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Abstract 
There has been extensive research using centrality measures in educational settings. One of the most common 
lines of such research has tested network centrality measures as indicators of success. The increasing interest in 
centrality measures has been kindled by the proliferation of learning analytics. Previous works have been dominated 
by single-course case studies that have yielded inconclusive results regarding the consistency and suitability of 
centrality measures as indicators of academic achievement. Therefore, large-scale studies are needed to overcome 
the multiple limitations of existing research (limited datasets, selective and reporting bias, as well as limited statistical 
power). This study aims to empirically test and verify the role of centrality measures as indicators of success in 
collaborative learning. For this purpose, we attempted to reproduce the most commonly used centrality measures 
in the literature in all the courses of an institution over five years of education. The study included a large dataset 
(n=3,277) consisting of 69 course offerings, with similar pedagogical underpinnings, using meta-analysis as a 
method to pool the results of different courses. Our results show that degree and eigenvector centrality measures 
can be a consistent indicator of performance in collaborative settings. Betweenness and closeness centralities 
yielded uncertain predictive intervals and were less likely to replicate. Our results have shown moderate levels of 
heterogeneity, indicating some diversity of the results comparable to single laboratory replication studies. 
 

Notes for Practice 

• Degree and Eigenvector centrality measures can be a consistent indicator of performance in settings 
where course design emphasizes collaboration. 

• The correlation between degree and eigenvector centrality measures and academic achievement was 
reproducible regardless of the number of students, number of interactions, year of study, or course 
subject. 

• Closeness and betweenness centralities showed inconsistent correlation with performance. 

• Although our context was homogenous, there was moderate heterogeneity in the pooled effect sizes 
indicating the diversity of CSCL as a medium. 
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1. Introduction 
There has been extensive debate about the suitability of computational methods (e.g., social network analysis) to understand, 
optimize, and support collaborative learning (Wise & Schwarz, 2017). This ongoing debate has been fuelled by the lack of 
norms or consistent practices that embolden our understanding of collaborative learning. The absence of norms may have been 
a consequence of reliance on small case studies. As Wise and Schwarz (2017) posit, “even when appropriate analytic methods 
are applied, it is questionable whether the accumulation of case studies leads to clear progress in our field.” Furthermore, 
Andres et al. (2015) cautioned against the lack of replication, which may result in perceiving exploratory studies as facts, 
which could have “dangerous” effects depending on the findings and the affected populations. Thus, to foster our confidence 
in the analytics methods, large-scale empirical or replication studies are needed. Such studies could offer robust empirical 
evidence beyond selective reporting and bias as well as overcome the limitations of evidence offered by small case studies. 
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A fundamental principle of science is the possibility to test, verify, or refute the claims or conclusions reported by other 
researchers. Therefore, reproducibility (obtaining similar results when repeating an experiment with a different team and a 
different experimental setup) and replicability (obtaining similar results when repeating an experiment with a different team 
and the same experimental setup) have become key drivers of scientific progress (Plesser, 2018).1 Reproducible research is 
more amenable to generalization, emboldens the credibility of research findings, and can translate into real-life impact (Aarts 
et al., 2015; Baker & Penny, 2016; Dawson et al., 2019; Hagger et al., 2016). The scientific community has taken serious steps 
to encourage reproducibility/replicability in research after what has been dubbed “the reproducibility crisis” (Baker & Penny, 
2016; Hagger et al., 2016; Klein, 2019). A Nature survey has shown that 70% of scientists have failed to reproduce the results 
reported by other scientists, and more than half failed to reproduce the results of their own studies (Baker & Penny, 2016). 
Although replication studies are increasingly common, they remain relatively rare in education research. Makel and Plucker 
(2014) estimated that only 0.13% of educational research articles were replications of other studies, concluding that “despite 
increased attention to methodological rigor in education research, the field has focused heavily on experimental design and not 
on the merit of replicating important results.” Replication is gaining ground in the learning analytics community. Several 
studies have emerged to replicate/reproduce findings of other studies (Andres et al., 2015, 2018; Li et al., 2017). Recently, 
Dawson et al. (2019) called for supporting a culture of replication and supporting replication studies. 

Another threat to the credibility and integrity of knowledge is publication bias (Alexander et al., 2015; Joober et al., 2012). 
Publication bias occurs when positive results are more likely to be reported or published than negative results. This problem 
has a multifaceted etiology: publications with positive findings are more likely to be evaluated favourably by reviewers, 
considered for publication by editors, and later cited. Such an environment makes researchers more likely to submit positive 
findings knowing that they may receive preferential treatment (Dwan et al., 2013; Joober et al., 2012). Researchers may also 
choose a “convenience sample” with an interesting practice or findings to share. Therefore, publication bias leads to the 
amplification of the magnitude of findings or inflates the value of ineffective practices (Joober et al., 2012). The widespread 
recognition of publication bias has led to an increasing interest in replication as a possible way to validate the veracity of our 
knowledge or lack thereof (Joober et al., 2012). 

There is a wealth of methods for the study of collaborative interactions at the hands of the researcher. Hoppe (2017) refers 
to the main approaches as “the trinity of methods,” which include: 1) actor-to-actor networks, 2) actor-to-artefact networks, 
and 3) content analysis. The analysis of actor-to-actor networks using Social Network Analysis (SNA) measures (a 
mathematical quantification of students’ relations and connectedness) has increasingly received attention from scholars 
(Borgatti, 2005; Borgatti & Brass, 2019; Freeman, 1978), especially after the rise in adoption of learning analytics (Cela et al., 
2015; Saqr, Viberg et al., 2020). Common applications include prediction of student success, monitoring student interactions, 
classifying student roles (e.g., leaders, collaborators, inactive, and isolated), as well as quantifying peer influence (Cela et al., 
2015; Dado & Bodemer, 2017). Results from different studies have been variable, i.e., studies have reported dissimilar results 
regarding the correlation of SNA measures with academic achievement (Cela et al., 2015; Saqr, Viberg et al., 2020). The 
variability extends to the type of centrality: whereas some studies have highlighted the value of, e.g., the closeness centrality 
as a predictor of productive interactions (Cho et al., 2007), others have highlighted the predictive value of, e.g., in-degree 
centrality (Hernández-García et al., 2015). Researchers have pointed out the role of instructional conditions, course design, 
and variability in methods as possible causes of variability (Dawson et al., 2019). 

We argue that a large-scale empirical study that attempts to reproduce the literature findings of centrality measures as 
indicators of success has the potential to embolden our confidence in their value as well as to improve our understanding of 
which centralities to choose as predictors of academic achievement. In this study, we attempt to reproduce the previously 
reported findings on centrality measures as indicators of success. To control for course/context variability, we use a 
homogenous dataset of courses with a similar pedagogical underpinning (problem-based learning), from the same institution, 
as well as with a similar course design. To avoid bias, we report our findings for all courses that have a collaborative module. 
In doing so, we overcome possible selection (reporting on some interesting courses) or reporting bias (reporting only on 
positive findings). We report our results using traditional statistical methods as well as correlation meta-analysis. Meta-analysis 
enables the possibility of assessing the consistency of centrality measures as indicators of student success across all courses, 
the variability of results among courses using heterogeneity statistics, as well as the future predictability (predictive interval) 
or to what extent we can be confident that centrality measures will perform in the future as predictors of success. Our aim is 
to answer the following research questions: 

RQ 1 Can we rely on centrality measures as indicators of success? 
RQ 2 Which centrality measures are the most consistent indicators of success? 
RQ 3 How certain can we be in future applications of centrality measures as indicators of success? 

 
1 The terms reproducibility and replicability are often used interchangeably with no consensus on the accurate definition. For example, the 

Nature article cited above uses reproducibility for reproducing self and others’ results, which contradicts the ACM definition cited above. 
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2. Background 
The background section begins with an introduction about collaborative learning, SNA, and centrality measures, and how they 
have been used in education. We then describe each centrality measure and review how they were operationalized in prior 
works. We later review the results of computer-supported collaborative learning (CSCL) research investigating centrality 
measures and their correlation with performance. 

2.1. Collaborative Learning 
Collaborative learning has occupied a central position in pedagogy for more than four decades. The growing adoption has been 
kindled by a large corpus of empirical evidence confirming the worth of collaborative learning in, e.g., knowledge and skill 
acquisition, task performance, and student motivation (Bernard et al., 2009; Borokhovski et al., 2016; Chen et al., 2018; 
Wecker & Fischer, 2014). Collaborative learning is supported by several learning theories. In particular, the theory of social 
constructivism. Social constructivists view learning as a process of active construction of meaning that occurs through social 
interaction and dialogue with peers (Liu & Matthews, 2005; Martin & Dowson, 2009). Consequently, modern pedagogies have 
embraced collaborative learning strategies that encourage interactions among learners and promote social and co-operation 
skills. However, collaborative learning is challenging to implement and maintain successfully, thus requiring monitoring and 
support as well as regulation of cognitive and social processes (Jeong & Hmelo-Silver, 2016; Weinberger & Fischer, 2006). 
Technological and computational methods have been proposed as possible tools that could help teachers monitor and support 
collaboration (Dado & Bodemer, 2017). One such tool is SNA, which has been employed to visualize the network of 
collaborators, map collaborators’ roles, identify gaps, and devise a possible intervention (Dado & Bodemer, 2017; Saqr, Fors, 
Tedre et al., 2018). What is more, SNA centrality measures have been frequently used as indicators of productive interactions, 
social positioning, and participation, as well as predictors of success (Cadima et al., 2012; de-Marcos et al., 2016; Joksimović 
et al., 2016; Osatuyi & Passerini, 2016; Putnik et al., 2016; Reychav et al., 2018; Saqr, Fors, & Tedre, 2018; Wise & Cui, 
2018). We review these applications in detail in the next section, as they are the focus of our study. 

2.2. Social Network Analysis 
Interaction or communication among learners and/or teachers can be represented as a social network in which the actors are 
commonly referred to as nodes and the relationships or interactions among them are referred to as ties or edges (Borgatti et al., 
2009; Shafie, 2019). SNA offers methods for the study of social networks in the form of visualization and mathematical 
analysis (Borgatti et al., 2009). SNA affords researchers a plethora of visualization methods that have a summarizing power 
to plot a whole class of students. Visualization has been used frequently in educational research to map the patterns of 
interactions, evaluate the interactivity of a group of learners, and identify active and inactive students. Other uses include 
raising awareness of learners, promoting collaboration, and supporting intervention (Dado & Bodemer, 2017). Quantitative 
SNA methods provide a quantification of node connectedness, interactions, position, or importance in the network, often 
referred to as centrality measures (Borgatti et al., 2009; Gašević et al., 2013; Joksimović et al., 2016; Saqr, Fors, & Nouri, 
2018). Using centrality measures as indicators of students’ online learning dates back over three decades. Early examples 
include work by Baldwin et al. (1997), a study of the social structure of different types of networks (advice, communication, 
and adversarial) in an MBA program. In this study, the authors concluded that relationships among teams had significant 
effects on team members’ perceptions of team performance and effectiveness. Several other studies followed using centrality 
measures to predict performance (Cela et al., 2015; Dado & Bodemer, 2017). In the next section, we offer a detailed review of 
each commonly used centrality measure and how prior research has operationalized it in CSCL, as well as a review of the 
literature in which centrality measures were used as indicators of success. 

2.3. Centrality Measures 
While the literature cites more than two hundred centrality measures, very few centralities are used in education. Our literature 
review found only six centrality measures that have been used more than four times in CSCL as indicators of student success. 
These centralities lie within three categories: degree centralities, short-path based centralities, and eigenvector-based 
centralities. 

2.4. Degree Centralities 
Degree centrality refers to the total sum of posts, messages, or interactions sent and received by an actor (Cadima et al., 2012; 
Cho et al., 2007; de-Marcos et al., 2016; Joksimović et al., 2016; Liu et al., 2019; Liu, Kang, Su et al., 2018; Liu, Kang, 
Domanska et al., 2018; Osatuyi & Passerini, 2016; Putnik et al., 2016; Reychav et al., 2018; Saqr, Fors, & Nouri, 2018; Saqr, 
Fors, & Tedre, 2018; Saqr, Viberg et al., 2020; Wise & Cui, 2018). The interpretation of degree centrality varies by context 
and task: in collaborative learning, student posts are expected to establish social presence, engage in knowledge co-
construction, or share resources. As such, degree centrality is operationalized as the degree of contribution to discourse: degree 
of influence (Hernández-García et al., 2015; Reychav et al., 2018), prominence and importance in knowledge construction 
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(Cadima et al., 2012; Liu, Kang, Domanska et al., 2018), popularity and communicative activity (Joksimović et al., 2016), 
social activity (Cadima et al., 2012), and embeddedness in the network (Cho et al., 2007). In directed networks, where the 
edges have an associated direction, degree centrality has two variants: out-degree and in-degree centralities. Out-degree 
centrality represents the number of outgoing posts, messages, or interactions contributed by an actor. Out-degree centrality is 
commonly operationalized in a similar way to degree centrality: as quantification of participation, social positioning, and 
communicative activity (Jo et al., 2017; Liu, Kang, Su et al., 2018; Reychav et al., 2018; Romero et al., 2013; Saqr, Fors, & 
Nouri, 2018; Saqr, Fors, & Tedre, 2018; Saqr & Alamro, 2019). In-degree centrality reflects the importance of the user, the 
worthiness of his/her contributions to receive a reply, the popularity, and authority (Jo et al., 2017; Liu, Kang, Su et al., 2018; 
Reychav et al., 2018; Romero et al., 2013; Saqr, Fors, & Nouri, 2018; Saqr, Fors, & Tedre, 2018; Saqr & Alamro, 2019). 

2.5. Short-Path Centralities 
Closeness centrality measures how “close” an actor is to all others in the network and, consequently, how quickly they can 
reach others (Cadima et al., 2012; Cho et al., 2007; Liu, Kang, Domanska et al., 2018; Osatuyi & Passerini, 2016; Putnik et 
al., 2016; Saqr, Fors, & Tedre, 2018). Closeness centrality is calculated as the inverse farness (distance to all other nodes). It 
is commonly operationalized as proximity, reachability, awareness of opportunities, access to information, diversity of 
resources and independence (the more closeness, the less reliance on limited sources), and control of information exchange 
(Cadima et al., 2012; de-Marcos et al., 2016; Gašević et al., 2019; Joksimović et al., 2016; Liu, Kang, Su et al., 2018; Osatuyi 
& Passerini, 2016; Reychav et al., 2018; Saqr, Fors, & Nouri, 2018; Saqr, Fors, & Tedre, 2018; Saqr, Viberg et al., 2020; Saqr 
& Alamro, 2019; Wise & Cui, 2018). 

Betweenness centrality is the frequency a node has connected two other unconnected nodes (i.e., the shortest path between 
them). Betweenness centrality reflects the frequency of mediation — or control over — information exchange in a network. 
Betweenness centrality is always operationalized as a bridging capital and access to diverse resources. By connecting diverse 
communities, an actor gains access to resources from both communities. Betweenness centrality has also been operationalized 
as access to novel information and opportunities (Cadima et al., 2012; Cho et al., 2007; de-Marcos et al., 2016; Hernández-
García et al., 2015; Jo et al., 2017; Joksimović et al., 2016; Liu, Kang, Domanska et al., 2018; Liu, Kang, Su et al., 2018; 
Osatuyi & Passerini, 2016; Putnik et al., 2016; Reychav et al., 2018; Saqr, Fors, & Tedre, 2018; Wise & Cui, 2018). 

2.6. Eigenvector-Based Centralities 
Eigenvector centrality tries to surmount the shortcomings of degree centrality, which treats all connections as equal, by 
calculating actors’ centrality based on their neighbours’ centralities, i.e., connectedness to important (influential) nodes in the 
network translates to higher Eigenvector centrality. The principle behind this centrality is that fewer connections to important 
actors may be more valuable than many connections to isolated actors. Eigenvector centrality has been operationalized as the 
strength of social capital, connectedness, and social presence (de-Marcos et al., 2016; Hernández-García et al., 2015; Liu, 
Kang, Su et al., 2018; Putnik et al., 2016; Saqr, Fors, & Nouri, 2018; Saqr, Fors, & Tedre, 2018; Saqr, Viberg et al., 2020; 
Traxler et al., 2016; Wise & Cui, 2018). 

2.7. Predicting Student Success 
One of the main threads of research in learning analytics has been focused on predicting student success. Predicting students 
who may fail or underachieve may pave the way for the provision of appropriate support and proactive intervention (Conijn et 
al., 2017; Gašević et al., 2016; Ifenthaler & Yau, 2020). Three main themes of this research can be observed: 1) studies 
performed in limited settings (e.g., a single course); 2) studies performed in multiple courses, and 3) studies replicating other 
findings of similar studies (Ifenthaler & Yau, 2020; Li et al., 2017). 

The first type (single courses), “convenient sample” studies, has prevailed in the early research of learning analytics, giving 
rise to many exploratory studies aimed at testing a method or an algorithm in a single course or within a limited setting (see 
Ifenthaler & Yau, 2020 for a recent review). However, the results obtained from such limited settings have a low potential for 
generalization and reproducibility. Another potential problem is the issue of publication bias (Rienties et al., 2017). 
Notwithstanding the value of such examples, they are more likely to be “special cases” that are less subject to generalization 
(Chan et al., 2004; Rienties et al., 2017). 

The second type (multiple courses) is becoming increasingly common in learning analytics. Results from large-scale studies 
have reported noticeable variability in indicators of student success, as well as in the precision or portability of predictive 
models (Conijn et al., 2017; Gašević et al., 2016). This variability was reported across different institutions as well as within 
the same institution. The conclusions drawn from these studies indicate that course-agnostic models may be far from 
obtainable. Therefore, research in learning analytics must take into account instructional conditions, course design, and 
teaching practices (Gašević et al., 2016). 

The third type (replication studies) has gained recent attention within the community of learning analytics. In a series of 
studies, Andres et al. (2015, 2018) investigated the degree to which previously published findings on MOOC completion could 
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be replicated. They showed evidence of considerable commonality regarding which behaviours are associated with success in 
MOOCs on a heterogeneous range of topics. Nonetheless, they found that specific behaviours, such as the linguistic features 
derived from student discussion forum posts, fail to replicate with statistical significance or even replicate in the opposite 
direction. In turn, Li et al. (2017) investigated whether and how the learning satisfaction experiences of new vs. continuing 
students were different. Their findings indicated that while most key drivers for learning satisfaction across two consecutive 
academic years were similar, new learners differed subtly in their learning experiences. The differences between both cohorts 
indicate that institutions need to continuously monitor and act upon changing learning needs. 

2.8. Centrality Measures as Indicators of Success 
Several learning theories (e.g., social constructivism) support the belief that successful interactions in a collaborative setting 
catalyze learning. Thus, the association between interactions in CSCL and improved performance is widely viewed as 
“prevailing, and largely unchallenged” (Joksimović et al., 2016), or that “agreement exists” (Romero et al., 2013) on the 
positive value of participation in CSCL to help students learn (Agudo-Peregrina et al., 2014). The value of collaborative 
learning is further supported by a large corpus of empirical evidence and several large-scale reviews and meta-analyses which 
established a positive association between collaborative learning and cognitive gain, knowledge, and skill acquisition (Bernard 
et al., 2009; Borokhovski et al., 2016; Chen et al., 2018). 

To capitalize on the potential of SNA measures as possible indicators of collaborative learning, several studies have 
explored the potential of centrality measures in translating these interactions into indicators of success. Table 1 offers a detailed 
review of such studies in CSCL settings. The table reveals several important observations: 

1) Most studies have investigated a single course (14 out of 19) or two courses (4 out of the remaining 5 studies). 
2) The reviewed studies had no agreement on which centrality measures to use, i.e., each study used a different set of 

centralities. 
3) Three studies with multiple courses have shown mixed results (Jiang et al., 2014; Joksimović et al., 2016; Saqr, Fors, 

& Nouri, 2018); in other words, the association between centrality measures and performance was positively correlated 
in some courses and negatively in others. 

The results on individual courses show variability: while some have reported a statistical and positive correlation with 
centrality measures, others have not replicated such findings. For instance, Cho et al. (2007) reported that closeness centrality 
was the only centrality associated with performance, whereas Cadima et al. (2012) showed opposite findings, i.e., a negative 
association. 

Furthermore, Hernández-García et al. (2015) found a positive and statistically significant correlation with degree, 
closeness, and betweenness centralities, whereas Saqr and Alamro (2019) found no statistical significance for the exact same 
centralities. The variations are also prevalent within studies reported by the same researcher in the same setting (Saqr, Fors, & 
Nouri, 2018; Saqr, Fors, & Tedre, 2018; Saqr & Alamro, 2019). As such, results have been inconclusive on which set of 
centrality measures are consistent indicators of success in CSCL. 

In this study, we use meta-analysis as a method to pool different results of different courses. Meta-analysis represents the 
gold standard method for synthesizing research results due to the maturity of the methods and the rich repertoire of statistical 
tools. Meta-analysis affords researchers a rigorous statistical method to pool different effect sizes of different studies while 
taking into account the different weight and sample size of each study. Additionally, meta-analysis can help estimate the 
heterogeneity of results (how far the reported results vary) and how far we can be confident that the future application of the 
same measure can result in similar findings by estimating the predictive interval. 

Such methods represent an improvement over the commonly used methods that report data from different courses, e.g., 
pooling all courses in the same pool or listing results side by side and counting the “votes” of each study, i.e., counting how 
many studies have reported similar findings. 

To prepare Table 1, we searched Scopus, Web of Science, and ERIC databases on July 26, 2019, using the following search 
query: “social network analysis” AND “learning” AND “centrality.” The search yielded 429 articles from the Scopus database, 
151 articles from the Web of Science database, and 30 from the ERIC database. The total number of articles was 610, dropping 
to 474 after removing duplicates. The search was limited to peer-reviewed articles published from 2000 through 2019 and 
written in English. We further included 241 articles referenced in the previously published systematic reviews of SNA (Cela 
et al., 2015; Dado & Bodemer, 2017; Sie et al., 2012). The abstracts, titles, and keywords of the 581 articles remaining after 
removing duplicates were independently reviewed by two researchers. The agreement between the two researchers was 0.88. 
Articles with disagreement were discussed until satisfactory agreement was reached, which resulted in 246 articles. Then, one 
of the researchers proceeded to review the full text of the resulting 246 articles and met with the second researcher to discuss 
and resolve uncertainties. This step resulted in 61 articles reporting on centrality measures in a learning setting, of which only 
19 were about CSCL and matched our inclusion and exclusion criteria: 1) empirical research, 2) reporting a quantitative 
measure of achievement, 3) using data sources that fit the definition of CSCL, 4) reporting enough statistics for calculation of 
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a combined correlation coefficient, and 5) not about special education. As several studies included more than one course, we 
synthesized the results considering each course as a cohort of students. 

 
Table 1. Sometimes Inconclusive or Contradictory Reports from Different Studies  

Authors, date  N  Degree  In-degree  Out-degree  Closeness  Betweenness  Eigenvector  

Cho et al., 2007  2  ⬤     ⬤  ⬤    

Cadima et al., 2012  2  ⬤     ⬤  ⬤    

Romero et al., 2013 1   ⬤  ⬤     

Hernández-García et al., 2015 1  ⬤ ⬤  ⬤  ⬤  ⬤  ⬤  

Putnik et al., 2016 1  ⬤     ⬤  ⬤  ⬤  

de-Marcos et al., 2016 1  ⬤     ⬤  ⬤  ⬤  

Jiang et al., 2014 2  ⬤     ⬤  ⬤    

Joksimović et al., 2016 2  ⬤     ⬤  ⬤    

Osatuyi & Passerini, 2016 1  ⬤   ⬤ ⬤  

Jo et al., 2017 1   ⬤ ⬤    

Wise & Cui, 2018 1  ⬤     ⬤  ⬤  ⬤  

Saqr, Fors, & Tedre, 2018 1  ⬤ ⬤  ⬤  ⬤  ⬤  ⬤  

Saqr, Fors, & Nouri, 2018 4  ⬤ ⬤  ⬤  ⬤  ⬤  ⬤  

Reychav et al., 2018 1   ⬤  ⬤  ⬤  ⬤    

Liu, Kang, Su et al., 2018 1  ⬤ ⬤  ⬤  ⬤  ⬤  ⬤  

Liu, Kang, Domanska et al., 2018 1  ⬤ ⬤  ⬤  ⬤  ⬤    

Saqr & Alamro, 2019 1  ⬤ ⬤  ⬤  ⬤  ⬤    

Liu et al., 2019 1  ⬤     ⬤  ⬤    

Gašević et al., 2019 1  ⬤   ⬤  ⬤   

⬤ Positive Significant    ⬤ Positive Non-significant    ⬤ Negative Significant     ⬤ Negative Non-significant    ⬤ Contradictory 

3. Methods 
The methods implemented in this study are described in this section, in which we explain the context, the data collection 
methods, and the data analysis. A flowchart of the process is shown in Figure 1. 

Figure 1. Methods implemented in the study. 
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3.1. Context 
The present study is based on a full dataset of all the courses offered in a healthcare college of Qassim University between 
2013 and 2019. To avoid selection or publication bias, all courses were included as long as they fulfilled the following criteria: 
1) based on Problem-Based Learning (PBL) curriculum, 2) included online collaborative PBL discussions, 3) had 30 students 
or more (central limit theorem), and 4) had at least an average of two posts per students per week (to exclude courses with rare 
online interactions). The study included 69 course offerings (15 different courses) that matched the selection criteria, with a 
total of 3,747 students (3,277 completed the courses). Course duration ranged from four to eight weeks. Although each course 
covered different healthcare-related topics, they all had a common pedagogical underpinning based on PBL and the same 
assessment methods. Students were divided into small groups (Saqr et al., 2019) and were assigned an open-ended problem 
on a weekly basis. At the beginning of the week, students met face-to-face in their small groups to discuss and define the 
learning objectives with the help of a tutor. After the session and throughout the week, students engaged in online group 
discussions in a dedicated forum. The online forum facilitated the co-construction of knowledge, the exchange of perspectives, 
as well as discussions about possible ways to understand, solve, or study the problem. In other words, the online forum allowed 
the PBL process to be continuous throughout the week. By the end of the week, a closing face-to-face session took place in 
which students wrapped up what they had learned throughout the week. The course lectures, practical sessions, and seminars 
were well aligned with the weekly problems. The performance was measured by the course grades. 

The course grades are the total of two grades. Continuous assessment, comprising 20% of the grade, is the total of grades 
obtained from assessment during the course. The remaining 80% of the grade comes from written exams (multiple-choice and 
short essay questions) which tests the knowledge acquisition of the PBL objectives in the forum interactions. The written 
exams come from an exam pool composed by the subject teachers (20 to 30 teachers). An exam committee, composed of the 
assessment, education, and quality assurance units (comprising domain and education expertise), holds several meetings and 
revises each item for language, content, and conformity with intended course objectives. After the exams, the assessment unit 
revises each item according to the standards adopted for psychometrics quality. Questions deemed problematic are excluded 
and the exam grade is calculated. The assessment methods in all courses were the same regarding question type, distribution 
of grades, and assessment methods and were all standardized throughout the program. Since the exams were set by the three 
committees described earlier, they were also less subject to teacher variations. 

3.2. The Theoretical Analytical Framework 
PBL is a student-centric approach in which learners engage in goal-directed inquiry. Students work in small groups with a 
facilitator (tutor) to discuss an assigned problem. As a collaborative learning approach, PBL emphasizes accountability, 
interdependence, and responsibility. Furthermore, the PBL process is well structured and scripted with pre-assigned roles. 
Students begin by discussing the problem, connecting it to their previous knowledge, defining their learning objectives, using 
their new knowledge to solve the problem, and then reflecting on their performance and group dynamics (Davidson & Major, 
2014; Saqr, Nouri et al., 2020). 

We adopted the methods of Enyedy and Stevens (2016) for analyzing collaboration. The authors state that, when analyzing 
collaborative learning, the unit of analysis can be either the individual learner or the collaborating group. Similarly, the 
interaction process analyzed can be at the individual learner level or the group interaction level. The outcome can be proximal 
(i.e., within the collaborative process) such as the very process of the collaboration or distal (i.e., outside the collaborative 
process) explained in terms of student performance in class or grades. This study addresses how the interactions and relations 
within the collaborative (proximal) process correlate with learning outcomes and performance operationalized as course grades 
of individual learners (distal outcome; Chen et al., 2018; Dado & Bodemer, 2017; Enyedy & Stevens, 2016). Since CSCL is a 
multifaceted process, we operationalize centrality measures to capture the participatory and social aspects of knowledge 
constructions (see Kreijns et al., 2013; Weinberger & Fischer, 2006). The operationalization of each centrality measure and 
review is detailed in the methods section. 

3.3. Data Collection 
Course data were extracted from the learning management system logs. The data collected included all forum posts related to 
collaboration tasks (PBL) in all courses. We retrieved the metadata for each post (ID, time, subject, title, content, post writer, 
and replies) and post writer (user ID, group ID, course ID, and grades). Non-collaborative forum posts (i.e., news, 
announcements, social interactions) were excluded. The post data were used to construct a post-reply network by considering 
the post writer as the source and the replied-to as the target, which is the most common configuration in the existing literature 
(Table 1). An example discussion is shown in Figure 2 along with the post-reply network that represents it. 
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Figure 2. Sample discussion and post-reply network. 

3.4. Network Analysis 
All networks were prepared in an appropriate format and prepared for analysis with the Igraph R package (Csardi & Nepusz, 
2006) implemented in the R programming language version 3.62 (R Core Team, 2018). For each student in each course, the 
six most used centrality measures were calculated: 

 
Out-degree centrality: Number of posts contributed by a student. Out degree was operationalized as the effort and participation 
of the learner in the forums (Hernández-García et al., 2015; Saqr, Fors, & Nouri, 2018; Saqr, Viberg et al., 2020; Saqr & Alamro, 
2019). 
In-degree centrality: Number of replies a student received. In-degree was operationalized as the worthiness of the argument 
contributed by a student to stimulate discussion or debate (Hernández-García et al., 2015; Saqr, Fors, & Nouri, 2018; Saqr, 
Viberg et al., 2020; Saqr & Alamro, 2019). 
Degree centrality: Sum of out-degree and in-degree centralities. 
Betweenness centrality: Number of times a student bridged other unconnected students (the shortest path between them). 
Students with high betweenness centralities mediate interactions, control the flow of information, and have access to diverse 
perspectives and resources (Lü et al., 2016; Saqr, Viberg et al., 2020; Stephenson & Zelen, 1989). 
Closeness centrality: The inverse farness from all students in the network. Closeness centrality was operationalized as 
accessibility, reachability, and ease of communication by all others (Lü et al., 2016; Saqr, Viberg et al., 2020; Stephenson & 
Zelen, 1989). 
Eigenvector centrality: Reflects student positioning, selection of peers, and strength of all the relationships a student has 
(Hernández-García et al., 2015; Saqr, Fors, & Nouri, 2018; Saqr, Viberg et al., 2020; Saqr & Alamro, 2019). 

3.5. Statistical Analysis 
To enable comparison with previous studies, we separately computed Pearson’s correlation coefficient and Spearman’s rank 
correlation coefficient between grades and the centrality measures for each course offering. To prepare the variables for 
Pearson’s correlation, we applied Box-Cox transformation to all variables so that they were closer to the normal distribution. 
We also calculated the Spearman correlation coefficients for comparison. 

A multi-level correlation meta-analysis (using course and year level as subgroups) was performed to pool Pearson’s 
correlation coefficients between grades and each centrality measure in all course offerings (each course offering was considered 
a separate study), i.e., we performed six multi-level meta-analyses for the six centralities to pool the correlations in the 69 
course offerings. Meta-analysis offers a robust way to pool results while taking into account heterogeneity as well as sample 
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sizes. The combined correlation coefficient was a weighted average. To obtain an accurate weight for each course offering, we 
performed inverse-variance pooling of Fisher’s z transformed correlations (Marín-Martínez & Sánchez-Meca, 2010). A 
random-effects model was selected to report results since we expected the course offerings to be heterogeneous (which was 
confirmed by the moderate levels of heterogeneity indicators). A random-effects model assumes that the effect sizes have more 
variance than when drawn from a single population (Marín-Martínez & Sánchez-Meca, 2010). A moderator analysis was 
performed using the course subject and year levels as grouping variables to test if they influenced the results. 

To evaluate the consistency of the correlation coefficients, we estimated the heterogeneity or between-study variance 
(i.e., the extent to which effect sizes vary within a meta-analysis (Higgins & Thompson, 2002; Schwarzer et al., 2015). 
Heterogeneity was determined using the Sidik-Jonkman estimator. The higher the levels of heterogeneity, the less consistent 
the correlation coefficients among the studies, which reflects on the low levels of confidence intervals. In other words, low 
levels of heterogeneity are a sign of consistent findings that increase the certainty that future applications of a given centrality 
measure would produce similar results to the ones obtained. I2 — a measure of heterogeneity — was selected because it is not 
sensitive to changes in the number of studies and it is easy to interpret. An I2 of 25% or lower indicates very low heterogeneity, 
an I2 of 25–50% indicates low heterogeneity, an I2 of 50–75% indicates moderate heterogeneity, and an I2 greater than 75% 
indicates substantial heterogeneity (Hardy & Thompson, 1998; Higgins & Thompson, 2002). 

The prediction interval is a measure of heterogeneity, which has been recently recommended to be reported in all meta-
analyses as a robust and rigorous measure (IntHout et al., 2016). Prediction interval estimates our certainty of the future 
application of a centrality measure, i.e., the expected range of values within which the future correlation would probably lie. 
The prediction interval can be interpreted in a similar way to confidence intervals. That is, if the lower and upper bounds were 
on the positive side or both on the negative side, we would expect that future applications within similar contexts would have 
comparable results within the bounds of the predictive interval (IntHout et al., 2016). 

Forest plots were used to illustrate the results of the meta-analysis graphically. They offer a summary of findings and 
statistical significance in an easy-to-read standardized manner. The forest plots layout for this study was selected to follow 
Cochrane Revman5 style, which is the most common (Schriger et al., 2010). The vertical line in the centre of the forest plot 
represents a correlation value of 0, whereas the horizontal lines represent the 95% confidence interval of the correlations for 
the corresponding course. The box in the middle represents the weight of each study (course offering in our case). The point 
inside the box represents the effect size. Studies with confidence intervals crossing the 0 line on either side are considered 
statistically insignificant. Studies with both confidence interval bounds on the right side of the 0 line are considered in favour 
of a statistically positive and significant correlation. Lastly, studies with both bounds of the confidence interval on the left side 
of the line are in favour of a statistically significant negative correlation. 

4. Results 
Table 2 shows the summary statistics by quartile of the courses included in the study. The median number of students enrolled 
in a course was 54 (a median of 48 completed the course) whereas the median number of teachers was 5 (i.e., there were 5 
different small groups). The median frequency of interactions in a course was 1,210; the median degree of a student was 9, 
while the median degree of a teacher was 14. As such, the dataset had small-sized courses with relatively interactive students. 
The descriptive statistics of the centrality measures are detailed in Appendix A. 

 
Table 2. Summary Statistics by Quartile of Courses 

 Teachers        Students 
 25% Median 75%  25% Median 75% 

Nodes 4 5 5  47 54 62 
Edges 909 1,210 1,737  909 1,210 1,737 
Degree 10.00 14.00 16.00  4.00 9.00 14.00 
Closeness 0.07 0.09 0.11  0.05 0.07 0.09 
Betweenness* 0.01 0.20 0.69  0.00 0.02 0.09 
Eigenvector 0.15 0.33 0.66  0.12 0.32 0.65 

                * Betweenness is normalized. 

4.1. Correlation Statistics 
Figure 3 shows the frequency with which each centrality measure was correlated, whether positively or negatively, with 
academic achievement in each of the 69 course offerings. 
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Figure 3. Summary of the frequency of correlations between grades and centrality measures. 

Degree centralities were positively correlated with grades in all courses and more frequently so than in all other centralities. 
Pearson’s correlation between grades and degree centrality was positive in all the studied courses. Closeness centrality followed 
in frequency, being positively and statistically significantly correlated with grades in 78.3% of courses (Pearson’s correlation), 
while negatively but non-significantly correlated with grades in three (4.3%) courses, and negatively and statistically 
significantly correlated in a single course (only Spearman’s correlation). Eigenvector centrality followed with 72.5% positively 
and statistically significantly correlated courses (73.9% Spearman’s correlation); only in one course was eigenvector centrality 
negatively correlated with grades, although the resulting correlation was not statistically significant. Lastly, betweenness 
centrality was positively and statistically significantly correlated with grades in 66.7% of the courses (59.4% Spearman’s 
correlation). In two of the courses, betweenness was negatively (although non-significantly) correlated with grades (three for 
Spearman’s correlation). In summary, closeness and betweenness showed negative correlation with performance in around 4% 
of courses, while eigenvector centrality in 1%, and degree centralities showed no negative correlations. 

4.2. Meta-Analysis 
Since the simple frequency of correlations is far from optimal for estimating our confidence and certainty in these measures, 
we proceed to report the results of the meta-analysis for more detailed and in-depth analysis (Figure 4 and Table 3). The 
random-effects model combined correlation coefficients for the degree and out-degree centralities were proximate. So were 
the confidence intervals (r=0.56 [CI 0.52:0.60] for degree; r=0.55 [CI 0.51:0.59] for out-degree) and the predictive intervals 
([0.25;0.77] for degree; [0.26;0.75] for out-degree). Both centralities had medium heterogeneity: I2 was 55% for degree and 
50% for out-degree. The in-degree centrality had a combined correlation coefficient that was close to degree and out-degree 
(r=0.54 [CI 0.49:0.58]). However, the lower limit of the predictive interval was relatively lower than the rest of degree 
centralities [0.17;0.77], and heterogeneity was relatively higher (I2=63%). In summary, degree centralities have a combined 
correlation coefficient of medium strength, a reasonable predictive interval, and low heterogeneity. Such results highlight the 
value of these centrality measures as reliable indicators of achievement. 

The combined correlation coefficient for betweenness centrality was markedly lower than that of the degree centralities 
(r=0.38 [CI 0.33:0.42]), with a lower predictive interval [0.07;0.62] and lower heterogeneity (I2=45%). The low heterogeneity 
points to a consistent indicator of success. Although the combined correlation coefficient of closeness centrality (r=0.49 
[CI 0.45:0.55]) was moderate, the lower bound of the predictive interval was negative [-0.06;0.81] and there was a high level 
of heterogeneity (I2=79%). Taken together, the values of closeness centrality indicate that this measure is far from reliable as 
an indicator of student success. 

The eigenvector centrality had a combined correlation coefficient slightly higher than that of betweenness centrality (r=0.41 
[CI 0.36:0.45]), with a comparable predictive interval [0.07;0.54] and a slightly higher heterogeneity (I2=54%). Similar to 
betweenness centrality, the eigenvector centrality is a consistent indicator of student success. 

To investigate whether different courses or year levels influenced the magnitude or direction of correlations, we performed 
a test for subgroup differences (with the course and the year levels as grouping variables) using the random-effects-model. The 
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test was statistically insignificant in all reported centralities, indicating that neither course type nor course level were significant 
moderators (Table 3). 

Table 3. Summary of Multi-Level Meta-Analysis Results 
 Correlation Prediction interval Heterogeneity Test for subgroup differences 
Centrality r [CI] p Low High I2 [CI] Q p 
Degree 0.56 [0.52;0.60] < 0.0001 0.25 0.77 0.55 [0.41;0.66] 7.97 0.89 
Out-degree 0.55 [0.51;0.59] < 0.0001 0.26 0.75 0.50 [0.34;0.62] 9.44 0.80 
In-degree 0.54 [0.49;0.58] < 0.0001 0.17 0.77 0.63 [0.52;0.72] 8.86 0.84 
Betweenness 0.38 [0.33;0.42] < 0.0001 0.07 0.62 0.45 [0.27;0.59] 17.42 0.23 
Closeness 0.49 [0.43;0.55] < 0.0001 -0.06 0.81 0.79 [0.74;0.83] 13.77 0.47 
Eigenvector 0.41 [0.36;0.45] < 0.0001 0.07 0.66 0.54 [0.39;0.65] 8.29 0.87 

 

     
Figure 4. Forest plots of multi-level meta-analysis of correlation of centrality measures with grades. 
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5. Discussion 
Which centrality measures are the most consistent indicators of success? 
Among all centralities investigated in this study, degree centralities were the most positively and statistically significantly 
correlated with academic performance, which corroborates most of the previous literature. Three studies out of the reviewed 
19 had non-statistically significant positive correlations (Cho et al., 2007; Saqr, Fors, & Tedre, 2018; Saqr & Alamro, 2019). 
In the case of Cho et al. (2007), the study included a small number of students (31) in an engineering course. While in Saqr, 
Fors, and Tedre (2018), the network was highly centralized with few collaborative interactions among students. Students who 
received more replies (higher in-degree) were more likely to score higher. Similarly, the study by Saqr and Alamro (2019) in 
which problem-based learning was used, showed positive correlation between grades and in-degree (although with p=0.06), 
and statistically significant correlation with out-degree centrality. The two studies that reported a negative association used 
regression models with centralities combined (Gašević et al., 2019; Osatuyi & Passerini, 2016). Our results have shown more 
consistent correlations of moderate to high strength, narrow confidence intervals, and moderate to high prediction intervals. 
This may be explained by the fact that our study was conducted in a context where the collaborative module was central to the 
course design. Degree centralities are always operationalized as indicators of participation in the discourse, effort, contribution 
to the collaborative task (Hernández-García et al., 2015; Reychav et al., 2018; Saqr, Viberg et al., 2020), and social positioning 
(Poquet & Jovanovic, 2020), which are important determinants of student learning (Weinberger & Fischer, 2006). Taken 
together, these findings point to the portability of degree centrality as a reliable indicator of success regardless of the course 
subject. That is, in courses that emphasize the collaborative module as an essential part of course design, it is expected that 
degree centralities represent the highest, most consistent indicators of success among all centrality measures. This study offers 
evidence of the utility of said measure in relevant settings where such participatory dimensions are emphasized. 

The results of betweenness centrality have shown a relatively low correlation coefficient (compared to degree centrality) 
as well as a small lower bound for the predictive interval (0.07). Among the reviewed studies, only seven have reported 
statistically positive, significant correlations (de-Marcos et al., 2016; Hernández-García et al., 2015; Liu, Kang, Domanska et 
al., 2018; Liu, Kang, Su et al., 2018; Osatuyi & Passerini, 2016; Putnik et al., 2016; Saqr, Fors, & Tedre, 2018). Three studies 
have reported inconsistent results among the offered courses. Two studies were conducted in MOOCs (Jiang et al., 2014; 
Joksimović et al., 2016) where participation may not be as intense or emphasized as in traditional higher education, and 
participants’ pre-knowledge is more heterogenous. These findings corroborate the pattern observed with degree centralities, 
where centrality measures do not show strong correlations. In another study by (Saqr, Fors, & Nouri, 2018), CSCL was offered 
to small groups where everyone was connected; therefore, betweenness may not be a differentiating factor. 

Regarding closeness centrality, our findings showed a moderate combined correlation coefficient but a non-statistically 
significant predictive interval, pointing to its poor reliability as an indicator of student success. These results are supported by 
the existing literature, which showed a negative statistically significant correlation in one study (Cadima et al., 2012), as well 
as contradictory results within the same study among different courses (Gašević et al., 2019; Jiang et al., 2014; Joksimović et 
al., 2016; Liu et al., 2019). Most of the contradictory results have been reported in MOOCs where that pattern has been observed 
before. 

Although closeness and betweenness centralities were the most commonly used in our reviewed literature, their 
performance — as indicators of success — was not as initially expected in the reviewed works nor in our study (Jiang et al., 
2014; Joksimović et al., 2016). An explanation may be that closeness and betweenness centralities are calculated based on 
shortest paths, which raises questions about their relevance to some digital interaction settings. For instance, betweenness 
centrality counts the times a post has bridged two others (Borgatti, 2005). In some tasks, this might be relevant (e.g., when 
students have to argue or debate), while in other configurations and network topologies, this might not be appropriate (in small 
groups where everybody is connected; e.g., Saqr, Fors, & Nouri, 2018). What is more, betweenness centrality might be 
challenging to interpret and operationalize in settings where students are well connected. The same issue applies to closeness 
centrality: the measure captures the distance to “all” others. However, it is not necessary for each student to connect or interact 
with “all” others. The “all” others are particularly difficult in MOOC situations with numerous students, many of whom barely 
participate. Furthermore, it is meaningless to calculate closeness centrality when some students are disconnected (due to the 
absence of a path to “all”), creating difficulty in interpretation and operationalization (Borgatti & Brass, 2019; Borgatti & 
Everett, 2006; Freeman, 1978). The fact that closeness and betweenness centralities showed negative correlations with 
performance in our study in some courses and showed narrow or insignificant predictive intervals in our large and homogenous 
sample raises serious concerns about their utility at least in similar contexts. Such concerns are not new, perhaps requiring the 
educational community to examine new centrality measures more relevant to the studied tasks. While this is far from a trivial 
undertaking, it remains long overdue. On the other hand, our results corroborate those of the existing literature on the 
consistency of eigenvector centrality, which was statistically significant in all the reviewed studies (de-Marcos et al., 2016; 
Hernández-García et al., 2015; Liu, Kang, Su et al., 2018; Putnik et al., 2016; Saqr, Fors, & Nouri, 2018; Saqr, Fors, & Tedre, 
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2018; Saqr, Viberg et al., 2020; Traxler et al., 2016; Wise & Cui, 2018). Therefore, based on the findings of this study, we 
may suggest that researchers with similar contexts (e.g., CSCL where the collaborative module is central to the course design) 
rely on degree and eigenvector centralities as indicators for success while exercising caution when using short-path centralities 
(closeness and betweenness). 

How certain can we be in future applications of centrality measures as indicators of success? 
Our third research question aimed to investigate the consistency of results obtained from a large homogenous sample. That 

is, how homogenous or heterogenous our results are and, therefore, how far we can be confident that future applications of the 
same measure can result in similar findings. Heterogeneity, a method commonly implemented in meta-analysis, allows for 
such estimation. The heterogeneity reported for most centrality measures ranged from low to moderate. Since courses can 
rarely be an exact copy of each other, there may be changes in, for example, teachers, schedules, and load from other parallel 
courses. Thus, a moderate level of heterogeneity is expected. The presence of low to moderate levels of heterogeneity is in line 
with the reported large-scale replications that previously attempted to replicate psychological studies (e.g., Aarts et al., 2015; 
Hagger et al., 2016; Klein, 2019). In fact, previous meta-analyses of very close replications (studies with similar conditions) 
have reported similar low to moderate levels of heterogeneity (Aarts et al., 2015; Hagger et al., 2016; Klein, 2019). For instance, 
the “Many Labs” study replicated behavioural experiments in 36 labs using identical conditions, and reported heterogeneity in 
all fourteen studied effects (Aarts et al., 2015). In the present study, we found no evidence that course or year level contributed 
to the heterogeneity reported in our study. 

In the case of closeness centrality, we found substantial heterogeneity. This can be explained by the way closeness centrality 
is estimated based on the distance to “every” other student in the network. The presence of inactive or isolated students to 
whom the distance will be very high would skew the measure. Thus, interactive students in a network with isolates will get 
low closeness centrality scores. These findings highlight the needed caution when applying the measure as an indicator for 
success in disconnected networks or groups with inactive students. 

The choice of meta-analysis was based on the seminal examples in the literature that assessed the replicability and 
consistency of previously reported results (e.g., Hagger et al., 2016; Klein, 2019). In view of the results obtained, the meta-
analysis has been useful compared to traditional methods, which often list the number of studies side-by-side or use all data 
together as a single dataset. The benefits of the meta-analysis include estimation of the heterogeneity, accurate estimation of 
the combined correlation coefficient (taking into account sample size), as well as estimation of the predictive interval (taking 
into account heterogeneity; Aarts et al., 2015; Hagger et al., 2016; Klein, 2019). For instance, relying on traditional methods, 
one would assume that closeness centrality would be positively correlated with performance in more than 80% of cases. 
However, the predictive interval shows that future results of closeness centralities are far from certain (being statistically 
insignificant). In our study, the large sample size and number of courses, and the choice of methods makes our results more 
likely to generalize in similar contexts, in particular the predictive intervals. However, it remains to be seen whether future 
studies can prove or refute our findings. 

Centrality measures represent a single aspect of CSCL (Hoppe, 2017), and researchers need to thoughtfully use different 
computational methods at hand to gain insights about different determinants of learning. For instance, content analysis would 
allow a more nuanced idea about how knowledge is constructed. Automated approaches and computational methods can serve 
an important role in the automation of content analysis (e.g., Erkens et al., 2016). Analysis of the temporal aspects of the 
interactions using methods that capture the rhythm and sequence of the process gives an overarching idea about the 
collaborative process (Boroujeni et al., 2017; Skrypnyk et al., 2015). Triangulation of data from different sources would help 
us better understand collaborative learning and draw the correct conclusions (Hoppe, 2017). Another limitation of the 
commonly used traditional centrality measures reviewed here is that they fail to capture the branching and the nestedness of 
discussions. Therefore, educational researchers interested in capturing how a post is nested, stimulating or helping other 
students to engage and build-upon, use diffusion (Hoppe, 2017; Poquet & Jovanovic, 2020; Saqr & Viberg, 2020; Suthers, 
2015; Suthers & Desiato, 2012). 

Centrality measures are used to capture students’ social positioning where ties can indicate trust, friendship, and access to 
knowledge. Therefore, operationalization of network measures must consider not just the structural position but also the 
context, the interaction type, and, most importantly, the benefits received by students (Poquet & Jovanovic, 2020). As pointed 
by Poquet and Jovanovic (2020), closeness centrality is always interpreted as being close to or reachable by all students. 
However, this is far from realistic since forum networks are temporary events with transitory edges. Betweenness centrality is 
also commonly interpreted as “bridging” or linking isolated communities. This view was borrowed from organizational 
network analysis and does not reflect the context or structure of learning networks. In our study, both closeness and 
betweenness centralities have been poorly linked to learning outcomes, indicating the need to consider their usage, 
interpretation, and operationalization. 

The increasing availability of interaction data has allowed several possibilities for constructing leaner networks (Poquet & 
Jovanovic, 2020). While our study focused on the often-used post-reply networks, several other possibilities of constructing 
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networks warrant further investigation, e.g., co-participation networks (Fincham et al., 2018; Poquet et al., 2020; Poquet & 
Jovanovic, 2020; Wise et al., 2017). Since centrality measures may vary depending on how the network is constructed, it is 
expected that the results obtained in this study could vary if another network configuration or edge weight were used. 
Combining network configuration methods is also an interesting, rarely explored area. Poquet and Jovanovic (2020) 
demonstrated that building both post-reply and co-participation networks can provide a nuanced interpretation of centrality 
measures. While these approaches are commonly seen as exclusive, the authors demonstrate how they can be complementary. 
(For a discussion of network configuration methods, interested readers are encouraged to consult Poquet & Jovanovic, 2020). 

Centrality measures are valuable tools which have proven useful across many fields, including education. Nonetheless, 
there are still many unanswered questions regarding the measurement, operationalization, and use of centrality measures. 
Further research could investigate how different network configuration methods — e.g., co-participation networks or 
combinations of network configurations — could contribute to our understanding of social learning and how such configuration 
can help obtain reliable indicators of student success. Future research could also contribute to a more nuanced alignment 
between learning contexts, social positioning, and operationalization of centrality measures (Poquet et al., 2021; Poquet & 
Jovanovic, 2020). Another area of further research would be improving measurement, reporting, and computation of novel 
centrality measures (Saqr & López-Pernas, 2021a, 2021b). 

The present study has some limitations. First, replication of our results beyond the healthcare context may be needed to 
verify or refute our findings. Moreover, in our study, we have not combined the centrality measures, reporting instead on each 
centrality individually. We have resorted to this option since we found significant multi-collinearity in most courses between 
several centrality measures that made any statistically robust predictive model containing any combination difficult. Therefore, 
understanding the correlation of combined centrality measures with academic achievement is an important issue for future 
research. 

6. Conclusions 
In this study, we empirically tested and verified the role of centrality measures as indicators of success in collaborative learning. 
For this purpose, we attempted to reproduce the most commonly used centrality measures in the literature in all the courses of 
a college over five years of education. Using a large dataset in a meta-analysis enabled us to make important conclusions. The 
first and most important conclusion is that degree and eigenvector centrality measures can be consistent indicators of 
performance in settings where course design emphasizes collaboration. The correlation between centrality measures and 
academic achievement was reproducible regardless of the number of students, number of interactions, year of study, or course 
subject. Thus, our results provide evidence of the validity and suitability of centralities as indicators of success and, possibly, 
of productive interactions. Our results also shed light on novel aspects of the consistency of centrality measures that have not 
been studied before, namely, heterogeneity and pooled effect sizes, as well as the predictive interval. Our findings raise 
questions about the suitability of closeness (e.g., in disconnected groups) and betweenness centrality (e.g., in connected groups) 
measures as indicators of success in collaborative settings. 
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Appendix A 
Table 4. Descriptive Statistics of Centrality Measures for Each Course Offering 

Course Name Students Teachers Edges Degree Betweenness Closeness Eigenvector 

1-Cell Structure & Function 50 3 1,737 14 0.07 0.09 0.37 

1-Cell Structure & Function 59 4 1,400 13 0.02 0.06 0.37 

1-Cell Structure & Function 55 4 1,051 7 0.00 0.04 0.19 

1-Cell Structure & Function 58 5 1,554 11 0.02 0.06 0.33 

1-Cell Structure & Function 68 6 1,526 15 0.06 0.07 0.64 

1-Cell Structure & Function 77 6 1,479 14 0.09 0.06 0.35 

1-Cell Structure & Function 67 4 1,348 12 0.02 0.07 0.54 

1-Dental Education 48 2 496 9 0.09 0.08 0.59 

1-Growth & Development 49 5 1,572 10 0.03 0.06 0.04 

1-Growth & Development 52 5 1,022 7 0.01 0.03 0.34 

1-Growth & Development 42 4 1,115 6 0.00 0.06 0.19 

1-Growth & Development 54 5 1,981 12 0.02 0.08 0.21 

1-Growth & Development 61 4 722 10 0.11 0.08 0.57 

1-Growth & Development 69 6 1,050 10 0.03 0.06 0.29 

1-Growth & Development 66 6 1,116 9 0.03 0.06 0.42 

1-Head & Neck 75 4 2,193 9 0.02 0.05 0.13 

1-Head & Neck 56 6 906 6 0.02 0.07 0.16 

1-Head & Neck 54 5 1,236 10 0.04 0.06 0.39 

1-Head & Neck 47 4 1,102 5 0.00 0.05 0.16 

1-Head & Neck 54 5 1,730 15 0.02 0.08 0.42 

1-Head & Neck 64 5 1,149 13 0.14 0.08 0.51 

1-Head & Neck 73 5 811 9 0.09 0.06 0.40 

1-Head & Neck 70 5 745 6 0.01 0.05 0.27 

1-Principles of Disease 48 4 1,767 9 0.03 0.08 0.06 

1-Principles of Disease 52 5 903 5 0.00 0.05 0.45 

1-Principles of Disease 54 3 1,370 11 0.01 0.07 0.26 

1-Principles of Disease 62 6 784 10 0.07 0.07 0.56 
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Course Name Students Teachers Edges Degree Betweenness Closeness Eigenvector 

1-Principles of Disease 71 6 1,170 11 0.05 0.06 0.43 

1-Principles of Disease 67 4 1,009 9 0.01 0.06 0.49 

2-Body Systems 43 5 1,219 10 0.06 0.09 0.49 

2-Body Systems 48 5 1,476 6 0.00 0.06 0.35 

2-Body Systems 54 5 3,134 18 0.01 0.09 0.53 

2-Body Systems 55 5 1,666 16 0.02 0.08 0.65 

2-Body Systems 68 7 2,771 15 0.06 0.09 0.36 

2-Body Systems 62 7 1,555 9 0.02 0.08 0.52 

2-Dental Sciences 42 5 2,535 12 0.03 0.09 0.19 

2-Dental Sciences 41 5 2,075 9 0.02 0.10 0.16 

2-Dental Sciences 47 5 810 4 0.00 0.03 0.14 

2-Dental Sciences 57 4 1,210 10 0.01 0.05 0.36 

2-Dental Sciences 53 5 1,010 11 0.05 0.08 0.49 

2-Dental Sciences 70 7 2,197 12 0.08 0.08 0.14 

2-Dental Sciences 67 6 731 3 0.00 0.05 0.13 

2-General Surgery 42 4 542 5 0.05 0.05 0.20 

2-General Surgery 54 4 1,116 13 0.05 0.08 0.40 

2-General Surgery 68 6 1,040 10 0.09 0.08 0.27 

2-General Surgery 62 7 746 4 0.00 0.07 0.46 

2-Neuroscience 49 5 696 2 0.00 0.05 0.33 

2-Neuroscience 53 5 1,033 12 0.02 0.08 0.47 

2-Neuroscience 69 5 1,051 10 0.09 0.08 0.22 

2-Neuroscience 66 4 567 1 0.00 0.01 0.08 

3-Restorative I 31 5 2,156 8 0.00 0.11 0.14 

3-Restorative I 42 5 2,482 13 0.01 0.11 0.29 

3-Restorative I 45 5 1,173 6 0.00 0.06 0.36 

3-Restorative I 55 5 2,453 17 0.02 0.08 0.33 

3-Restorative I 49 5 1,215 12 0.06 0.09 0.58 
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Course Name Students Teachers Edges Degree Betweenness Closeness Eigenvector 

3-Restorative I 49 5 909 9 0.03 0.08 0.58 

3-Restorative II 31 5 3,377 6 0.00 0.10 0.08 

3-Restorative II 42 5 2,566 11 0.00 0.10 0.16 

3-Restorative II 44 5 1,384 5 0.00 0.06 0.22 

3-Restorative II 55 5 2,976 16 0.01 0.08 0.24 

4-Child & Adolescent Care 31 5 2,295 6 0.00 0.09 0.07 

4-Child & Adolescent Care 43 5 1,839 10 0.01 0.10 0.24 

4-Child & Adolescent Care 44 5 1,239 5 0.00 0.06 0.28 

4-Child & Adolescent Care 56 5 1,805 13 0.00 0.07 0.31 

4-Management of Disease I 42 5 840 7 0.05 0.08 0.17 

4-Management of Disease II 43 4 685 6 0.06 0.08 0.14 

4-Management of Disease II 43 4 643 3 0.00 0.05 0.16 

4-Management of Disease II 54 5 1,103 8 0.01 0.08 0.23 

4-Surgical Management 56 5 809 8 0.00 0.06 0.15 

 
 


