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Abstract 

Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student 

distress states during educational gameplay. We collected and analyzed 1,145 data instances, sampled from a total 

of 31 middle-school students’ audio- and video-recorded gameplay sessions. We conducted data wrangling with 

student gameplay data from multiple data sources, such as individual facial expression recordings and gameplay 

logs. Using supervised machine learning, we built and tested candidate classifiers that yielded an estimated 

probability of distress states. We then conducted confidence-based data fusion that averaged the estimated 

probability scores from the unimodal classifiers with a single data source. The results of this study suggest that the 

classifier with multimodal data fusion improves the performance of tracking distress states during educational 

gameplay, compared to the performance of unimodal classifiers. The study finding suggests the feasibility of 

multimodal data fusion in developing game-based learning analytics. Also, this study proposes the benefits of 

optimizing several methodological means for multimodal data fusion in educational game research. 

 

Notes for Practice (research paper) 

• Distress is a cognitive-affective state related to task-specific frustration that involves unpleasant 
feelings. 

• Tracking students’ cognitive-affective states during educational gameplay drives timely and adaptive 
learning support. 

• Multimodal learning analytics gathers learning-related insights from students’ multimodal interactions. 

• Using multimodal data fusion can improve the prediction performance in tracking cognitive-affective 
states when building game-based multimodal learning analytics. 
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1. Introduction 

Educational gameplay typically promotes motivation and immersion (Filsecker & Hickey, 2014). During educational 

gameplay, students experience dynamic cognitive-affective states. Students engaging in game tasks often experience the state 

of distress, one of the frequent cognitive-affective states that occur during gameplay. Distress refers to unpleasant feelings or 

emotions when individuals are cognitively overwhelmed. In educational game research, distress connotes student task-related 

frustration (Yeh et al., 2015). For example, student wheel-spinning experiences during gameplay can give rise to a high level 

of frustration, whereas their successful gameplay performance can result in high levels of engagement. During gameplay, the 

dynamics of distress change or mediate learner perseverance (Silvervarg et al., 2018) and problem-solving performance 

(Eseryel et al., 2014). Hence, researchers have sought to track students’ various cognitive-affective states to enable adaptive 

support during educational gameplay (Plass et al., 2019; Rodrigo, 2011). 
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Despite emerging studies of cognitive-affective states in educational gameplay, previous research has limitations. First, 

existing research shows limited performance in tracking the state of distress during educational gameplay. Distress is 

particularly indicative of student difficulty or task challenges in gameplay (Bowman & Tamborini, 2012). Hence, tracking 

evidence of student distress in gameplay can drive adaptive learning supports. Although distress is a good indicator of negative 

cognitive-affective states during gameplay, prior research rarely explores how to computationally track it. Second, previous 

studies highlight the limited success of singular measures of tracking students’ cognitive-affective states. However, sparse 

research addresses how to systematically collect, process, and analyze multimodal data when tracking cognitive-affective states 

during educational gameplay (Ochoa & Worsley, 2016). Few empirical studies explore ways to synthesize multimodal data 

during student gameplay, warranting a search for ways to effectively manage multimodal data and to track cognitive-affective 

states. Accordingly, we propose multimodal data fusion using various computational measures. This study focuses on the 

design and conduct of multimodal data fusion when tracking student states of distress during educational gameplay. 

1.1. Distress in Educational Gameplay 

In educational game research, tracking the dynamics of students’ cognitive-affective states is important (Baker et al., 2010; 

Rodrigo, 2011). During gameplay, students experience dynamic cognitive-affective states (Shute et al., 2015) that are strongly 

related to their performance (LePine et al., 2004), self-regulation, and problem-solving attitudes (Taub et al., 2020). 

Researchers identified various cognitive-affective states associated with gameplay performance and academic outcomes during 

educational gameplay, reporting that such cognitive-affective states are predictive of student learning outcomes in educational 

gameplay. Hamari et al. (2016) discovered how various cognitive-affective states (i.e., flow, engagement, and immersion) are 

associated with learning achievement. Shute et al. (2015) also investigated how knowledge comprehension, persistence, 

affective states, and in-game performance influence student learning during educational gameplay. Their study findings 

suggest that cognitive-affective states strongly relate to gameplay performance and learning achievement. 

Students largely undergo distress as one of the cognitive-affective states in educational gameplay. In the literature, stress 

generally refers to a cognitive-affective state that involves emotional and psychological changes with bodily responses 

(Chrousos et al., 2013). Distress, as a type of stress, generally occurs when individuals experience exhaustion that lowers their 

energy (LePine et al., 2004). Specifically, distress is an unpleasant state associated with significant negative consequences as 

a result of task failures (Fultz et al., 1988; Naylor, 2020). Distress features a mixture of symptoms involving depression, 

anxiety, and anger (Kessler et al., 2002). Rudland et al. (2020) state that distress explains individuals’ negative affective states 

as a result of stress. They argue that distress relates to students’ perceived task difficulty and learning performance. Hence their 

work indicates that distress is a precursor of student learning outcomes. 

In the context of educational gameplay, distress can be associated with wheel-spinning processes, involving unproductive 

gameplay consequences and overwhelming gaming tasks (Beck & Rodrigo, 2014). Wheel-spinning refers to a behavioural 

state of exerting unproductive effort in which students use too much time in struggling with game tasks. Once a student 

undergoes repeated failures, they are likely to be overwhelmed and become distressed. There are two types of cognitive-

affective states that students experiencing wheel-spinning can face: frustration and distress. Whereas frustration involves a 

high degree of arousal and negative valence in gameplay, distress largely relates to demotivation and excessive levels of 

anxiety. Frustration refers to a student’s mental exertion to overcome impasses (Henderson et al., 2019), whereas distress is 

largely associated with repeated and unproductive failure cycles that result in quitting behaviours during educational gameplay. 

Therefore, tracking students’ distress states is useful in understanding when and how to adaptively deliver in-game learning 

support. Despite existing studies that discuss a variety of cognitive-affective states in educational game research, few seek 

ways to track students’ states of distress. 

1.2. Detection of Cognitive-Affective States in Educational Game Research 

Because cognitive-affective states indicate students’ perceived difficulty and academic achievement, detecting cognitive-

affective states is essential for driving adaptive learning support in digital learning environments. Researchers suggest the 

potential of using data analytics to track dynamic changes in cognitive-affective states (Baker et al., 2010; Verma et al., 2020). 

Rodrigo (2011) — for example, quantitative field observations and transition likelihood metrics — to examine transition paths 

of different cognitive-affective states. In addition, recent research introduces the design and development of automatic 

detectors for tracking student cognitive-affective states in digital learning environments (Bosch et al., 2014; Chen et al., 2020). 

For instance, DeFalco et al. (2018) explore ways to detect student frustration in a serious game. They use machine-learning 

algorithms and behaviour observation records to develop affect detectors of frustration and engagement. Bosch et al. (2014) 

built an automatic detector by using individuals’ facial features with machine learning, developing classification models to 

track various cognitive-affective states (e.g., boredom, flow, engagement). As another example, Munshi et al. (2018) used 

affect data, learning outcomes, and action log data to analyze students’ cognitive-affective states in the intelligent tutoring 
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system Betty’s Brain. The result of this study shows how certain affective states (i.e., frustration and boredom) are associated 

with either positive or negative learning performance. Bosch et al. (2015) built a supervised machine learning model by using 

student facial expression data. Using FACET, a software to track facial data, they analyzed students’ action units (AUs) and 

then built a prediction model tracking major affective states. 

Despite advances in automatic-detector design in digital learning environment research, existing studies have limitations. 

Educational games are highly interactive digital learning platforms that require learners to use various modalities. Therefore, 

collecting student unimodal data during educational gameplay may not comprehensively detect the dynamics of their cognitive-

affective states. Given that humans generally express cognitive-affective states by a combination of multiple sensory cues 

(Ochoa & Worsley, 2016), researchers should collect and synthesize data from multiple sources to acquire a comprehensive 

understanding of cognitive-affective state changes. Responding to this need, researchers suggest the importance of multimodal 

learning analytics (MmLA), a data analytics discipline that focuses on systematic data collection, analysis, and representation 

of multimodal data to better denote student learning. MmLA also considers data granularity to precisely detect the dynamics 

of cognitive-affective states in relation to student learning. The promise of MmLA increases researcher attention to integrating 

multimodal data mining into educational game research. 

A recent study by Emerson et al. (2020) conducts multimodal predictive modelling by integrating three different types of 

data (gameplay behaviour traces, facial expressions of emotions, and eye-gaze data). Their multimodal fused model was 

superior at predicting student interests and knowledge about microbiology. Henderson et al. (2020) explore multiple 

multimodal data fusion approaches to detect affective states during gameplay. They use and compare feature-level and 

decision-level data fusions to yield better prediction performance of multiple affective states (i.e., bored, confused, 

concentrated, frustrated, and surprised). 

There are still knowledge gaps that should be resolved. First, despite the majority of studies tracking various cognitive-

affective states in digital learning environments, limited research has explored ways to detect students’ distress states in a 

game-based learning context. Even though distress is a potential precursor of in-game learning performance, existing 

approaches rarely developed and tested models to track distress states. Second, a distress-tracking model using multimodal 

data fusion has not been explored. Although existing literature echoes the effectiveness of multimodal data fusion in digital 

learning environments, its usefulness in tracking distress states during game-based learning has not been investigated. The 

purpose of this study, therefore, is to design, implement, and evaluate multimodal data fusion measuring students’ state of 

distress during educational gameplay. The research question of this study is this: To what extent does multimodal data fusion 

improve the detection of students’ distress state during educational gameplay? 

2. Methods 

2.1. Data 

We collected data from thirty-one middle-school students (Grades 6–8) engaged in 1–1.5-hour gameplay sessions. Study 

participants played Zoombinis either in school classrooms or in their homes. During their play, study participants’ postures, 

including facial expressions, and gameplay screens were recorded. Students played Zoombinis (Asbell-Clarke et al., 2021), a 

2D puzzle game aimed at promoting young children’s computational thinking development (Figure 1). For data analysis, we 

sampled and analyzed student data from the game puzzle Mudball Wall in Zoombinis. This puzzle requires students to use 

strategies to find accurate patterns of shapes and colours of mudballs to hit highlighted cells on the wall and then toss 

Zoombinis characters onward. We collected multiple types of data: 1) video recordings of student facial expressions and 

gameplay screens during Zoombinis play, and 2) gameplay logs that captured gaming behaviours, strategies, and performance 

results. We used RapidMiner data-mining software (Hofmann & Klinkenberg, 2016) to process and analyze the data. 

2.2. Data Wrangling 

With the collected multimodal data (i.e., facial-expression data and gameplay logs), we implemented multimodal data 

fusion — a data-mining technique blending different types or modalities of data — to predict changes in the outcome variable, 

which was the state of distress. The state of distress was coded as a dichotomous result with 0 or 1. For multimodal data fusion, 

we implemented a decision-level fusion approach. Compared to feature-level fusion, which directly merges feature vectors, 

decision-level fusion integrates the predicted scores of each classifier (Alam et al., 2015) by categorizing results for each 

modality before fusing the outcome results. For the decision-level fusion, we combined the average confidence values of sub-

decisions into the final decision about the target outcome measure. 

This study’s multimodal data fusion contains four data-wrangling processes. Figure 2 depicts our application of multimodal 

data fusion. First, we gathered multi-channel data from students, including their facial data from two facial-expression detection 

toolkits (OpenFace and Facial Expression Recognition [FER-2013]) as well as Zoombinis gameplay logs. OpenFace generates 
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AU data (Baltrušaitis et al., 2016), tracking facial-muscle movements, whilst a FER-2013 data-driven open-source toolkit 

computes the probabilities of the “big five” emotions, based on image-based emotion classification data (FER-2013; 

Goodfellow et al., 2013). FER-2013 data1 comprises a total of 35,887 48 × 48 pixel grayscale facial images. This dataset was 

built by Pierre Luc Carrier and Aaron Courville and introduced at the ICML 2013 workshop’s facial expression recognition 

competition. During the data fusion, we also included student gameplay logs with their total gameplay performance statistics 

and in-game actions. We merged the metadata of these three different data sources and rearranged it by gameplay rounds and 

trials. We finalized and used for model development a total of 1,145 data instances. 

 

 

 
Figure 1. Gameplay scene (Mudball puzzle) 

This study’s multimodal data fusion contains four data-wrangling processes. Figure 2 depicts our application of multimodal 

data fusion. First, we gathered multi-channel data from students, including their facial data from two facial-expression detection 

toolkits (OpenFace and Facial Expression Recognition [FER-2013]) as well as Zoombinis gameplay logs. OpenFace generates 

AU data (Baltrušaitis et al., 2016), tracking facial-muscle movements, whilst a FER-2013 data-driven open-source toolkit 

computes the probabilities of the “big five” emotions, based on image-based emotion classification data (FER-2013; 

Goodfellow et al., 2013). FER-2013 data2 comprises a total of 35,887 48 × 48 pixel grayscale facial images. This dataset was 

built by Pierre Luc Carrier and Aaron Courville and introduced at the ICML 2013 workshop’s facial expression recognition 

competition. During the data fusion, we also included student gameplay logs with their total gameplay performance statistics 

and in-game actions. We merged the metadata of these three different data sources and rearranged it by gameplay rounds and 

trials. We finalized and used for model development a total of 1,145 data instances. 

 

 
Figure 2. Multimodal data fusion 

 
1 https://www.kaggle.com/datasets/msambare/fer2013 
2 https://www.kaggle.com/datasets/msambare/fer2013 

https://www.kaggle.com/datasets/msambare/fer2013
https://www.kaggle.com/datasets/msambare/fer2013
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Second, we observed and coded recorded gameplay video footage to perform ground-truth labelling of student distress. 

Two professional coders independently labelled the presence or state of distress across the entire dataset and then reconciled 

their results until they approached 100% interrater agreement. The two coders were equally familiar with Zoombinis gameplay 

at the same level. Using 20% of the entire set of gameplay recordings, we developed a coding scheme, outlined in Table 1, to 

operationalize the occurrence of distress during student gameplay. Specifically, two coders watched a collection of example 

gameplay videos and brainstormed the behaviour examples indicating the moments of distress. The highest inter-reliability 

among the two coders was .81 on average. The coders then iteratively checked for inconsistent coding results and resolved 

them by discussion. We regularly conducted data sessions for coder training until reaching the inter-reliability level above .80. 

Using the refined coding scheme, we conducted the ground-truth labelling by the coders and matched coding results until 

they reached 100% mutual agreement. We built our coding scheme based on prior research on behavioural examples of distress 

states. Previous research reports that individuals are likely to show a group of non-verbal behaviours relating to their distress 

states. For instance, Biglan (1991) stated that distressed behaviours generally contain a list of non-verbal behaviour cues, such 

as aggressive and sombre facial expressions, tense eyelids, lips pressed tightly together, and slamming something. Using 

sample videos of student gameplay, we tested the initial coding scheme and then iteratively refined distress-related behaviour 

examples to be coded. We finally merged ground-truth labelling results with all gameplay data extracted from the three data 

channels. 

Third, we separately executed machine-learning classifiers with the three data sources (i.e., AUs from OpenFace, estimated 

emotion probabilities from FER data-driven open source, and gameplay logs) based on the expert-labelling results. Here we 

computed each machine-learning classifier’s probability scores for the state of distress. We then used confidence-based fusion 

(Alam et al., 2015) to create a classifier. We computed sub-decisions by confidence scores, using independent classifiers with 

different data sources. We then computed the overall prediction results of the state of distress, by averaging the confidence 

ratings from three independent data sources with a pre-set threshold condition (i.e., higher than 50%). 

Last, we compared the performance of the classifiers with individual data sources and the one with the fused data, to see if 

and how multimodal data fusion enhanced the outcome prediction. We chose and tested multiple candidate classifiers with 

different algorithms. Initially, we explored and compared the performance of the classifiers with the various algorithms (kNN, 

Random Forest, Decision Tree, and Logistic Regression). After testing the multiple candidate classifiers, we chose Random 

Forest, which yielded the best performance, as the main classification algorithm to perform model training and evaluation. We 

implemented 10-fold student-stratified cross-validation using the training dataset to evaluate the performance of each classifier. 

Table 1. Ground-Truth Labelling Examples of Distress 

Behaviour Examples 

• After experiencing a game trial failure, a student suddenly lies back towards the chair back and sighs deeply. 

• After experiencing a game trial failure, a student holds their chin and looks at the gameplay screen for a while. 

• After experiencing a game trial failure, a student scratches their head and looks sombre. 

• While playing a puzzle, a student slaps the laptop or desk. 

Source: Biglan, 1991. 

2.3. Performance Metrics 

To select a main classifier for model development, we used various performance metrics results (i.e., accuracy, AUC, precision, 

recall, and F1 score). Table 2 demonstrates what the performance of each metric indicates. In addition, we also experimented 

with key hyperparameter settings of Random Forest. We tested a classifier’s number of trees, pruning, and voting strategy to 

yield the best classification performance. We turned our hyperparameters through the training-fold dataset, not the test-fold 

one, because including test-fold data could inflate the performance estimates. Compared to traditional decision-tree algorithms, 

Random Forest uses ensemble learning for the number of random trees created on the bootstrapped subsets of datasets. Pruning 

reduces the size of decision trees by eliminating redundant and nonsignificant sub-trees in predicting a class. Pruning can also 

reduce model overfitting concerns. A voting strategy is a machine-learning model with ensemble learning, choosing a 

classification result based on the highest probability of a chosen class. 

2.4. Feature Selection 

2.4.1. Facial Expression Data 

We used two different approaches to collect facial-expression data: action units (AUs) and image-based emotional probability. 

The existing FER data-driven emotion-recognition package (Giannopoulos et al., 2018; Goodfellow et al., 2013) provides 

public training data for emotion recognition to enable software developers to easily perform and integrate automatic emotion 

recognition in a computing system. However, the mere implementation of only a single open-source package may raise 
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concerns because the quality of the algorithms and training dataset in this package was not transparent or validated. 

Specifically, individual developers independently modify the algorithms and their features, so this may lead to low validity of 

emotion-recognition results. Therefore, using an additional independent facial recognition approach to validate its performance 

was necessary. Accordingly, we used OpenFace, designed to track facial-muscle movement recognition by collecting action 

unit (AU) data in a different way from that of the FER data-driven emotion-recognition package. In other words, the FER data-

driven open-source package conducts emotion classification with ground-truth emotion labels based on the “big five” emotions 

(sad, angry, disgust, happy, and scared). On the other hand, AU-based software such as OpenFace only computes the intensity 

(r) of each AU-based muscle movement. AU intensity calculation involves a landmark detection technique that designates 

default positions of human facial muscles and checks the range of each muscle movement. 

Table 2. Classifier Performance Metrics Used in this Study 

Performance metrics Description 

Accuracy The ratio of the number of accurate prediction results to the total number of input data 

classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Positive + True Negative

True Positive + False Positive +  True Negative + False Negative
 

 

Area Under Curve 

(AUC) 

Assesses the trade-off between true positive rate (recall) and false-positive rate. Used 

when dealing with a situation where the data sample distribution is skewed. 

𝐴𝑈𝐶 =
𝑆0 − 𝑛0 (𝑛0 + 1)/2

𝑛0𝑛1

 

 

Precision Shows what percentage of the classification results are relevant. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive +  False Positive
 

 

Recall The proportion of instances found to be relevant, which represents the algorithm’s 

percentage of all relevant classification results. In other words, it indicates a 

classification’s sensitivity. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positive

True Positive +  False Negative
 

 

F1 Score The weighted mean of precision and recall scores. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ×  (Recall ∗  Precision)

Recall +  Precision
 

 

Notes. 𝑛0 and 𝑛1 are the numbers of positive and negative examples respectively, and 𝑆0 = ∑ 𝑟𝑖 , where ri is the rank of ith 

positive example in the ranked list. 

2.4.2. Gameplay Logs 

We gathered study participants’ gameplay logs to track their gaming behaviours and performance. Both automatic and manual 

data collecting methods were used to obtain game logs. Specifically, gameplay efficiency and problem-solving phase data 

were collected via the manual codings of expert human coders. Game time duration, outcome, and game failure/success were 

automatically traced by a game system (one that embeds a logging mechanism to compute a list of features governing player 

actions). Gameplay logs include multiple gaming data features and denote how well each study participant completes game 

tasks in each gameplay round. For instance, gameplay logs depict how frequently study participants experience in-game 

success and failure during each trial of gameplay rounds. All coded features in the gameplay logs are presented in Table 3. To 

build a model, we utilized these game log-based data features that were deployed and reported in prior research (Asbell-Clarke 

et al., 2021; Liu & Israel, 2022; Rowe et al., 2021). 

2.5. Feature Extraction 

2.5.1. Dimensionality Reduction 

We conducted dimensionality reduction to lower the number of input data features when building a prediction model. 

Dimensionality reduction is essential to building an efficient prediction model by trimming down unnecessary data features. 
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Otherwise, too many data features in the model training would lower the prediction quality. In other words, dimensionality 

reduction can eliminate model noise and enhance predictive accuracy with a simpler model. For dimensionality reduction, we 

conducted singular value decomposition (SVD; Mouri et al., 2019) in a current dataset. SVD reduces the data matrix to its 

components to simplify the calculation. We only included the data features for which all components had a cumulative variance 

greater than the threshold condition (p > .95). As a result, we included 36 data features (emotion probability, n = 5; OpenFace 

AUC, n = 17; gameplay log, n = 14) for the model development. 

Table 3. Gameplay Log Data Features Used for Model Training 

Gameplay log 

type 

Subcategory Definition Literature 

Game time 

duration 

 Gameplay time duration to complete a single game trial Asbell-Clarke et al. 

(2021) 

Game trial 

failure/success 

Number of game trials (launching a mudball)  

Game outcome Successfully 

moved all 

Completely moved all available Zoombinis Liu & Israel (2022) 

Rowe et al. (2021) 

Ran out of 

turns, moved 

some 

Ran out of turns, moved some subset of available Zoombinis 

All ejected All Zoombinis ejected 

Quit to map Quit puzzle using the map button 

Gameplay 

efficiency level 

Not at all 

efficient 

A player throws mudballs in the same spot repeatedly; many 

empty cells are hit when there are better options 

Rowe et al. (2021) 

Somewhat 

efficient 

Although effective at times, a player does not take all known 

opportunities to connect dots; two or more errors 

Highly 

efficient 

A player takes advantage of nearly all known opportunities to 

connect the dots; only one error 

Problem-solving 

phases 

Trial and 

errors 

A player launches mudballs of varying colours and shapes at 

random 

Liu & Israel (2022) 

Rowe et al. 

(2021) Systematic 

testing 

A player demonstrates an organized, planned approach to testing 

hypotheses about the underlying row/column rules 

Systematic 

testing with 

partial 

solution 

After establishing the rule for one dimension (row or column), 

player systematically switches to testing the other dimension 

Implementing 

a full solution 

A player demonstrates deliberate targeting of grid cells with dots; 

rules for both rows and columns have been established 

Game strategy Colour or 

shape 

constant 

While systematically evaluating the rules of a row or column, 

player keeps the colour or shape constant; changes one attribute 

only between moves 

Rowe et al. (2021) 

2D pattern 

completion 

A player maintains a constant colour or shape while 

systematically testing shapes/colours to determine the rule of a 

row or column; A player also completes the entire row or column 

Alternating 

colour/shape 

To establish the rule of a row or column, A player alternates 

between keeping colour and shape constant 

All 

combinations 

A player experiments with all shape/colour pairs 

Maximizing 

dots 

A player actively targets dots 

Source: Asbell-Clarke et al., 2021. 
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2.6. Data Imputation 

We carried out data imputation that replaces missing data with substitute data. Missing data is likely to cause data bias, limiting 

data analysis and interpretation. Data imputation is generally used to reduce data bias and preserve all data instances in a 

computational way (Jadhav et al., 2019). Missing data is especially likely to occur in multimodal data mining because it relies 

on inherent features of automatic data-tracking collection tools (e.g., facial emotion recognition). For example, if the automatic 

multimodal data collection causes computational errors when it does not have a particular training case for classification, 

missing data could occur, even in the same data channel. Once the data instance is missing in a single channel or multiple 

channels, all data instances involving the missing data should be excluded, which will subsequently influence the performance 

of a prediction model. Given that this study handles multimodal data that may include missing data, data processing to address 

this is particularly important for prediction-model development. Hence, we conducted data imputation using a k-nearest 

neighbour (kNN) algorithm (Malarvizhi & Thanamani, 2012). kNN imputes the missing data by using the value from the 

nearest record via a distance measure. Here, we set our k value at 5 and applied the Euclidean distance measure to the algorithm. 

2.7. Synthetic Minority Oversampling (SMOTE) 

We applied synthetic minority oversampling (SMOTE), a resampling technique that purposefully includes the minority cases 

in prediction model training (Fernández et al., 2018). This study aimed at predicting student distress states, so it required a 

sufficient set of data instances with ground-truth labelling results as “distress.” However, with the current dataset captured 

during Zoombinis gameplay, the labelling results of distress were minority cases. In other words, the current dataset has an 

imbalanced data distribution, and the class with distress labels represents the minority. Imbalanced classification is a general 

issue in machine-learning prediction when class cases in the training dataset are not equally distributed. Imbalanced data causes 

poor predictive performance, specifically for the minority class. Therefore, we used SMOTE, which computationally copes 

with the imbalanced data by systematic resampling of the current training dataset. SMOTE selects one of the k nearest 

neighbours to a given data point at random, then generates a synthetic data point at a random place on the line between the 

provided data point and the chosen neighbour. SMOTE takes the kNN algorithm, by which we normalized the vector values 

to avoid a prediction problem caused by the magnitude of data values with different scales. We tested various numbers of 

neighbours in the kNN algorithm until we reached the best prediction performance. 

Table 4. The List of Hyperparameters and Their Values in Classifier Development 

Hyperparameter Type Purpose Details 

Cross Validation Model performance 

evaluation 

10-fold cross validation 

Local random seed (n = 2000) 

Stratified Sampling Data sampling Training (80%) and testing data (20%) 

Singular Value Decomposition 

(SVD) 

Dimensionality reduction Removing the data features with the least impact 

under a threshold condition (threshold = 0.95) 

Random Forest Classification algorithm Number of trees = 75 

Criterion = Gain ratio 

Maximal depth = 10 

Pruning (confidence = 10%) 

Voting = majority voting 

k-Nearest Neighbours (kNN) Data imputation algorithm Number of k = 5 

Mixed measures = Mixed Euclidean Distance 

Synthetic minority 

Oversampling (SMOTE) 

Data resampling technique 

for imbalanced data 

Normalization 

Number of neighbours = 20 

Nominal change rate = 50% 

3. Results 

3.1. Hyperparameter Settings 

In terms of model performance evaluation, to reduce bias and maintain a modest level of data variance, we conducted 10-fold 

student-level cross validation where data points were divided into ten groups that belong to either the training or testing dataset 

for each fold. We applied stratified sampling that purposefully samples a test set that best represents the entire dataset. This 

sampling strategy is useful because it reduces the risk of sampling errors. We then adjusted several methodological features 

above, to refine the classifier settings: data imputation, dimensionality reduction, and SMOTE. Using kNN, we conducted data 

imputation to replace missing values in the prediction model’s input data. Regarding the data features of the OpenFace-based 

classifier, we used the intensity (r) values of 18 AUs, whereas the classifier of FACE data-driven open source provided 



 

 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

83 

probability estimates for each of the “big five” emotional states (sad, angry, disgust, happy, and scared). In addition, the 

classifier using gameplay logs included a total of 15 data features, such as game performance results, game strategies used, 

task efficiency, and gameplay time duration. Table 4 shows the hyperparameters and their settings for designing classifiers in 

this study. 

3.2. Performance Results 

Table 5 demonstrates the overall performance results of the unimodal classifiers (estimated emotion probabilities, action units, 

and gameplay logs) and the fused classifier. On average, all classifiers had good performance results (accuracy > .75, AUC > 

.80) when detecting the state of distress except for those from gameplay log data. Specifically, the fused classifier yielded the 

best accuracy — (p = .836), AUC performance (p = .850), and F1 score (p = .809) — in detecting the state of distress. Given 

the concern related to data imbalances in the current research, AUC, Recall, and F1 scores give a comprehensive result that 

indicates overall satisfactory model performance in sensitively detecting student distress. These results conclusively suggest 

that multimodal data fusion has improved tracking student distress states. 

Table 5. Performance Results of Three Unimodal Classifiers and Fused Classifier 

Performance metrics/Classifier FER data-driven 

Open source Only 

OpenFace 

Only 

Gameplay Logs 

Only 

Fused 

Accuracy .791 .770 .560 .836 

AUC .802 .805 .581 .850 

Precision .850 .771 .532 .844 

Recall .718 .772 .540 .815 

F1 score .778 .769 .698 .809 

4. Discussion and Conclusion 

4.1. Effects of Multimodal Data Fusion 

We found that the classifier with decision-level multimodal data fusion outperformed the prediction by each of those classifiers 

with unimodal data sources. According to the performance results of machine-learning classifiers, the classifier with 

multimodal data fusion yielded better prediction performance than others. This study suggests that multimodal data fusion 

helps to improve the prediction of cognitive-affective states. Due to our interest in student multimodal interaction in immersive 

learning environments, this research has sought ways to collect and synthesize multimodal data for a comprehensive projection 

of student learning paths. Recent studies have tested multimodal data fusion to predict students’ cognitive-affective states 

(Henderson et al., 2019; 2020) as well as learning achievement (Chango et al., 2021). The improved performance of the fused 

classifier in this study corroborates the usefulness of multimodal data fusion when building a learning analytics system. 

The results of this study show that the classifier with multimodal data fusion yielded superior performance in most machine-

learning metrics. It is noteworthy that the fused model generally outperformed the other models on the recall score, compared 

to that of other classifiers. A recall score relates to a prediction model’s sensitivity, referring to the proportion of true-positive 

cases predicted as positive. It denotes a prediction model’s actual performance in tracking a target cognitive-affective state. 

Since distress connotes game task-related unpleasant feelings, the accurate prediction of distress during educational gameplay 

can drive timely adaptive learning support. Moreover, the multimodal data fusion yielded the best AUC scores (.850) on 

tracking the states of distress. We speculate that multimodal data fusion better captures students’ distress by synthesizing 

students’ facial expressions and gameplay performance related to negative gaming results. An interpretation is that unimodal 

data sources from students’ facial expressions or gameplay performance appear limited in tracking students’ distress clearly, 

hence synthesizing these two types of data sources was helpful to corroborate the prediction on individuals’  distress states. 

4.2. Data Processing in Multimodal Data Fusion 

This study demonstrates a comprehensive workflow for collecting, processing, and analyzing multimodal data to track 

students’ cognitive-affective states during educational gameplay. In particular, the findings suggest the process and benefit of 

using multimodal game-based learning analytics for tracking cognitive-affective states related to students’ learning curves. 

Here we collected different types of unimodal data (i.e., emotion probability, action unit, and gameplay performance) and 

computationally merged them to implement multimodal data fusion. This study provides an illustrative case of the key steps 

of data collection, data wrangling, and prediction model development, tailored to the nature of various multimodal data during 

educational gameplay. 
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At least two data processing steps were useful in building a multimodal data-driven prediction model of cognitive-affective 

states: 1) data imputation and 2) synthetic minority oversampling (SMOTE). First, data imputation helped researchers to build 

a model training set for multimodal data mining. Considering the high likelihood of erroneous recognitions in data-tracking 

software causing data loss, data imputation efficiently handles missing unimodal data. Second, SMOTE was useful in 

alleviating the data imbalance concern. Tracking certain cognitive-affective states may cause a data imbalance because 

proportionally collecting every ground-truth class of various cognitive-affective states is not feasible. Even in the context of 

educational gameplay, distress is likely to happen less than other cognitive-affective states, which necessitates using 

computational techniques to overcome data imbalance issues when training the model. SMOTE suggests a way to efficiently 

manage data imbalance when building a tracking model of cognitive-affective states in educational game research. The results 

of the study suggest the usefulness of data upsampling techniques in managing imbalanced data for multimodal data fusion 

(Henderson et al., 2020). 

4.3. Adaptive Design of Immersive Learning 

The current study findings have two implications for game-based learning analytics design. First, the study finding suggests 

that multimodal data fusion helps to track student distress states during gameplay. Distress may be associated with individual 

experiences with learning tasks. If student distress levels are overwhelmingly high, it may indicate that they may face 

challenges in completing game tasks. It may also suggest negative wheel-spinning processes, thus indicating a critical moment 

for adaptive delivery of learning support. In particular, the behavioural coding of the gameplay recordings suggests that study 

participants often underwent unproductive wheel-spinning experiences while experiencing distress states. As such, tracking 

student distress can be timely indicative of their negative wheel-spinning, which calls for real-time learning support. The study 

findings contribute to the literature by highlighting the feasibility of tracking distress as a potential indicator or trigger for 

adaptive, real-time learning supports in a digital learning setting. The current fused models with OpenFace and FER-2013 data 

has a short time span of affective state detection so it is feasible to be applied as real-time adaptive learning support tailored 

to individual distress states. Moreover, this study finding also contributes to existing research on detecting wheel-spinning 

experiences in digital learning environments. Previous research has primarily discussed that affective factors are closely 

associated with wheel-spinning experiences. They also focused on students’ prerequisite learning performance and its 

efficiency as a strong predictor of wheel-spinning experiences (Beck & Rodrigo, 2014; Mu et al., 2020; Owen et al., 2019). 

Aligned with these findings, the results of the present study suggest that student distress states evidenced by their facial 

expression and gameplay performance could also serve a key indicator of wheel spinning states. Especially, the outperformed 

fused model, including both facial expression and gameplay performance, demonstrates the advantage of multimodal data 

fusion in predicting wheel-spinning. Future research will examine how various verbal and non-verbal data features in a game 

system can be selected, integrated, and deployed with multimodal data fusion to track student distress states as a proxy for 

wheel-spinning. 

Second, the study finding confirms the feasibility of integrating learning analytics into an immersive, highly interactive 

learning environment. Immersive learning environments, such as digital games, generally require learners to use multiple 

sensor channels (verbal and non-verbal) during play. The study results demonstrate that multimodal data fusion for immersive 

learning environments is suitable because it can better capture learning-related behaviour cues since students usually express 

their affective states through multimodal behavioural cues. Using unimodal data collection (e.g., gameplay logging) is limited 

in gathering affective state evidence. The lower performance of unimodal data-driven models in the current study confirms 

that multimodal data fusion is more capable of providing a comprehensive data synthesis and diagnosis of individuals’ learning 

states. For instance, including students’ non-verbal behavior cues in immersive learning environments (e.g., gestures, prosodic 

features of voices, and eye-gaze patterns) with multimodal data fusion could help to detect students’ task challenges. To extend 

this study, future research should include alternative sensory data to build effective multimodal data fusion models. Future 

studies could explore the applications of data fusion model features from this study to the other immersive learning contexts. 

Some data features (e.g., problem-solving phases, task outcome, and efficiency) with facial expression data from the present 

study could be fully applied to track cognitive-affective states in non-game immersive learning systems. 

4.4. Limitations 

This study has limitations. First, during the ground-truth labelling of distress, we relied on observing student facial expressions 

and gestures to determine distress classes. To validate the human-labelling results, future research should include additional 

data collection of students’ self-reported reactions. Second, the current dataset appeared insufficient to build a generalizable 

prediction model beyond the game used. Hence, a larger multimodal dataset of more students’ gameplay across game platforms 

is warranted for the further validation and improvement of the current distress prediction model. Third, this study did not 

involve students’ speech data during gameplay. Although we reviewed students’ discourses or utterances during gameplay to 

qualitatively gauge their distress state, we did not transcribe or include student speech data for multimodal data mining and 
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fusion. Given that students may express cognitive-affective states in speech, future studies should include the collection, 

wrangling, and analysis of the speech data for multimodal data fusion. Fourth, we only tested simplistic, supervised machine 

learning implementation of multimodal data fusion in this study. Further empirical research is warranted to test and compare 

the model performance of simplistic and weighted models to identify the optimized settings of multimodal data fusion in game-

based learning research. 
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