76F 0.4117667 0.9983458 0.9999900 0.4049724 0.0080248 

77M 0.6250118 0.9999900 NA 0.1453793 0.0000100 
79M 0.7701437 0.9344299 0.9258432 0.2287020 0.9999900 
80M 0.3569619 0.9999900 0.9999900 0.0022389 0.9985019 
81M 0.8518488 0.5161702 0.9999835 0.0026211 0.0652347 
82M 0.3615120 0.9999900 NA 0.5693697 0.9999900 
83F 0.6818261 0.9999900 0.2095251 0.0000100 0.0001978 

84M 0.4269789 0.7952183 0.9999900 0.0000210 0.9969359 
85M 0.9999900 0.8043374 0.7619157 0.5482942 0.4927913 
86M 0.2512346 0.9998881 0.0055321 0.7894704 0.0000100 
87M 0.6486488 0.8670745 NA 0.9484139 0.0000100 
88M 0.3333344 0.9999644 0.0000100 0.2864042 NA 
90F 0.3107896 0.9999742 0.4596871 0.8767393 0.9817791 
92F 0.9999798 0.6666701 0.9999900 0.7499958 0.4444492 

95M 0.4021049 0.9999900 0.9999900 0.4423700 0.9999860 
96F 0.6627622 0.8778863 0.0036352 0.1413848 0.9999900 
97F 0.4320556 0.7907648 0.9999520 0.0000100 0.0593925 
98F 0.9285715 0.8717948 0.9999900 0.7266435 0.0000100 
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 Attribute estimates from second half data based on CCM  
 A1 A2 A3 A4 A5 

100M 0.2635025 0.9999900 NA 0.9965793 0.9997088 
103F 0.8571229 0.8305549 NA 0.4242778 0.0000614 

104M 0.9999964 0.9629677 NA 0.9999999 0.5454632 
10F 0.5881279 0.5521423 0.5000000 0.9999996 1.0000000 

11M 0.5544569 0.9999999 1.0000000 0.9999947 0.5636179 
12M 0.6544561 0.7642118 0.5000000 0.9993333 0.9999982 
14F 0.8333336 0.2181817 NA 0.9999999 1.0000000 
15F 0.9995597 0.5797672 0.9999987 0.8626512 NA 
16F 0.6269827 0.9998195 0.2328003 0.4798860 0.9999900 

17M 0.5788583 0.9999999 0.4935473 0.3643750 0.9998739 
18F 0.9999950 0.9998593 0.8571460 0.3376100 0.8227667 
1F 0.4615390 1.0000000 NA 0.1805601 0.9999689 

20M 0.4618152 0.9999716 0.6186527 0.9999995 NA 
21M 0.1200000 0.9999898 NA 0.9999995 NA 
22M 0.1333735 0.9999900 NA 0.9959088 0.9999900 
23F 0.4040754 0.2391544 0.5000000 0.9999853 0.9999900 

24M 0.6527009 0.5308327 NA 1.0000000 1.0000000 
25F 0.5789457 0.9999998 NA 0.5454704 0.9999754 
26F 0.7768722 0.9996712 0.9999993 0.2749220 0.9999956 
27F 0.6248055 0.9999999 0.9999900 0.9999609 0.7048015 

28M 0.6785655 1.0000000 NA 0.9999997 0.0000405 
2F 0.2653044 0.9999998 NA 0.9999973 NA 

30M 0.3344655 0.9999999 0.5000000 0.2135681 NA 
31F 0.9999857 0.8291006 0.5000220 0.7117117 0.5578043 

32M 0.4380967 0.9999992 0.1630333 0.3210010 0.9999900 
33F 0.6666659 0.3214553 NA 0.9998325 0.9999741 
34F 0.5882410 0.9999767 NA 0.9999991 0.9999999 

35M 0.4166667 0.8000042 NA 0.9999972 0.9999997 
36M 0.9999985 0.5215964 NA 0.3637053 0.9999900 
37F 0.4242470 0.9999997 0.6428337 0.9999948 0.9999900 
38F 0.1542457 0.9999997 0.2315321 0.9917403 0.9999900 
39F 0.9111998 0.8608912 NA 0.3120642 0.9999900 
3F 0.5728249 0.9998004 0.9829229 0.9999838 0.9999987 

40M 0.9999957 0.6923149 0.8571439 0.9999955 0.6363855 
41F 0.8388515 0.9998468 NA 0.9295855 0.9949859 
42F 0.9999992 0.5853549 0.7999997 0.1806319 0.9999638 

43M 0.9999935 0.8000234 0.9999992 0.9999776 0.7222200 
45F 0.1818361 0.9999754 0.9999900 0.9164330 0.9999900 
4M 0.5349041 0.9999893 NA 0.9999922 0.9999989 
50F 0.5244085 0.8475468 0.5000000 0.9999873 0.9999999 
51F 0.4130447 1.0000000 NA 0.9999900 NA 
52F 0.8428657 0.9999933 0.9999996 0.7268124 0.8162584 
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53F 0.2093021 0.9999999 0.2388924 0.6370484 0.9999900 
54F 0.6228022 1.0000000 0.5000000 0.9982128 NA 
55F 0.9999873 0.8767161 0.9999994 0.8554692 0.0000100 
57F 0.7723270 0.7023362 0.9999900 0.9999541 0.9999907 
58F 0.8186094 0.9999965 0.9999999 0.9999999 0.4408592 
59F 0.8781667 0.9999824 NA 0.8059692 0.4753629 
5M 0.3000059 1.0000000 0.9998947 0.9999981 0.9999781 
60F 0.9333345 0.9740201 0.1339349 0.8749536 0.8575831 
61F 0.3846168 0.9999997 0.9999997 0.8785736 0.5000000 
62F 0.9999983 0.7323369 0.9411966 0.4143797 0.9999885 
63F 0.5390707 0.9999990 0.5300962 0.3195865 0.5000000 

64M 0.9408963 0.9565475 0.9999994 0.9999995 0.5147541 
65F 0.6626810 0.1910245 0.9999999 0.9998195 0.1571633 
66F 0.9999991 0.8245624 0.8571584 0.9999633 0.1157424 

67M 0.9477266 0.9074828 0.9999998 0.7907297 0.3255433 
68M 0.8796034 0.9999959 0.9999996 0.8353686 0.9999718 
69M 0.4444375 1.0000000 0.4821684 0.0000100 0.3285764 
70F 0.1794826 0.9999977 0.8357139 0.0000100 0.3303645 
71F 0.8991973 0.7266260 0.9999994 0.6813095 0.9999983 
72F 0.7750014 0.9999961 0.1382496 0.9999946 0.5529696 
73F 0.9999900 0.7586325 0.8571501 0.9999847 0.0000463 

74M 0.9999930 0.8646539 NA 0.9999996 0.6647736 
75M 0.9999978 0.8857152 0.9411828 0.9999985 0.1666704 
76F 0.6923532 0.9997126 0.9999998 0.5028160 0.9987654 

77M 0.6539329 0.9999985 0.5000000 0.6117538 0.3909894 
79M 0.8053098 0.9344299 0.9999869 0.3910870 0.9999994 
80M 0.5242715 1.0000000 1.0000000 0.9955633 0.9999987 
81M 0.8518488 0.7265425 NA 0.9962092 0.2945346 
82M 0.5109691 1.0000000 NA 0.5693697 0.9999900 
83F 0.9999953 0.9999999 0.8571447 0.1999853 0.0001978 

84M 0.4269789 0.7952183 1.0000000 0.6770312 0.9999961 
85M 0.9999996 0.9059258 0.9999928 0.8878547 0.4927913 
86M 0.4281991 0.9999999 0.9982056 0.7894704 0.0000100 
87M 0.6486488 0.9999985 NA 0.9999859 0.0000100 
88M 0.3333344 0.9999972 0.0000100 0.2864042 0.5000000 
90F 0.3107896 0.9999998 0.4596871 0.8767393 0.9817791 
92F 0.9999798 0.7192178 NA 0.8856878 0.9999875 

95M 0.6864660 1.0000000 NA 0.4423700 0.9999860 
96F 0.7447598 0.8778863 0.9972666 0.2040122 0.9999999 
97F 0.6023470 0.7907648 0.9999999 0.0000100 0.0593925 
98F 0.9285715 0.8717948 NA 0.7266435 0.4940178 


