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Abstract 
This paper describes a collaboration organized around exchanging data between two technological systems to 
support teachers’ instructional decision-making. The goals of the collaboration among researchers, technology 
developers, and practitioners were not only to support teachers’ instructional decision-making but also to document 
the challenges and opportunities associated with bringing together data from instruction- and assessment-focused 
technologies. The approach described in this paper illustrates the potential importance of anchoring data products 
that combine data between two systems in the needs of teachers as well as aligning the content that students learn 
and are assessed on between systems. The increasing presence of data standards has made sharing complex data 
increasingly more feasible. The example collaboration described in this paper demonstrates the role that non-
technical activities can play in supporting the exchange and use of learner event data. 
 

Notes for Practice 

• Exchanging and combining data from two or more technologies requires common understandings of 
how data are generated by students. 

• There are few established strategies for making sense of learner event data across different 
technologies. This gap signals the potential importance of higher bandwidth interactions between and 
among researchers, technology developers, and school practitioners. 
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1. Introduction 
Imagine a school where students use multiple technologies to advance learning, data from these technologies are analyzed 
regularly, and educators use these data to improve student opportunities to learn. For many K–12 schools and districts, this 
vision remains underdeveloped despite the fact that students use a variety of learning technologies in their day-to-day activities 
and that these technologies can produce large quantities of data (Baker & Siemens, 2014; Koedinger, D’Mello, McLaughlin, 
Pardos, & Rosé, 2015). While technology use and quantities of data increase, a key challenge for practitioners in schools is 
accessing and visualizing data from multiple technologies in a single system or platform (e.g., DiCerbo & Korbin, 2016). 

As the volume of available data has increased, a variety of data interoperability standards have emerged to support the 
“seamless, secure, and controlled exchange of data between applications” (State Educational Technology Directors 
Association, 2018, p. 8). While data standards have made storing and sharing data feasible, longstanding challenges remain in 
exchanging data to support specific work practices and routines (i.e., organizational interoperability), in communicating the 
meaning of data elements from one context to the next (i.e., semantic interoperability), and in facilitating the exchange and use 
of data from multiple systems (i.e., technical interoperability; Pagano, Candela, & Castelli, 2013). 

Collaborations among researchers, technology developers, and practitioners offer a promising approach for addressing 
multiple challenges associated with collecting, sharing, and analyzing data from digital systems and platforms (Krumm, Means, 
& Bienkowksi, 2018). In this paper, we describe a collaborative project that joined data from an instruction-focused and an 
assessment-focused technology to support teachers’ instructional decision-making. As a collaborative project, we sought to 
1) learn directly from teachers how they could use data products that joined data from two technologies as well as 2) understand 
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the challenges and opportunities associated with exchanging data in order to inform broader efforts directed at supporting data 
interoperability. 

2. Data Interoperability and Learning Event Data 
From the introduction of the earliest online learning technologies, there has been interest in developing common ways to share 
data between and among technologies. Some of the first successes in interoperability came from higher education and the 
increased use of learning management systems like Blackboard, Sakai, Desire2Learn, and, more recently, Canvas. The 
centrality of learning management systems to higher education institutions in the mid-2000s made them ideal for integrating 
multiple applications, such as through the Learning Tools Interoperability standard. Other interoperability successes have 
occurred with single sign-on (e.g., Clever and OneRoster) and administrative data system standards like the Common 
Education Standards, the Schools Interoperability Framework, and the Ed-Fi Data Standard in the United States. These 
initiatives have helped to solve real and immediate problems facing educators. Faculty using learning management systems 
needed ways to integrate a variety of learning tools into their courses; schools supporting multiple learning technologies needed 
to reduce the complexity of managing multiple student accounts; and districts and schools needed ways to move student records 
in less error-prone ways between schools and among various administrative systems (e.g., student information systems). 

Along with specific standards, there are a growing number of organizations supporting various elements of data 
interoperability, such as technical assistance organizations like the Data Quality Campaign and the Privacy Technical 
Assistance Center, which offer resources related to both data sharing and data privacy. Project Unicorn, based out of 
InnovateEDU, also works to address multiple aspects of interoperability through partnerships with schools and technology 
vendors. 

Through initiatives like Ed-Fi, progress has been made in sharing data between assessment-focused systems and student 
information systems. Assessment-focused systems administer tests and quizzes to students as well as provide analyses and 
reports on students. Student information systems collect and store demographic information about students along with 
longitudinal test scores, attendance information, and course grades. Sharing learner event data (i.e., system log data, telemetry 
data, digital exhaust, usage data, or system utilization data) with assessment-focused technologies or student information 
systems, however, still poses several challenges despite the successes of data standards specifically geared toward learner event 
data. 

Learner event data are most often collected by instruction-focused digital environments designed primarily to help students 
acquire and practice new content and skills. Instruction-focused technologies are widely used in schools and can provide direct 
instruction to students, support homework activities, and/or assist in blended learning models (e.g., Murphy et al., 2014). These 
types of environments can provide an entire curriculum, or they can provide supplementary learning experiences. They can 
also consist of one or more different types of games, simulations, playlists, and intelligent tutoring experiences. For 
consistency, we define learner event data as data that capture specific actions taken by a student at a particular time within a 
specific learning task. Actions within and across environments can be numerous and can vary in terms of their granularity from 
“moved mouse to the left” to “logged in” to “accessed resource.” A central challenge associated with exchanging learner event 
data is the amount of context that needs to be shared with an event in order for that event to be useable by another system (e.g., 
Dietz et al., 2012; Sottilare, Long, & Goldberg, 2017). 

A handful of interoperability standards have made sharing learner event data more and more feasible, such as Experience 
API (xAPI from Advanced Distributed Learning) and Caliper (from IMS Global). xAPI and Caliper, in particular, have 
addressed a key issue in working with learner event data, namely, the diversity of learning activities within instruction-focused 
technologies (e.g., games, simulations, puzzles, and quizzes). The variety of activities that students can engage in contributes 
to an almost overwhelming diversity in the number and types of events that can be collected across technologies (e.g., del 
Blanco et al., 2013). xAPI and Caliper have approached the problem by creating a standard that facilitates sharing events using 
the general categories of subject (e.g., “student”), object (e.g., “game level”), and verb (e.g., “started”). These standards, along 
with smaller scale efforts like the Assessment Data Aggregator for Game Environments (ADAGE) from the University of 
Wisconsin (Owen, Ramirez, Salmon, & Halverson, 2014) and proofs-of-concept from organizations like ETS (Hao, Smith, 
Mislevy, von Davier, & Bauer, 2016), are increasing in popularity. 

Within the context of data interoperability, learner event data has increasingly been an area of research in the field of 
learning analytics. Bakharia and colleagues (2016), for example, examined the potential of xAPI to combine data from multiple 
social media platforms. In their work, they identified the critical role that contextual information within xAPI statements played 
in joining data to perform social network analyses. Similarly, Manso-Vazquez, Caeiro-Rodriguez, and Llamas-Nistal (2018) 
demonstrated the often-intense work involved in disambiguating learner event data in relation to specific self-regulated 
learning processes across multiple technologies (e.g., Winne & Hadwin, 1998). While xAPI offered multiple affordances, “the 
translation from the strategies to the profile was not trivial. Every action had to be tackled separately while trying to maintain 
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coherence throughout the profile” (p. 42480). The Pittsburgh Science of Learning Center’s DataShop and the data workflow 
tool LearnSphere have both provided researchers with access to complex, granular learner event data as well as analytical tools 
to carry out analyses like generating learning curves (e.g., Martin et al., 2011). DataShop and LearnSphere make it easy to 
work with data that have been collected and stored by specific technologies and can serve as the kind of “sandboxes” called 
for by Pagano, Candela, and Castelli (2013) when working to make sense of and combine data from multiple sources. 

As the above examples imply, a central task in working with event data is understanding the multiple contexts in which 
students generate data. Context can be understood in at least two ways: the learning activities within an instructional-focused 
technology itself and the broader instructional activities in which the technology is used within a classroom (Krumm, Means, 
& Bienkowski, 2018). For many educational data elements, such as those related to student information systems and 
assessment-focused technologies, the importance of context is somewhat reduced. For example, when working with data from 
a test, those familiar with education have commonly shared references for “items” and an “overall score.” Furthermore, many 
people who have spent time in schools intuitively understand that a test’s purpose is to quantify what a student knows at a 
given point in time. In the case of learner event data captured by instruction-focused technologies, there are comparatively 
fewer shared understandings to draw upon. For example, a student can view a video, complete a problem set, be provided with 
feedback on correct or incorrect responses, engage in open-ended coding activities, manipulate an avatar, operate a pencil, 
input numbers into fixed problems, choose an activity to begin, and/or be directed to the next activity by the system itself. 
These example features of a digital learning task can be combined in unique ways, spread out over time, and be more or less 
salient depending on the organization of the content to be learned (e.g., lessons, units). Given the many ways in which these 
features of learning activities can be combined, a considerable amount of context must be communicated in order for an event 
to be appropriately used in a given analysis or data product. 

Drawing on insights from the above research, we used a collaborative approach informed by Penuel and colleagues (2011) 
to directly intervene upon challenges associated with semantic and organizational interoperability. Our working hypothesis 
was that researchers, developers, and practitioners would need to work together in order to share data between two 
technologies, make sense of data originating from both systems (i.e., semantic interoperability), and prototype data products 
(i.e., organizational interoperability). The importance of developing prototypes represents an additional but subtle takeaway 
from the existing literature around data interoperability in education: the power of data standards is in their ability to support 
the exchange and use of data from multiple systems (i.e., technical interoperability), and only when data are actually brought 
together can challenges and opportunities be identified. 

3. Data and Methods 
This project sought to understand the benefits and challenges of data interoperability by developing prototype data products 
that joined data from two different technological systems. The collaboration included Renaissance Learning (Renaissance), 
the MIND Research Institute (makers of ST Math and hereafter MIND), SRI International, and one elementary school on the 
U.S. West Coast that was using Renaissance Star Assessments and ST Math. The role of the school was particularly important 
because a key assumption of our approach was that data products that combined data from multiple systems needed to address 
problems raised by teachers, and that issues of organizational, technical, and semantic interoperability could perhaps best be 
identified by working to combine data in the service of addressing teachers’ data-related problems. 

Within the collaboration, researchers were responsible for organizing focus groups, collecting data from the focus groups, 
and prototyping data products. In developing prototype data products, researchers helped to develop a shared understanding 
across the collaboration of each system’s data by examining the contexts in which students generate data in Star Math and ST 
Math. To better understand Star Math, researchers in the collaboration worked with Renaissance to understand how different 
assessments were administered and how different scores were generated. As a computer adaptive test, Star Math provides 
scores of student abilities across a wide variety of mathematical skills in addition to overall scores and growth projections. To 
better understand ST Math, researchers used guest accounts to directly experience learning tasks while simultaneously 
consulting data models and data dictionaries (i.e., descriptions of data elements and valid values) from ST Math to make 
connections between collected data and student actions. 

The basic learning task within ST Math is a puzzle. A puzzle presents students with a visual representation of a 
mathematical concept that can be solved by moving virtual manipulatives. Data on student puzzle and level performances can 
easily be summarized and joined with metadata related to the games and learning objectives of a level as well as the session to 
which a student’s activity belongs. A high-level representation of student movement through ST Math is presented in Figure 1. 
A syllabus (not pictured) is comprised of multiple objectives for a grade level; objectives are comprised of games, levels, and 
puzzles. 
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Figure 1. Movement across puzzles, levels, games, and objectives in ST Math. 

Two focus groups were organized to learn directly from teachers. Five Grade 3 teachers and six Grade 4 teachers 
participated in the first focus groups. Three Grade 4 teachers participated in the second focus group. Two of the school’s 
technology specialists also participated in both focus groups. The initial focus group for Grade 3 teachers was conducted in 
person; videoconferencing was used for the initial focus group for Grade 4 teachers. Based on feedback from the virtual focus 
group, the second focus group was conducted in person. Data from focus groups were collected using in-depth field notes 
collected by one researcher. Following a focus group session, the researcher generated a memo that was shared among members 
of the collaboration. Initial focus groups were organized around 1) how teachers used ST Math, 2) how they used ST Math and 
Star Math reports, and 3) design ideas for combining data between ST Math and Star Math. Figure 2 illustrates the organization 
of focus groups 1 and 2 along with example questions. It was important to understand how teachers used ST Math because 
their use of a given technology can play an important role in their motivation to use reports from that technology. Likewise, it 
was important to understand how teachers used each system’s reports in order to understand what data they most attended to. 
To ensure that teachers had a common set of experiences with Star Math reports, collections of classroom- and student-level 
ST Math and Star Math reports were compiled for each teacher and distributed before the first focus group. 

 

 
Figure 2. Organization of focus groups 1 and 2. 

In addition to making sense of data elements across both systems and organizing focus groups, researchers in the 
collaboration generated prototype data products (i.e., visualizations and tables) using data from both systems. Teachers’ design 
ideas from the first focus group provided direction on what data elements to attend to and how to combine them. Combining 
data across systems provided the opportunity to surface challenges and opportunities associated with exchanging and merging 

Puzzles

Levels

Games

Move onto next game after 
passing required levels

Objectives

Move onto next level after 
passing required puzzles

Move onto next objective 
after passing required 
games

Focus Group 1
Distribute reports from ST Math and Star Math

Introductions and tone setting:
Since you’ve been at this school, how, if at all, have you changed 
the ways you teach math?

ST Math:
How do you use ST Math in your class? When is it used 
during the day and how often? Do all students use it in the 
same way? Do you use the reports provided by ST Math? If 
so, which ones? How often do you look at an ST Math report 
(e.g., daily, weekly)? For what purposes do you use a given 
report?

Star Assessments:
What is your experience with Star Assessments? Which have 
you used more, the reading or math tests? Thinking about 
whichever Start test you’ve used most, which reports do you 
find most helpful and how do you use them? Specifically 
thinking about the Star Math test, what reports are most 
helpful?

Design ideas and general discussion

Focus Group 2
Distribute prototype visualizations

Gather reactions to following sections:
Heading
Scatterplot of ST Math game recommendations (Figure 3)
Table of consolidated ST Math data (Table 1)

General reflections and discussion
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data. Researchers and representatives from MIND and Renaissance met regularly to discuss teachers’ design ideas and issues 
associated with merging data. 

After finalizing a set of prototypes, a second focus group was held with teachers to gather feedback on the prototypes. For 
the second focus group, we hypothesized that teachers would find the prototype data products more meaningful if they could 
connect the information presented directly to their students, giving them the opportunity to question the information, use their 
classroom experiences to interpret the information, and decide how best to act on their interpretations. This second focus group 
consisted of a researcher walking teachers through the prototype data products one element at a time and gathering their 
feedback on each element. 

4. Results and Discussions 
4.1. Focus Group 1 
The first focus group was organized around understanding 1) how teachers used ST Math, 2) how they used ST Math reports 
and Star Math reports, and 3) their ideas for combining ST Math and Star Math data. Teachers reported that when they used 
ST Math, they used it for 30–45 minutes on average. Teachers did, however, vary in their use of ST Math throughout the week, 
with some using it daily and others using it twice per week. Teachers had different reasons for using ST Math. Some teachers 
had all students use ST Math at the same time, with the teacher’s role largely to assist students. Other teachers had half the 
class use ST Math independently while the other half received direct instruction from the teacher. As part of this approach, 
students switched midway through the class between ST Math and working with the teacher. In addition to these two general 
approaches, some teachers described different degrees of comfort in working with small groups of students while the rest of 
the class worked on ST Math. While ST Math offers the opportunity to modify what objectives students work on, only some 
teachers made modifications, and other teachers either were not aware of some of these features or did not feel comfortable 
modifying student experiences of ST Math. 

Teachers stated that they typically only used ST Math’s classroom-level progress report. For this report, teachers almost 
exclusively referred to two data elements: % Syllabus Progress (the proportion of the curriculum each student had progressed 
through) and Alert Buttons (indicators of struggle, low time on task, and low post-quiz scores). Teachers understood other data 
elements on the classroom-level progress report (e.g., a timestamp of a student’s last login), although they did not connect 
them to specific actions they could or would take with students. Teachers said that their formal professional development work 
on ST Math had occurred some time ago and wondered whether another round of training might be valuable to help them 
better understand what reports are available and how best to use them. 

Teachers had significant experience in using Star Reading reports because their district regularly used Star Reading as its 
universal screener and progress monitoring assessment for language arts as part of its Response to Intervention model. Based 
largely on their experience with Star Reading, teachers noted that Star Math reports were easy to understand and easy to use 
for assigning student groups. Additionally, teachers found the skills descriptions in Star Math reports easy to interpret and easy 
to develop potential instructional interventions around. Teachers reported using only a single Star report — the classroom-
level summary report — which they found particularly useful for understanding the performance of individuals as well as 
groups of students. Teachers also appreciated that Star reports provide cross-grade-level information (e.g., the teacher of a 
Grade 4 student who is significantly below grade level will see that the student needs Grade 3 skills development). Teachers 
said that this was essential for working with their students given the variation that existed in their classrooms. 

A clear vision emerged for how data from ST Math and Star Math could be combined. Based on their prior use of Star 
Reading and Accelerated Reader, a widely adopted digital reading platform from Renaissance Learning, teachers had 
experience with explicitly linking Star assessment results to recommended books in Accelerated Reader for students. This 
functionality helped teachers quickly and easily decide what students could or should work on. Teachers identified the potential 
value of aligning ST Math games and puzzles with the same standards used by Star Math. And while teachers noted that these 
types of combined data products could be useful, several comments addressed more than simply presenting data; teachers 
wanted additional functionality that let them assign individual as well as groups of students to ST Math activities based on Star 
Math results. 

4.2. Prototype Data Product Development 
Using the insights gained from the first focus group as well as researchers’ developing understanding of ST Math’s and Star 
Math’s data elements, researchers began developing data products with regular input from Renaissance and MIND around a 
core design idea: helping teachers connect the skills that students demonstrated on Star Math with student progress in ST Math. 
Framed in question form, “If a student earned X on Star Math, what should he or she be working on in ST Math?” Aligning 
what students work on in ST Math with their performances on Star Math was intended to help teachers group students and/or 
modify what objective a student could work on next in ST Math (e.g., DiCerbo & Korbin, 2016). To make progress on this 
design idea, the collaboration recognized the importance of mapping the mathematical content that students were assessed on 
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using Star Math and the content students were learning in ST Math. 

4.2.1. Mapping Content Across Instructional and Assessment Uses 
The mapping between ST Math games and Star Math domains took place over several weeks and required the insights of 
MIND, Renaissance, researchers, and teachers at the partnering school. For example, a school technology specialist worked 
with a group of teachers at the school to do initial mappings between Star Math and ST Math and reported significant challenges 
related to the scope of the task. The process involved organizing the skills and domains assessed in Grade 4 on Star Math (n = 
75) and the content covered across ST Math games in Grade 4 (n = 145). Across multiple meetings in which mappings were 
iteratively refined, 95 ST Math games were mapped to 56 Star Math domains. Given the need to develop data products between 
the first and second focus groups, we stopped the mapping process once we had reached an adequate number of mappings to 
create necessary prototypes. 

Domain-specific proficiency scores provided a way to align a student’s performance on a Star Math test with what the 
student could be working on in ST Math. For example, a student with a Star Math scale score of 633 could work on “explaining 
why a figure is line-symmetric” based on the entering proficiency score for that domain of 635. This particular Star Math skill 
was aligned with the ST Math game “Ice Cave.” Therefore, if a student had not yet already completed this game, it could serve 
as a reasonable recommendation for what that student could work on next. 

 

Figure 3. Game recommendations visualization. 

4.2.2. Prototype Visualization 
After developing the various content mappings between ST Math Grade 4 games and Star Math Grade 4 domains, we 
iteratively refined a series of visualizations that responded to teacher requests from the first focus group. Figure 3 is a sample 
visualization given to teachers in the second focus group. Prototypes were developed using R (R Core Team, 2019) and R 
Markdown (Allaire et al., 2019) files that were rendered in HTML. Figure 3 and Table 1 represent a single student’s recent 
Star Math results and ST Math progress. 

From bottom to top, the y-axis in Figure 3 organizes ST Math objectives in the order they are presented to students and 
teachers. We chose objectives over games as a way to organize ST Math content because teachers cannot assign individual 
games to students whereas they can modify the order of objectives. The x-axis presents Star Math scale scores. The scatterplot 
indicates whether a student has “Completed,” “Not Started,” or is currently “Working” on games within an ST Math objective. 
Based on a student’s Star Math scale score and projected growth, games and objectives were recommended for that student to 
work on. This is illustrated by the vertical gray bar, which signified a month’s worth of anticipated growth on the Star Math 
test. Therefore, the student represented in Figure 3 could potentially be working on six different objectives in ST Math based 

Recommended ST Math 
Objectives based on 
anticipated Star Math growth

Anticipated one month growth on Star Math

Most recent Star Math score

}
Games within ST Math Objective
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on her most recent Star score of 633. Beyond making recommendations, a teacher could also view whether a student was 
making adequate progress in ST Math based on his or her Star Math scores. 

Along with Figure 3, we provided teachers with a table that summarized other ST Math-related information such as the 
pre- and post-quiz scores for an objective, a mean-level score for that objective (i.e., an average of puzzles passed per level, 
per game), whether or not a student triggered a “hurdle” (i.e., 10 consecutive unsuccessful level attempts), and a flag for 
whether a student could be working on a given objective based on his or her Star Math score. This extra detail was intended to 
further support teachers’ instructional decision-making on what ST Math content to assign to individuals and/or groups of 
students. 

4.3. Focus Group 2: Reactions to Data Products 
Even though we initially had worked with Grade 3 and 4 teachers for the first focus group, we created mappings only for 
Grade 4 because of time restrictions; thus, only Grade 4 teachers participated in the second focus group. Teachers in this group 
appreciated having key information (e.g., Star Math score and Star Math grouping) organized together at the top of an 
individual student report (see Figure 3). While the teachers saw value in the summary information, they wanted “grade-level-
equivalent” information attached to the Star Math scale score. Teachers noted that the Star Math reports contextualized scale 
scores (e.g., a traffic light system of green for “on-target” and yellow for “at risk”) beyond what was presented in the 
partnership’s prototype visualization. Thus, as we combined data from the two platforms, we realized that we had dropped 
information that the teachers valued from Star Math’s original report. 

Overall, teachers had mixed reactions to the scatterplot in Figure 3. For some teachers, the scatterplot validated their 
experiences of the complexities involved in aligning ST Math content and standardized assessment results. Other teachers 
found the visual confusing and struggled with the idea that ST Math and Star Math had different sequencing of content. 
Teachers stated that they liked the “bottom-to-top” visualization of ST Math objectives, and while teachers saw value in 
visually tracking student progress in ST Math, they wondered whether their desire to reorder objectives for students would 
make the visual difficult to use in the long run. Lastly, teachers noted the potential utility of “target lines” or “on-track 
indicators” that contextualized where students should be in ST Math throughout the year based on pacing guidelines. 

Teachers had differing experiences understanding how students significantly above or below grade level were represented 
in the scatterplot. Students scoring in Grade 5 or higher according to Star Math were placed far off to the right of the scatterplot; 
students scoring in Grade 3 or lower according to Star Math were placed far off to the left. Some of the teachers understood 
this limitation of the visualization and found that it validated their prior experiences of some students needing something other 
than core Grade 4 math instruction. Other teachers, due in part to not understanding the limitation of the visualization, stated 
that these reports would not be helpful to them in working with students who were significantly above or below grade level. 
For students working at or near grade level, all teachers liked the gray “recommended” column for how students’ Star Math 
scores could be translated into which parts of the ST Math curriculum they could be working on. Teachers believed that this 
type of visualization, combined with an “on-target” visualization could provide them with meaningful insight into how ST 
Math and Star Math related to each another. 

For Table 1, all teachers liked the “all-in-one” presentation of ST Math data. They felt that this summarized student progress 
well and gave them the information they needed from ST Math reports in a single location. Teachers greatly appreciated the 
inclusion of the “hurdles” data. They reported that in class they relied on the “colour borders” displayed on their screens when 
students triggered a hurdle, i.e., 10 or more unsuccessful level attempts. However, teachers did not actively track this 
information over time. Hurdles data resonated with their experience of working with students in the classroom and with helping 
to identify students who may need additional support. Teachers also liked the “Recommended Objectives” column and 
understood how the recommendation information connected to the recommendation visualization in the scatterplot. 

Looking across both Figure 3 and Table 1 and echoing feedback from the first round of focus groups, teachers consistently 
voiced a need for data products that could 1) help them form instructional groupings of students and 2) identify content that 
individuals, groups, or the whole class is struggling with. In general, teachers noted that Figure 3 and Table 1 could, with 
modifications, be used to help group students more intentionally. For example, teachers noted that using hurdles information 
could help them identify students who passed an objective but may still need reteaching to ensure mastery. In considering both 
data products, teachers voiced a desire for the prototyped data reports to be more directive. While the data products were 
intended to provide teachers with recommendations, teachers wanted more definitive conclusions from the visualizations and 
tables. 
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Table 1. Consolidated ST Math data with recommendations 

 

5. Discussion 
The organizing idea for this project was that a collaboration among researchers, practitioners, and technology developers could 
help to overcome semantic and organizational data interoperability challenges. To address semantic interoperability, members 
of the collaboration worked to understand data generated by each system both in terms of student actions and teachers’ intended 
uses in order to combine data from each system. To address organizational interoperability, the collaboration worked to identify 
what a teacher would actually do with a data product that combined data from two systems in order to identify what data to 
attend to as well as any additional data alignments that needed to be developed, such as content mappings between the two 
systems. 

To address teachers’ needs related to providing ST Math recommendations based on Star Math scores, a relatively limited 
amount of data needed to be combined and shared. To develop the visualization depicted in Figure 3, for example, a student’s 
Star Math domain scores and scale scores were combined with a student’s progress on ST Math games and objectives. While 
limited in the volume of data that needed to be blended, data from ST Math needed to be summarized into the categories of 
“Not Started,” “Completed,” and “Working” to be combined with Star Math data, which amplifies the importance of 
understanding the underlying data in order to manipulate it accurately. 

The task of using assessment data to make instructional decisions remains conceptually and methodologically challenging 
(Connor 2019; Halverson, 2010). The collaborative approach adopted for this project sought to address issues of semantic and 
organizational interoperability through high-bandwidth interactions (Daft & Lengel, 1986) among researchers, practitioners, 
and developers in order to support instructional decision-making. In combining data and developing prototype data products, 
several challenges emerged. Some of the challenges may be inherent to the task of making instructional recommendations from 
assessment data (e.g., Schifter et al., 2014). For example, we observed that Star Math scores do not align in a perfectly linear 
manner with ST Math games and objectives. In Figure 3, a score of 580 or lower is aligned with both the first and last objectives 
in the ST Math Grade 4 progression. While the collaboration’s mapping between ST Math game content and Star Math domains 
could have contributed to non-linear alignments, these off-trend pairs may also indicate differences in how MIND and 
Renaissance view student progression through mathematics content. These differences may prove more challenging for other 
combinations of instruction- and assessment-focused technologies to overcome (Penuel et al., 2014). 

While there are multiple choices that technology companies can make in terms of the standards (e.g., xAPI or Caliper) and 
infrastructure they use to support data exchange, one piece of infrastructure for future data interoperability projects going 
forward may be data analysis tools that support the kind of semantic interoperability work that was central to this collaboration. 
LearnSphere, for example, represents a set of tools for analyzing learner event data so that multiple individuals can develop 
shared mental models. TeamSpace, which was developed by researchers at Digital Promise, is a cloud-based analytics 
workspace that helps educational organizations securely and collaboratively analyze complex data coming from one or more 
digital environments (Krumm, Roschelle, & Schank, 2019). Given the importance of communicating the meaning behind 
events and drawing on multiple individuals’ knowledge and expertise, LearnSphere and TeamSpace could play an important 
role in helping researchers, practitioners, and developers make sense of different data sources. Lastly, the kinds of collaboration 
described in this paper benefited from the lessons of previously successful interoperability initiatives — address real problems 
experienced by practitioners in schools and universities (e.g., Learning Tools Interoperability and single sign-on). The problem 
of joining data from Star Math and ST Math to support teachers’ instructional decision-making helped in shaping what data to 
attend to as well as ideas for how to manipulate and visualize data. Therefore, the concreteness of addressing specific problems 
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may help other systems overcome semantic and organizational challenges while taking advantage of technological 
interoperability advances (e.g., xAPI and Caliper). 

The collaboration described in this paper provides an example of both the semantic and organizational work that may need 
to take place in order to further accelerate multiple technical advancements. The collaboration, however, addressed semantic 
interoperability more fully than organizational interoperability, and as a single case, the findings from this collaboration may 
not generalize to other partnerships or interoperability projects. Moreover, the importance of higher-bandwidth interactions 
and aligning content between systems may be unique to the instruction- and assessment-focused technologies described in this 
paper. While a single case, the problem-focused, collaborative approach used in this project may be worth replicating given 
the lessons learned from this collaboration and previous efforts to join data from across multiple systems.  

6. Conclusion 
This project set out to understand how two learning technologies could share data with each another in order to develop data 
products that could support teachers’ instructional decision-making. In working to blend data across two technologies, this 
project identified important obstacles and the role that a collaboration among researchers, practitioners, and developers can 
play in tackling data interoperability challenges. While data interoperability is often framed in technical terms, this project 
highlighted the critical role that mapping content between instruction-focused and assessment-focused technologies can play. 
While standards for transporting data between systems continue to mature, developing the kinds of data products demonstrated 
in this paper required many individuals to make sense of multiple, distinct data streams and work with teachers to understand 
their needs for data products that combine data from multiple systems. Identifying ways to make these kinds of collaborations 
more efficient and effective could serve as an important problem to solve for those seeking to advance data interoperability. 
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