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Abstract 
The integration of computational modelling in science classrooms provides a unique opportunity to promote key 21st 
century skills including computational thinking (CT) and collaboration. The open-ended, problem-solving nature of 
the task requires groups to grapple with the combination of two domains (science and computing) as they 
collaboratively construct computational models. While this approach has produced significant learning gains for 
students in both science and CT in K–12 settings, the collaborative learning processes students use, including 
learner regulation, are not well understood. In this paper, we present a systematic analysis framework that combines 
natural language processing (NLP) of collaborative dialogue, log file analyses of students’ model-building actions, 
and final model scores. This analysis is used to better understand students’ regulation of collaborative problem 
solving (CPS) processes over a series of computational modelling tasks of varying complexity. The results suggest 
that the computational modelling challenges afford opportunities for students to a) explore resource-intensive 
processes, such as trial and error, to more systematic processes, such as debugging model errors by leveraging 
data tools, and b) learn from each other using socially shared regulation (SSR) and productive collaboration. The 
use of such SSR processes correlated positively with their model-building scores. Our paper aims to advance our 
understanding of collaborative, computational modelling in K–12 science to better inform classroom applications. 
 

Notes for Practice 
● This paper provides a framework that combines log data analyses and natural language processing to 

understand how CPS and regulation are employed in tasks of varying levels of difficulty and scaffolding. 

● Results indicate that students engaged in more socially shared regulation (SSR) and productive 
collaboration in more challenging, open-ended tasks than in scaffolded tasks. SSR also correlated with 
more productive co-construction of knowledge, leading to higher performance scores. 

● Our findings help build a better understanding of regulation processes and co-construction of knowledge 
during computational modelling in K–12 science. This understanding has the potential to inform the 
design of future environments and tasks to foster better collaboration and learning in computational 
scientific modelling and beyond. 
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1. Introduction 
Driven by the needs of 21st century education, stakeholders recognize that collaborative problem solving (CPS) and 
computational thinking (CT) are increasingly important skills for academic and career success for all students (Grover & Pea, 
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2013). CT skills, which collectively encapsulate a set of problem-solving strategies, represent an emerging area of interest in 
all K–12 science, technology, engineering, and mathematics (STEM) disciplinary work today (Henderson, Cortina, & Wing, 
2007). Interest in integrating CT in STEM learning is further motivated by current STEM workforce practices that increasingly 
rely on computational modelling and simulation tools for understanding, analyzing, designing, and solving problems (Grover 
& Pea, 2013; Landau, 2006). However, students face a number of challenges during computational modelling that include 
applications of CT concepts (e.g., conditional logic, loops) and practices (e.g., translating domain knowledge into 
computational form, debugging). There has been insufficient attention paid to understanding how students regulate their 
learning to overcome these difficulties. 

Evaluations of CPS during computational modelling have been an informative source for increasing our understanding of 
the regulation processes students implement to complete complex model-building tasks (Emara, Grover, Hutchins, Biswas, & 
Snyder, 2020; Grover, Hutchins, Biswas, Snyder, & Emara, 2019). Preliminary efforts targeting deeper understanding of CPS 
during computational modelling have demonstrated the impact of regulation of CPS in helping students overcome known 
computational difficulties, including debugging and applications of conditional logic (Emara et al., 2020). In addition, our 
prior analysis of collaborative discourse utilizing a CPS framework has increased our understanding of how students combine 
domain and CT concepts and practices to construct models and solve problems (Snyder et al., 2019). However, the 
measurement of CPS during computational modelling thus far has often focused on individual learning gains rather than 
examining the actual collaborative learning processes (e.g., Loksa & Ko, 2016; Peters-Burton, Cleary, & Kitsantas, 2018). 
Existing research recognizes the critical role played by learning analytics approaches to interpret student learning behaviours 
and learning processes during collaboration (Kapur, 2016; Soderstrom & Bjork, 2015). This includes the primary motivation 
for this paper, i.e., analyzing the content and linguistic features of student discourse linked to their knowledge construction and 
interaction processes using natural language processing (NLP) approaches (Fischer et al., 2020). Our work aims to contribute 
a systematic approach for understanding the regulation of CPS processes as students co-construct STEM computational models 
in an open-ended learning environment (OELE). Extending our previous work in which we implemented a coding scheme for 
the evaluation of verbal data (Emara et al., 2020), this work leverages the ideas of linguistic modelling (Ferreira, Kovanović, 
Gašević, & Rolim, 2018) to integrate our coding scheme with NLP methods and computational modelling process analysis of 
trace action data during model-building to target the following research questions: 

RQ1. What is the nature of CPS regulation activated by students when they work in groups on three different types of 
physics modelling tasks of varying complexity? 
RQ2. How do students’ self- and shared regulatory activities correlate with their performance (model-building scores)? 
RQ3. How do action patterns and problem-solving strategies derived using NLP emerge across collaborative computational 
modelling tasks of varying difficulty? 
There is increasing interest in designing adaptive support and timely feedback for CPS (Noroozi et al., 2019; Sobocinski 

et al., 2020). However, for adaptive collaborative modelling in OELEs, this support requires a better understanding of the 
regulatory processes underlying collaboration to provide the support when it is needed. The understanding gained through our 
analyses and answering of these research questions will aid the design of future learning interventions and collaborative 
OELEs. 

The remaining sections of this paper are organized as follows. In Section 2 we provide background literature on 
computational modelling and the regulation of CPS as well as measurement methods and analyses to provide a framing for our 
analysis approach and demonstrate how we extend the literature. In Section 3 we discuss the study and the Collaborative, 
Computational STEM (C2STEM) OELE, followed by the detailing of our analysis approach in Section 4. Section 5 presents 
our results and Sections 6 and 7 conclude the paper with a discussion on our findings, limitations, and future work. 

2. Background and Related Work 
2.1. Computational Modelling in Support of Synergistic Physics and Computational Thinking (CT) Learning 
Our work focuses on the evolution of students’ regulation of problem-solving processes across a sequence of computational 
modelling tasks. In our environment, C2STEM, students construct computational models using block-based, domain-specific 
modelling languages (DSMLs) to represent the behaviour of relevant scientific phenomena (Hutchins et al., 2020a). The 
environment also provides a discrete-time (step-by-step) simulation method that students can use to execute their models and 
analyze the behaviours generated by their models (Hutchins et al., 2020b). The learning-by-modelling framework illustrated 
in Figure 1, adapted from Hutchins et al. (2020a), demonstrates the subprocesses that students may employ to build 
computational models. Research has demonstrated the effectiveness of STEM as a vehicle to support the learning and 
understanding of computational concepts and practices (Papert & Harel, 1991; Hutchins et al., 2019; Sengupta, et al., 2013; 
Weintrop et al., 2016). In addition, computational models and CT have proven to be effective tools for the learning of difficult 
science concepts and practices (Hambrusch et al., 2009; Jona et al., 2014; Repenning et al., 2010), especially when introduced 
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through discrete and qualitative forms of fundamental laws, instead of equation-based continuous forms (Redish & Wilson, 
1993). This simultaneous benefit, or synergistic learning, is predicated on the idea that the dual engagement in STEM and CT 
extends opportunities to simultaneously apply and learn constructs of the target domains. 

 

 
 

Figure 1. Processes and subprocesses integral for learning-by-modelling (Hutchins et al., 2020a). 

Previous research has revealed some of the difficulties that students face in computational modelling tasks when they work 
individually, including difficulties translating STEM concepts and practices into computational form (Basu, Biswas, & 
Kinnebrew, 2016), debugging errors in developed computational models (Hutchins et al., 2020b), and explaining model 
behaviour based on model evidence (Grover et al., 2019). To evolve our understanding of these difficulties, incorporating 
research that targets CPS and examines student collaborative regulation of problem-solving skills may allow us to examine 
real-time processes that students employ to solve complex computational problems. For instance, Grover et al. (2019) 
demonstrated how a coordinated examination of regulation behaviours with an examination of student applications of STEM 
and CT can provide useful insight into how students debug their computational models, initialize appropriate STEM variables, 
and implement conditional logic. In the following sections, we will provide background supporting our CPS and regulation 
analysis approach in the context of computational modelling in STEM. 

2.2. Understanding the Regulation of CPS Processes During Computational Modelling 
To understand the regulation of CPS processes during co-construction of STEM computational models in an OELE, we derive 
our theoretical framework from key self- and socially shared regulation frameworks (Hadwin et al., 2018; Winne & Hadwin, 
1998). Models of regulation explain learning through different phases — often called micro-level processes. When solving 
problems, self-regulated learners use cognitive processes (e.g., read, represent, test) to solve their problem and metacognitive 
processes (plan, monitor, and evaluate) to control and monitor their problem solving. These learners often learn more than 
other students who do not engage in these regulation processes (Greene & Azevedo, 2009; Hadwin et al., 2018; Klahr & 
Carver, 1988; Winne & Hadwin, 1998). 

In collaborative problem solving, regulation happens both on an individual (SR) and on a group level (socially shared 
regulation; Hadwin et al., 2018; Wise et al., 2015). Socially shared regulation (SSR) can establish clear expectations and 
encourage group members to reflect on and combine their strategies and abilities in productive ways (Xie et al., 2018). 
Additionally, SSR can provide examples of productive collaboration through effective strategies like questioning, encouraging 
contributions from others, and clarifying or elaborating ideas (De Backer et al., 2015). However, students often experience 
difficulties in adequately regulating their problem solving during computational modelling by jointly adjusting their 
metacognitive and behavioural states as they translate their STEM knowledge into computational model representations (e.g., 
Hutchins et al., 2020a, 2020b; Sengupta, et al., 2013). Recently, there has been a lot of interest in understanding of regulation 
processes during CPS, especially during collaborative scenarios of different complexity (Noroozi et al., 2019; Sobocinski et 
al., 2020; Sun, Shut, Stewart, Yonehir, Duran, & D’Mello, 2020). However, there is a lack of clarity on how students’ 
productive and unproductive discussions interplay with micro-level cognition and metacognition regulation processes during 
collaborative, computational modelling in OELE. We believe that examining collaborative open-ended, problem solving 
during computational modelling through the lens of SR and SSR will provide insights into student collaboration as well as the 
learning of science and CT. 

2.3. Analyzing Regulation of CPS Processes During Computational Modelling 
Collaboration during science simulations has been studied through collaborative discourse (Roschelle & Teasley, 1995; Gobert 
et al., 2007). Analyzing regulation activities in the discourse data bears the potential to not only be a more reliable measurement 
but also a better predictor than self-reports or interviews (Molenaar & Chiu, 2014; Schoor & Bannert, 2012). 
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Researchers are beginning to explore uses of educational data mining and learning analytics to understand regulation of 
CPS processes (e.g., Dowell, Lin, Godfrey, & Brooks, 2020; Yett et al., 2020). Machine learning techniques can be used to 
deepen insights about how students engage in regulation of CPS processes by analyzing sequences of learning activities 
(Siadaty et al., 2016; Gašević et al., 2017). Most studies of regulation of CPS that applied machine learning used raw trace 
data derived from log-files as the main source of evidence (e.g., Järvelä, Malmberg, & Koivuniemi, 2016; Schoor & Bannert, 
2012). Recently, studies have attempted to assess student self-regulation processes while debugging by analyzing individuals’ 
think alouds combined with trace methodologies (e.g., Lin et al., 2015; Loksa & Ko, 2016) or a multiple-choice test where 
learners interacted with a computer agent (Liu et al., 2017). Limited research has combined collaborative discourse and trace 
action data in the context of open-ended problem solving to investigate differences in regulatory processes and learning 
behaviours. 

Finally, we aim to investigate student discourse and actions through the dual lenses of cognitive and metacognitive 
processes to understand the evolution of regulation processes of CPS during computational modelling in science. The benefits 
of evaluating the regulation of CPS processes over an extended period (across tasks) may offer new insights into understanding 
changes in computational modelling processes as well as the impact of computational modelling task difficulty on regulation. 
For example, Malmberg et al. (2014) provide empirical evidence showing students using different types of self-regulatory 
activities during different challenging problems. 

2.4. Natural Language Processing (NLP) and CPS 
Our work is grounded in the research on linguistic modelling of CPS processes and outcomes, such as knowledge co-
construction (Weinberger & Fischer, 2006), argumentation (Rosé, et al., 2008), and task performance (Amon, Vrzakova, & 
D’Mello, 2019). A large majority of NLP research has focused on surface-level text processing (e.g., pitch, tone, and/or turn-
taking) to help interpret group functioning, and the available tools consequently emphasize the central role of accurate word- 
and sentence-level text processing (Praharaj, Scheffel, Drachsler, & Specht, 2018) rather than the semantic meaning of the 
utterances. Within the context of learning analytics of computational modelling, we aim to integrate NLP to support the 
semantic analysis of human dialogue. Thus, we focus on tools developed to calculate linguistic indices that move beyond these 
surface-level tasks and provide information that may be more important within educational contexts. Multiple characteristics 
of language can be gleaned from the words (including n-grams and POS) and captured using both techniques for analyzing 
observable features (e.g., word frequencies, word-document distributions) and latent meaning from the text (McNamara, 2011). 

Recently, there has been a growing effort to apply NLP analytics strategies to study learner roles and regulation in 
collaborative discourse in terms of word, sentence, and paragraph counts; word cloud visualization; sentiment analysis; and 
lexical diversity type-token ratio calculations to determine text cohesion. For example, Dowell et al. (2020) applied a 
computational linguistic framework to analyze the sequential interactions of online team communication and to detect roles in 
regulation, social coordination, and meaning-making in discussion. In addition, Sullivan and Keith (2019) used a parts-of-
speech (POS) tagging program to automatically parse a transcript of spoken dialogue collected from a small group of middle 
school students involved in solving a robotics challenge. They grammatically analyzed the dialogue at the level of the tri-gram. 
They then interpreted the POS tri-grams within the theoretically derived actions and objects in their specific robotics problem 
space. 

Our research focuses on analyzing discourse data about computational modelling captured on video and audio in our 
learning-by-modelling environment, C2STEM. Our work is comparable to that of other educational researchers who have 
focused frequencies of n-grams (i.e., word sequences of length n) in verbal language such as Sullivan and Keith (2019), 
Worsley and Blikstein (2011), and Stewart et al. (2019). However, our study differs from these efforts in that we seek to 
understand unprompted regulation of CPS conversations in-situ and in-process during computational modelling in STEM 
learning. More interestingly, we suggest a combined use of two well-established analytic techniques in the field of learning 
analytics — process mining (PM) and NLP — to define how groups adapt their behaviours and explore different options in 
their collaboration when confronted with challenges. Although both techniques have been used for analysis of collaborative 
learning, their combined use has been limited. This paper demonstrates how the two methods can complement each other in 
the analysis of collaborative learning in the context of an OELE. In the following section, we detail our collaboration study, 
the C2STEM OELE, and our data collection process. 

3. The Study 
3.1. Participants and Setting 
The study was conducted in a high school classroom run on a university campus in the Southern United States. The students 
were participants in a selective program designed to immerse high school students in advanced academic experiences in a 
university setting. These students previously completed a 4-week, daily summer immersion program in which they participated 
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in collaborative projects and activities; therefore, they had prior experience working with each other. Fourteen 9th grade 
students (six female and eight male; mean age 15 years) were assigned to five groups. The grouping yielded one all-male dyad 
and four mixed-gender triads. The groups were formed by a member of the research team who had worked with some of the 
participants previously. All groups contained a student with prior C2STEM experience and the remaining students were 
randomly assigned. 

3.2. C2STEM Environment and Tasks 
The C2STEM environment uses NetsBlox (Broll et al., 2017), an extension of Snap!,1 with custom domain-specific blocks 
(e.g., blocks for setting and updating position, velocity, acceleration, and heading) that help learners focus on physics concepts. 
Groups worked on our curriculum once a week for two months. Following a 45-minute training unit that introduced students 
to C2STEM, students worked on two C2STEM modules that covered 1D motion with acceleration and 2D motion with constant 
velocity. Our curriculum is scaffolded by types of tasks to support a progression in complexity of STEM and CT concepts and 
practices and is described in detail in Hutchins et al. (2020b). In our analyses, we focus on instructional and challenge tasks. 
Instructional tasks centre on domain (physics) concepts, with minimal CT applications (especially applications of known 
difficulties such as conditional logic), and represent the lowest complexity for our analyses. Although minimal instruction is 
provided (for instance, students are tasked to “Simulate the motion of the sloth moving to the right with a constant velocity of 
10 m/s starting at a position of 0 m”), instructional tasks are the first implementation of newly introduced STEM constructs 
and we hypothesize that previously identified difficulties such as the translation of STEM into computational form (Basu et 
al., 2016) may be exacerbated at this time. The challenge tasks require more advanced CT applications with students having 
to critically think about the program structure and CT to successfully solve the problem. For the example group solution for 
the 2D motion challenge task in Figure 2, students were tasked to “Simulate the motion of the boat crossing the river, stopping 
at both islands along the way.” Challenge task complexity increased slightly from the 1D challenge task to the 2D challenge 
task. As the 2D challenge task was implemented at the end of the second physics unit, we hypothesize that with adequate 
knowledge gains in physics and CT over the course of the unit (with an average of three tasks prior to the challenge), 
collaborative problem-solving approaches will improve (e.g., abilities to develop a shared understanding of expectations and 
implementations of the model). 

 

 
Figure 2. Example 2D constant velocity student group solution. 

3.3. Data Collection 
Each group worked on a single computer. Students in the group were instructed to switch between “driver” and “navigator” 
roles (Williams et al., 2002) between tasks. Visual and verbal behaviour was recorded using OBS™ screen-capture software 
that recorded mouse movements, video, and audio. All sessions for the five groups performing the three tasks were videotaped, 
resulting in fifteen sessions with 11 hours of video recordings. In addition, one camera was used to capture pictures and sound 
for all students. The recorded sessions provided insight into group regulation behaviours across the three problems in the 
C2STEM environment. 

4. A Multimodal Learning Analytics (MMLA) Approach to Evaluating CPS  
Our efforts target a deeper analysis of CPS through the mapping of logged model-building action sequences with group 
discourse using an NLP approach to collaborative discourse analysis. The goal is to evaluate how approaches to CPS as 

 
1 http://snap.berkeley.edu/ 
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evidenced through group discussions may impact model-building processes and vice versa. Figure 3 illustrates our analysis 
framework. 

 
Figure 3. The methodological steps followed for the combined use of PM and NLP. 

In order to accomplish this, we 1) adopt a theory- and data-driven framework for analyzing and interpreting student actions 
based on a hierarchical task model (cf. Grover et al., 2017; Kinnebrew, Segedy, & Biswas, 2017); 2) apply our coding scheme 
for student regulation processes (Emara, Tscholl, Dong, & Biswas, 2017; Emara et al., 2020); 3) implement an exploratory NLP 
approach to identify and evaluate CPS topics (e.g., explanatory vs. instructional discourse) based on our prior human coding 
and analysis work; and 4) evaluate student learning using an evidence-based rubric that captures the STEM and CT concepts 
and practices required for each computational modelling task. Table 1 provides hypothesized applications of productive and 
unproductive collaboration during computational modelling that will be tested and evaluated in our analyses. In the following 
subsections, we will detail our approach for each type of analysis, and refer back to previous work that labels these processes 
as “productive” or “unproductive.” 

Table 1. Framing Our Multimodal Collaborative, Computational Modelling Analysis Approach 
Collaboration STEM+CT Regulation Model-Building Processes CPS Discourse 
Productive High task 

scores 
Predominant 
socially shared 
regulation 
 
Evidence of 
model planning, 
reflection 

Processes indicate 
systematic implementation 
of actions (e.g., running 
simulation and evaluating 
data tools to support error 
identification) 

Use of explanatory 
words such as 
“because,” “think” 
 
Use of conversation 
guiding words such 
as “how” 

Unproductive Difficulties in 
STEM and 
CT, or both as 
evidenced by 
task scores 

Predominant 
self-regulation 
 
Lack of problem 
explanation or 
interpretation 

Processes do not 
demonstrate systematicity 
and/or represent a more 
trial and error approach 

Use of instructional 
verbiage such as 
“do [action]” 

4.1. Process Mining 
Interpreting actions is more productive if we can associate them with the specific goals (i.e., the context) that students may 
have when performing a set of actions. For our analysis, the student actions were represented at a level of abstraction, so that 
action patterns could be derived and semantically interpreted in terms of students’ model-building processes (Segedy, 
Kinnebrew, & Biswas, 2015; Werner et al., 2013). In order to represent student actions in C2STEM at a level of abstraction 
that makes it easier to interpret their modelling action sequences, following previous work (e.g., Hutchins, Biswas, Grover, 
Basu, & Snyder, 2019), we created the task model illustrated in Figure 4. We extracted and interpreted student action sequences 
that are linked to code construction and code evaluation and can be linked to key subprocesses described in Figure 1 (e.g., 
“Identify model errors based on evidence and expectations”). For example, students may execute or “PLAY” their model code 
to see (evaluate) if the generated motion matches their intuition of the correct motion of the object. We provide example 
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screenshots of actions from the Task model (Table 2) for context supporting interpretation of the results. 
 

 
Figure 4. C2STEM task model. 

Table 2. Example C2STEM Actions from Task Model 
Actions description  System view 
REMOVE action: The student removed 
the “change x position by [expression]” 
DSML block and it is no longer visible 
on the script area (where block-based 
language elements are added to develop 
the task’s executable code). 

 
SAVE action: In this scenario, the 
student moved a block (the “if” 
statement) from the executable code 
(code connected to a flag that will 
execute when the green flag is clicked) 
to the script area. The code is still visible 
and intact, allowing for later use if the 
student elects to do so. This action is 
similar to a student commenting out 
their code. 

 
An OPEN action will open the table or 
graph (depending on selection) and a 
CLOSE action removes the data tool 
from view. In order for values to be 
added to the data tool, a variable must 
be selected (the RECORD action in the 
task model). When variables are 
recorded, the values will also be 
presented on the stage (indicated by the 
oval “Truck x position in m [value]” 
shown on the top right of the image). 
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Over the course of three tasks, the log files included (2,205) actions performed by five groups (i.e., 15 sessions). For this 
study, we track the evolution of the students’ computational modelling over three tasks of differing difficulty by looking for 
differences in their action patterns using the process mining (PM) algorithm (Günther & Van Der Aalst, 2007). Process mining 
methods reveal the frequencies and sequences of actions by exploring dependencies between actions (van der Aalst, 2011). 
The analysis of the created log file was performed using ProM 6.9 (2019). We used the heuristic mining algorithm as the 
dependency values, ranging between –1 and 1, between all possible combinations of events and computed using the following 
formula (Weijters, van Der Aalst, & De Medeiros 2006, p. 7): 

 

 

 
Based on an event log W, the strength of a dependency relation between two events, A ⟹w B, is computed using the 

number of times event a is followed by event b, subtracted from the number of times event b is followed by event a, and divided 
by the number of occurrences of these two relations, plus 1. The number of relevant (a follows b) event sequences and its 
opposite (b follows a) together influences the dependency value. When building a dependency graph, we set the following 
thresholds to their default values for events to be modelled (see Weijters et al., 2006 for more details): 

1. Dependency measure threshold: minimum strength of dependency between events. 
2. Positive observation threshold: minimum value of supporting dependency frequency between events. 
3. Relative to best threshold: minimum value of the difference between event dependency value with the maximum 

dependency value. 
4. Length-one threshold: minimum value of same event dependency. 
5. Length-two threshold: minimum value of looping pair event dependency. 
To check the behaviour proportion on event logs in the model, the fitness significance is calculated (defined in Kurniati, 

Kusuma, & Wisudawan, 2016; Sonnenberg & Bannert, 2015) using the following formula: 
 

fitness(σ) = 
1
2

(1-
m
c

) + 
1
2

(1-
r
p

) 
 
The fitness significance is calculated by replaying every trace using the following four measures: 1) p (produced token), 

2) c (consumed token), 3) m (missing token), and 4) r (remaining token). The higher the fitness value, the higher the similarity 
between the model and the activity sequence. In a review of state-of-the-art process discovery algorithms, De Weerdt et al. 
(2012) found that the heuristic miner algorithm was especially suitable in a real-life setting, and the algorithm has been 
successfully used in the past for discovering collaborative regulation processes (e.g., Sonnenberg & Bannert, 2015; Sobocinski 
et al., 2017). 

4.2. Identifying Processes and Types of CPS Regulation During Computational Modelling 
All discourse from the video-audiotaped sessions were coded using the software ATLAS.ti 8 and the output of co-occurrence 
of data was used as input for creating CORDTRA diagrams. The coding procedures focused on students’ discourse interaction. 
In stage one, the macro and micro levels of cognition and metacognition regulation utterances were identified (based on 
indicators derived from Klahr & Carver, 1988; Winne & Hadwin, 1998). As each annotation can potentially contain several 
regulation processes, the unit of analysis was a sentence segment, which in most cases was a complete subordinate or dependent 
clause. The micro level of cognition processes during computational modelling were identified when student talk was about 
problem identification, problem representation, and/or model test and assessment (Klahr & Carver, 1988). On the other hand, 
the micro-metacognitive processes were identified when students negotiated and developed task understanding, planning and 
enactment, and monitoring and evaluation. We also identified off-task talk. Table 3 represents our coding scheme used to 
identify macro- and micro-cognitive and metacognitive regulation processes with example threads. Inter-rater reliability for 
the cognitive and metacognitive regulation of process coding was checked for 20% of the data, resulting in Cohen’s kappa 
values of k = 0.94 and 0.89, respectively, which represents excellent agreement (Blackman & Koval, 2000). 
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Table 3. Coding Scheme for Cognitive and Metacognitive Regulation Schemes Along with Description and 
Representative Quotes from Transcripts 

Macro level Micro level Description Example 

Metacognition Problem 
understanding 

• Analyze and understand the task requirements 

• Describe how reading about a specific item 
could help them to solve a problem 

• Recognize the problem by giving examples 

S3: “It will let us accelerate in 2D 
air because that is when we start 
factoring in gravity. So then, start 
simulation, simulation step.” 

 Planning and 
enactment 

• Determine and describe: 

– what actions, blocks and resources are 
needed or what to do next 

– a goal for the work to be done; the group 
sets a task-specific goal 

• Applying appropriate strategy changes 

S2: “let’s make this an if else and 
put stop simulation in the else so 
once it gets there it should stop 
moving” 

 Monitoring 
and reflection 

• Provide feedback to ideas or solution with 
explanation 

• Explain and analyze components that are 
responsible for the misbehaviour 

• Use data tools to evaluate codes 

S1: “You’re right. Do you know 
how many operators it’s going to 
be? It’s going to be so many 
operators” 

Cognition Problem 
identification 

• Read the task instructions but do not interpret 
the task requirements 

• Recognize that there is a problem (error) but 
provide no explanation 

S1: “the boat doesn’t stop” 

 Problem 
representation 

• Externalize actions or steps while generating 
the model but provide no explanation 

• Verbalize trial and error or guess and check 
strategies 

S1: “change y position in here. 
“Just do trial and error” 

 Model test and 
assessment 

• Ask for testing their model but do not follow 
up with debugging 

• Students do not know what to do after a 
negative outcome 

• They change their course of action to avoid a 
negative outcome again, but they do not look 
for evidence to know if the change will lead 
to a positive outcome 

S1: “I don’t know what’s going 
on?” 

S3: “Just click green flag” 

 
In the second stage of video coding, types of shared regulation were coded by first identifying segments that were promising 

as evidence of initiative-response relationships between turns of talk (Kneser et al., 2001). Thus, the coding unit was at the 
episode level, which means that coding could be assigned to a single talk turn or alternatively to several consecutive talk turns 
together, depending on the content of the group’s interaction. We relied on prior analysis schemes as a guide to develop our 
collaborative regulation coding categories (Malmberg et al., 2017; Emara et al., 2017). Two coders coded for the types of 
regulation based on the indicators in Table 4. Inter-rater reliability was checked by calculating Cohen’s kappa value, which 
resulted in very good agreement for SSR (k= 0.81) and SR (k= 0.74). 
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Table 4. Categories Describing Regulation Types During CPS and their Social Interaction and Transactive Indicators 
Regulation 
code 

Social interaction and interactive indicators in CPS 
processes 

n-gram 
examples 

Part of speech 
(POS tags) 

SR • Students not contributing to each other’s work, or any 
form of communication. 

• One student externalizes his knowledge or activities 
but the partner does not contribute to the discussion; 
may show some signs of joint attention by back-
channelling or nonverbal reactions (e.g., nodding, eye 
contact). 

• One of the students explains their problem-solving 
process (thinks aloud) to the others; the others 
confirm/repeat to externalize the approach but do not 
add anything new to the discourse. 

• CPS Approach Topics: Instructive, Directive  

“I know how,” 
I know what” 

Pronoun, 
Verb 1st 
person, Wh-
adverb (PR, 
VBP, WRP) 

SSR • Students build on each other’s contributions using 
argumentation, explanation, and consensus on next 
steps. 

• Proposals and ideas for next steps are not passively 
accepted but negotiated and may lead to protracted 
discussions by adding and integrating new 
information by combining each other’s ideas. 

• Students adapt by negotiating a different strategic 
method to the task (debating each question as a 
group). 

• Discussions involve what to do next (and why), how 
a proposed action fits into an overall plan, how to 
proceed after an assessment, and so on. In these 
discussions, students are likely to verbalize their 
problem-solving strategies and demonstrate CPS 
processes. 

• CPS Approach Topics: Interactive, Explanatory 

“Think if you” 
“Look at this” 

Verb 1st 
person, 
Subordinate 
Preposition, 
Verb 2nd 
person (VBP, 
IN, VBZ)  

 

4.3. NLP Analysis 
Trace data that does not integrate discourse typically lacks key contextual and problem-solving information to derive a more 
complete understanding of the group processes. Identifying key phrases as relevant for types of regulation of CPS may help 
us in developing feedback mechanisms based on the recognition of applied phrases. In this study, we seek to extend our prior 
human-coding approaches to discourse analysis to better understand how finer-grained aspects of the group regulation in CPS 
influences computational modelling by utilizing natural language processing (NLP; Rosé et al., 2008), and specifically the text 
mining approach, Part-of-speech (POS) n-grams (Sullivan & Keith, 2019). In our analysis, we focused on the following 
features (building on Rosé et al., 2008; Sullivan & Keith, 2019), available in the publicly downloadable version of Rapidminer, 
to exploit context for developing a more complete understanding of the student discourse. 

4.3.1. Data Pre-Processing 
Before representing the data using POS n-gram, the data was processed by the removing repeated words (e.g., wait wait wait), 
strings with repeating characters (e.g., Noooo or ohhhh), and punctuation. All data was made lowercase. An n-gram word-
based tokenizer was created to slice the text based on the length of n. After tokenizing the data, we transformed the tokens into 
a standard form (i.e., stemming). Stemming changes the words into their root, and decreases the number of word types or 
classes in the data in order to allow some forms of generalization across lexical items, for example the words stable, stability, 
and stabilization all have the same lexical root (Rosé et al., 2008). 
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4.3.2. POS n-grams 
We then identified n-gram word sequences of text that occurred more often than expected. To perform the n-gram analysis, 
the transcripts of the words uttered by students were broken down into uni-, bi- and/or tri-gram word segments. We combined 
n-gram with POS n-grams. POS tagging tokenizes individual words and then utilizes computational methods to assign a POS 
(such as noun, verb, coordinating conjunction) to each word. The choice of n-grams based on POS tag patterns has been 
recommended in recent studies (e.g., Sullivan & Keith, 2019) because it helps not only to focus on the word sequences but 
also on their grammatical categories. They can be used as proxies for characterization of syntactic structure (Rosé et al., 2008). 
Thus, they may capture some formal information, such as the difference between “the answer, delta t is” vs. “delta t is the 
answer.” 

In this study, we focused on tri-grams because we found that the tri-gram unit of analysis helped us to better understand 
macro- and micro-regulation processes as well as how the different types of regulation are activated in the CPS discourse while 
building computational models. This approach is like that of other researchers (cf. Bakliwal et al., 2011; Sullivan & Keith, 
2019). According to our data, we considered a phrase of “not know why” to demonstrate how uni-gram and bi-gram do not 
carry sufficient information for understanding students’ regulation discourse. For example, when we move to bi-gram as a unit 
of analysis the results are “not know” and “know why.” The bi-gram “know why” has a sentiment towards positive feeling of 
knowledge and “not know” is negating the feeling of knowledge. The tri-gram “not know why” gives enough information to 
classify the tri-gram in the negative context. For the purposes of this analysis, we selected more frequently occurring tri-gram 
segments for each group, deemed unique tri-grams. A unique tri-gram is defined to have occurred in a minimum of five 
segments of text across all sessions. 

Following the work of Sullivan & Keith (2019), we combined our manual coding of regulation of CPS with automated 
suggestions derived from n-grams and POS matching. POS taggers helped us identify types of utterances that could be mapped 
onto the target regulation process, utilized in Malmberg et al. (2017) and Emara et al. (2017), and defined in the “Social 
interaction and interactive indicators in CPS processes” column of Table 4. Using domain expertise and the theoretical model 
of CPS regulation, we mapped each POS tag string to a code in the regulation of CPS coding scheme (Tables 3 and 4). By 
using POS n-gram, it was not the specific words that mattered, rather it was the grammatical role the words played in the 
overall structure of the utterance that mattered. The mapping of POS n-grams to CPS regulation codes included manual 
evaluation of the n-grams in the context of the computational modelling currently being performed. Example n-grams and POS 
tags from this process are provided in Table 4. 

4.3.3. Feature Extraction 
We applied feature extraction using TF-IDF to reduce the text feature size and avoid analysis in high dimensional feature 
spaces. TF-IDF is a weighting metric often used in information retrieval and natural language processing. It is a statistical 
metric used to measure how important a term is to a document in a dataset, in our case, the collaborative discourse recorded 
during each task. The goal of this application was to differentiate unique tri-gram use across three different computational 
modelling tasks (each modelling task having a unique document, or group conversation) to answer RQ3. A term importance 
increases with the number of times a word appears in the document; however, this is counteracted by the frequency of the 
word in the corpus. One of the main characteristics of IDF is that it weights down the term frequency while scaling up the rare 
ones (Mohammed & Omar, 2020). For example, words such as “the” and “then” often appear in the text, and if we only use 
TF, terms such as these will dominate the frequency count. However, using IDF scales down the impact of these terms. 
Resulting terms from the POS tri-gram analysis were ranked with this measure. Three terms with the highest percentage from 
each task’s conversations were identified (Figure 8b, 9b, 10b) and manually compared to our researcher generated CPS 
approach topics (Table 4) in order to evaluate group CPS based on our hypotheses described in Table 1. 

4.4. CORDTRA Diagrams 
To understand in more depth how regulation macro- and micro-level processes unfold over time and how these processes 
emerge according to types of regulation, we present a case example for each task using the Chronologically Ordered 
Representations of Discourse and Tool-Related Activity (CORDTRA) diagrams (Hmelo-Silver et al., 2008). We used this to 
study distinct groups’ actions for the three different tasks in the C2STEM computational modelling environment. 

4.5. Scoring Model-Building 
Model-building tasks were scored using the rubric outlined in Table 5. The students’ model building scores were normalized 
to a [0,1] value using the measure, -𝑠𝑐𝑜𝑟𝑒 −𝑚𝑖𝑛/𝑚𝑎𝑥 −𝑚𝑖𝑛). 
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Table 5. Rubric for Evaluating Student Models for the Challenge (C) Tasks and Instructional (I) Task 
 Description/Example Points  
Expressing physics relations in a computational model 1D 

(C) 
2D 
(I) 

2D 
(C)  

Program initializes (x/y) position 
to the correct starting value the variable must be set to the 

initial value stated in the problem 

1 1 1 

Program initializes (x/y) velocity 
to the correct starting value the variable must be set to the 

initial value stated in the problem 

1 1 1 

Program initializes (x/y) 
acceleration to the correct 
starting value 

the variable must be set to the initial value stated in the 
problem (e.g., for y-direction):

 
Or hardcoded -9.8; must update velocity correctly 
(above) 

1 - - 

Program initializing heading to 
the correct starting value  the variable must 

be set to the correct value 

- 1 1 

Program expresses correct 
relations among velocity, 
position, and time, and correct 
units for each 

must use equations or use multiply operator and 
hardcode the values for velocity and delta t; partial 
credit for hardcoding change (e.g., if velocity is 2 and 
delta t is 1, but they use the change block and insert the 
value “2” without using operators/expressions 

1 1 1 

Program expresses correct 
relations among acceleration, 
velocity, and time, and correct 
units for each 

see similar description for changing position 

1 - - 

Program expresses correct values 
for updating velocity (2D) or 
acceleration (1D A) 

the associated variable (based on task description) is 
updated to reflect the changing physics behaviour of the 
model (e.g., acceleration is reset to simulate the slowing 
down of the truck) 

1 - 1 

Program updates heading 
correctly update the 

variable with the correct value 

- 1 1 

Program accuracy The model achieves the desired simulation goals (e.g., 
completes the physics behaviour) described in the task 
instructions in order to solve the assigned problem. 

1 1 1 

Using programming concepts to model physics phenomena 
 

   

Program makes the distinction 
between actions that need to 
happen once during initialization 
and actions that need to be 
repeated in the simulation step 

Set actions happen under green flag (exception: set 
acceleration in the truck stop task); change typically 
happens under sim flag; this is the only rubric in which 
the “simulation step” structure is scored 

1 1 1 

Program initializes variables 
utilized in updating the 
simulation behaviour 

If a variable is updated and/or used in the updating of 
the object’s behaviour, it needs to be initialized; no 
extraneous variables set 

1 1 1 

Program initializes delta t for use 
in modelling desired 
relationships (see STEM domain) 

Distinguishing delta t from the above rubric item; 
potential for correlating initialization of delta t to 
understanding of dynamic behaviour changes 

1 1 1 

Program sets initialized variables 
in the correct fashion 

Set block used (cannot initialize variable by using 

change block);
generalizability 

- 1 1 
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Table 5. (Continued). Rubric for Evaluating Student Models for the Challenge (C) Tasks and Instructional (I) Task 
 
 Description/Example Points  
Using programming concepts to model physics phenomena 
 

1D 
(C) 

2D 
(I) 

2D 
(C)  

Program updates variables with 
correct function 

Change blocks used to update variables in the correct 
manner, if new value needs to be set (e.g., acceleration 
changes) then set block used 

1 1 1 

Program updates variables with 
correct operators/ expressions 

Scoring use of operators and expressions to create 
generalizable code; no hardcoding if possible 

1 1 1 

Program updates initialized 
variables in the correct sequence 

Change velocity before changing the position at each 
simulation step 

1 - 1 

Program updates/ sets initialized 
variables under the correct 
conditions 

For instance, the truck stop handles significant 
conditional logic regarding speed limits; look ahead 
distance to start slowing down to a stop 

2 - 2 

DRY (Don’t Repeat Yourself) 
principle achieved 

No duplicate code; all connected code is reachable/can 
be executed 

1 1 1 

Simulation ends based on 
stopping logic 

Correct condition set to stop simulation appropriately 1 1 1 

5. Results and Discussion 
5.1. RQ1: What is the nature of CPS regulation activated by students when they work in groups on three 

different types of physics modelling tasks of varying complexity? 
Table 6 depicts increasing adoption of SSR regulation by the five groups as the task complexity increases. Concurrently, self-
regulation decreases commensurately from the instructional task to the 2D challenge task. Similarly, adoption of metacognitive 
planning grows from the 2D instructional task (5%) to the 2D challenge task problem (14%). Table 6 shows a dominance of 
model test and assessment and monitoring and reflection in all tasks. Despite an increased adoption of model testing and 
assessment in the 2D instructional and the 1D challenge tasks, this evolution is less pronounced compared to the trends in 
metacognitive monitoring for the 2D challenge problem (31%). In contrast, metacognitive task understanding remains small 
and rather stable. This echoes the findings of Iiskala et al. (2011) since they detected more and longer episodes of SSR for 
difficult problems as compared to moderately difficult and easy problems. 

Table 6. Mean Frequency of Occurrence of Cognition and Metacognitive Regulation During the  
Three Tasks of Different Complexity (shown as percentages, with standard deviation in parentheses) 

Modules Metacognition Cognition Regulation 
types 

Task 
understanding  

Planning 
and 
enactment 

Monitori
ng and 
reflection 

Problem 
identification 

Problem 
representation 

Model test 
and 
assessment 

SSR SR 

Instructional 
Task: 2D 
constant velocity 
(n= 5 groups) 

2% (1%) 5% (1%) 20% (4%) 4% (2%) 30% (7%) 39% (8%) 39% 
(3%) 

61%  
(9%) 

Challenge Task 
#1: 1D motion 
with acceleration 
(n= 5 groups) 

6% (1%) 7% (2%) 21% (4%) 9% (2%) 23% (2%) 34% (3%) 47% 
(9%) 

53%  
(7%) 

Challenge Task 
#2: 2D constant 
velocity 
challenge (n= 5 
groups) 

5% (4%) 14% (1%) 31% (2%) 7% (2%) 18% (5%) 25% (3%) 68% 
(4%) 

32%  
(2%) 
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5.2. RQ2: How do students’ self- and shared regulatory activities correlate with their performance (model-
building scores)? 

To address this question, the partial correlation coefficient between computational modelling scores (Table 7) and SSR 
proportion of problem solving per group was calculated (Table 8). When we control for proportion of total time spent, number 
of actions in each group, a positive relationship between the frequency of SSR and the model-building scores (r = 0.30, p=0.29) 
was found. Specifically, there was a significant positive relationship between the frequency of SSR and the physics score (r= 
0.68, p=0.007). Similar results were also reported by Oshima et al. (2020) and our results confirm other findings on the 
important relations between collaborative metacognitive regulation (Winters & Alexander, 2011) and socially shared 
regulation (Järvelä et al., 2016) and learning performance. A plausible explanation is that students find it hard to solve the 
challenge tasks on their own, and this increases their awareness and need for socially shared regulation. This echoes Sobocinski 
et al. (2017) who found that when groups are confronted with challenges, they adapt their strategies and explore different 
options in their collaboration by jointly regulating their problem-solving activities. 

Table 7. Group Performance on Model-building Scores and Normalized Scores 
 
Group 
Performance 

Instructional Task: 2D  
constant velocity problem 

Challenge Task #1: 1D motion 
with acceleration problem 

Challenge Task #2: 2D constant 
velocity challenge problem  

Total 
score 
(13) 

PHY 
score 
(5) 

CT  
score  
(8) 

Total 
score 
(17) 

PHY  
score 
(6) 

CT  
score  
(11) 

Total 
score  
(18) 

PHY  
score 
(7) 

CT score 
(11) 

Mean Score 
(SD) 

11.8  
(1.4) 

4.2 
(0.7) 

7.6  
(0.8) 

15.2  
(1.3) 

5.2  
(0.4) 

10  
(1) 

14.8  
(2.4) 

5  
(1.2) 

9.8 (1.3) 

G1 9.5 3.5 6 14 5 9 10.5 3 7.5 
G2 12 4 8 16 5 11 16.5 6 10.5 
G3 13 5 8 17 6 11 15.5 5 10.5 
G4 11.5 3.5 8 15 5 10 16 5 11 
G5 13 5 8 14 5 9 15.5 6 9.5 

Table 8. Correlation between Group Performance on Model-building Scores, and Two Types of Regulation (SSR and SR) 
Type of regulation  Physics score CT score Total scores 
SSR Correlation .688* .168 .300 

Sig. (2-tailed) .007 .565 .297 
SR Correlation  -.601** -.163 -.291 

Sig. (2-tailed) .005 .566 .301 
 
To illustrate these findings in more depth, we describe a case example demonstrating the change in a group’s way of 

thinking and talking about how to solve the problem supported by CORDTRA diagrams (Figure 5, 6, 7). We selected Group 4, 
who performed at or above the median split of the computational modelling task scores on all tasks (see Table 7). 

Group 4’s instructional task performance (Figure 5) demonstrated higher frequency of SR than SSR, with a focus on 
cognitive processes, especially at the beginning of the task (when the focus on scaffolding is greater). Transitioning to the first 
challenge task, the group switched between SR and SSR episodes throughout the model construction process, but as can be 
seen in Figure 6, the frequency of SSR increased by the end of task. We hypothesize that this may be a result of increased 
debugging based on our previous findings targeting collaborative regulation in debugging (Emara et al., 2020). Finally, as 
shown in an example in Figure 7, Group 4’s regulatory processes improved by the time they worked on the final 2D challenge 
task. The group began the modelling process enacting socially shared regulation with metacognitive planning and task analyses 
followed by plan monitoring. This decreased the conflicts in problem interpretation and increased students’ shared task 
understanding (see examples in Table 11). This is supported by Sobocinski et al. (2020) and Paans et al. (2019) who reported 
that when students start their task by taking turns and combine planning with monitoring and reflection while simultaneously 
giving feedback to each other on strategies to employ in developing the problem solutions, this can lead to SSR (Sobocinski 
et al., 2020) and productive interaction (Paans et al., 2019). These results indicate the development of improved regulation 
processes over time during computational modelling tasks. 
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Figure 5. CORDTRA diagram: 

sequence of regulation processes and 
types over time in Group 4 at the 

instructional 2D task 

 
Figure 6. CORDTRA diagram: 

Sequence of regulation processes and 
types over time in Group 4 at the 1D 

challenge task) 

 
Figure 7. CORDTRA diagram: 
sequence of regulation processes 
and types over time in Group 4 at 

the 2D challenge task 

 

5.3. RQ3: How do action patterns and problem-solving strategies derived using NLP emerge across 
collaborative computational modelling tasks of varying difficulty? 

To understand how student regulation of CPS processes affects their computational modelling strategies, we first applied a 
process mining (PM) technique to compare group sequential action patterns across the three different tasks of varying 
difficulty. We also extended our interpretation of the process models with the derived POS n-grams. We provide three case 
examples (one from each task) to illustrate these findings in more depth. 

Leveraging the analysis method described in Section 4.1, the PM results are presented in Figures 8a, 9a, and 10a. The 
numbers in the boxes (nodes) represent the frequencies of the actions, the arcs display the ordering of actions and the number 
shows the strength of the sequential relation between the two actions. The fitness values for the process models are 0.69 for 
the instructional task, 0.54 for the first challenge task, and 0.62 the second challenge task. The process models for tasks 1, 2, 
and 3 (Figures 8a, 9a, 10a) share one similarity. All three models contain a one-directional path from CONNECT to RECORD. 
Transitions initiating from PLAY occurred frequently, reflecting the use of observing the simulation behaviour as a frequent 
checking mechanism during model construction and debugging. 

The NLP analysis produced 35,316 unique POS n-gram segments of text (i.e., uni-grams, bi-grams, and tri-grams). As 
expected, we also see a sharp decline in POS n-gram frequencies as n increases, with 4003 tri-grams. After completing the 
POS tagging and feature extraction, a close analysis of the resulting ranked POS tri-gram segments differentiated by task 
showed a clear evolution in student regulation processes and approaches as they addressed tasks with increasing computational 
modelling difficulties in the C2STEM environment. We present the three unique POS tri-grams uttered during each task in 
Figures 8b, 9b, and 10b. A visual inspection of these bar charts shows how the groups change their way of thinking and talking 
about how to solve the problem, and specifically how to use the C2STEM environment tools to help solve the problem. 

The POS tagging of the tri-grams allows us to easily associate one word either with reasoning or argumentation in terms 
of the types of regulation codes in Table 4. With similar findings reported by Sullivan & Keith (2019) and Lobczowski et al. 
(2020). The first, second or third person “I, you, we” may refer to how students share with the group members in the problem 
context; the words “but” and “wait” may indicate students co-constructing knowledge through challenging; the word “and” 
indicates elaboration; the words “because” and “if” show evidence or hypothesis generation as well as words that identify an 
entity; and “it” may refer to any of the data tools in the C2STEM environment. In our analysis, for example, student discourse 
commonly included “I_know_how” in the instructional task (Figure 8b). The use of “I” without accompanying terms correlated 
with co-construction are indicative of SR, while the unique POS tri-gram “think_if_you” from the final challenge task 
(Figure 10b) indicates SSR through the proposal of a new idea to another group member. 

Given the differences in task complexity between the three modelling tasks, the result of PM and NLP techniques will be 
examined for each task in the following sections. 
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Figure 8. a) Process model of groups during the instructional 2D task;  

b) bar chart of the most frequent three tri-grams during the instructional 2D task. 

 
Figure 9. a) Process model of groups during the 1D challenge task;  

b) bar chart of the most frequent three tri-grams during the 1D challenge task. 

 
Figure 10. a) Process model of groups during the 2D challenge task;  

b) bar chart of the most frequent three tri-grams during the 2D challenge task. 

5.3.1. PM and NLP Analyses of the Instructional 2D Task 
A key observation in the process model of the 2D instructional task (Figure 8a) is the position of REMOVE actions. The 
increase in the frequency of eliminating items from the executable model clearly resulted in an isolated process between 
“REMOVE” and “SAVE” activities in the process model (Figure 8a). “REMOVE” actions involve the removal of code. The 
deleted code is no longer viewable. This is separate from “SAVE” actions where students disconnected the potentially 
erroneous code from the model, but left it in the “Script” area, hoping to make corrections later and reintroduce the block(s) 
into the model. The fact that “REMOVE” and “SAVE” activities, which may be considered useful for debugging, were not 
connected to the rest of the problem-solving actions implies that these actions were not combined with other actions in a 
systematic way. In this model, the “PLAY” actions seem to limit themselves to testing a single construct of their model. As 
Figure 8a shows, the actions preceding and following “PLAY” are mostly to/from the “ADD” action. This could include the 
adding of a block and “PLAY” of that block to evaluate its impact on the simulation behaviour. This is separate from 
modifications to the existing code (through actions such as “CONNECT,” “MODIFY,” or “EDIT”). These results indicate that 
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students may not have been confident in their identification of model limitations or errors as they elected to add potential code 
updates to the stage, instead of modifying existing, executable code (e.g., code connected to the “Green Flag”). 

The POS tri-gram analysis indicates the groups in the instructional task worked individually more often than in the 
challenge tasks. The three tri-grams in the Figure 8b indicate that the students used a trial-and-error approach such as 
“do_trial_and” or individual discourse with a single person pronoun “I_know_but” or “I_know_how.” These findings are 
supported by previous work (e.g., Barron, 2003; Dowell et al., 2020; Malmberg et al., 2017; Roschelle & Teasley, 1995) where 
the authors confirmed that simply placing participants in groups does not guarantee successful collaboration strategies. Further, 
previous findings show that unproductive interactions (see examples in Table 9) decrease problem-solving success (Chiu & 
Khoo, 2003). 

5.3.2. PM and NLP Analyses of the (1D) Challenge Task (Truck Problem) 
The PM of the groups during the first 1D challenge problem (Figure 9a) shows that “OPEN-DATA” is bi-directionally 
connected to “CLOSE-DATA,” which in turn is connected to “CONNECT.” “REMOVE” is also bi-directionally connected 
with “ADD,” which in turn is connected to “MODIFY” then “PLAY.” The increase in actions following PLAY compared to 
the instructional task may indicate better usage of the visualization as a tool to support model adjustments (including 
collaborative discussion of the resulting visualization). For instance, groups increase the combination of PLAY to SAVE 
actions, saving executable code for potential later use, and PLAY to REMOVE, removing code from scripts, indicating 
processes involving the identification and correction of code errors. These regulation loops generalize to multiple bi-directional 
cycles between “REMOVE” and “ADD” blocks activities that groups engaged in before “MODIFY” activities. 

Linguistically, the three POS tri-grams in Figure 9b indicate uncertainty, e.g., “don’t_know_what,” or being cautious 
“have_to_wait,” “okay_wait_how,” which were more common among groups at the first 1D motion challenge problem (i.e., 
working without scaffolds) than among groups in other tasks. These initial results confirm a result previously presented by 
Worsley & Blikstein (2011), which indicates that realization of lack of expertise tends to decrease learner confidence. In terms 
of regulation of CPS, groups tried to understand the physics problems in the first challenge task (without scaffolds) by 
monitoring the visualization and carefully planning to build their model as demonstrated in their discourse in Table 10. 

5.3.3. PM and NLP Analyses of the 2D Challenge Task (Final Boat Problem) 
Regarding the evolution of CPS strategies from the 1D challenge task to the 2D challenge task (the most challenging of the 
three tasks), groups engaged more in socially shared regulation (SSR) to jointly build their computational model. This yielded 
CPS strategies that used the graphing or table data tools as part of a Code Assessment strategy (shown in their process model 
in Figure 10a). The “OPEN DATA” and “CLOSE DATA” actions involve the clicking of a button to view or close the graph 
or table tool. Moreover, transitions from “CONNECT” to “RECORD,” and from “REMOVE” to “RECORD,” are observed 
several times. Interestingly, this observation indicates that these regulation loops occurred more frequently during the high 
challenge task, although the frequencies of cognitive problem representation and model test decreased from the instructional 
task to the 2D high challenge task as discussed above in RQ1. An explanation could be that the groups improved their 
metacognition discussion of CPS, possibly because they adapted to the demands of the task. Therefore, when students engage 
in SSR, the process cycles mostly result in further activities for both testing and debugging (Figure 10a). It appears that the 
activities following the PLAY (of the simulation) are targeted at adaptation of models to address problems encountered in their 
previous run of the simulation. The process map for the SSR groups seems to suggest that students in the high challenge task 
(Task #3) put a lot more effort into the validation of behavioural aspects of their models by means of code assessment tools 
(Figure 10a). 

Concerning the NLP POS tri-gram analysis, Figure 10b provides three tri-grams of the groups engaged in more SSR. The 
first pattern “think_if_you” and second pattern “because_i_think” demonstrate that the groups worked together to collectively 
build and evaluate part of their model (see example 1 in Table 11). Distinct from the previous tasks, the use of “because” 
indicates that the groups were now more likely to provide arguments in support of their suggestions. This may be supported 
by the increased usage of data tools to identify errors or features of the model and use the information to explain model-building 
choices to other group members. Another interesting unique word pattern resulting from n-gram text mining is “look_at_it,” 
which could be used as a marker for joint attention when they jointly share regulation of their CPS in a synchronous 
environment. These findings are supported by previous work by Bangerter (2004) and Schneider et al. (2018) where authors 
highlighted the importance of joint attention in small groups of students. More generally, there is a large body of evidence 
showing that joint attention is a central mechanism for effective collaboration (e.g., the process of building a shared 
understanding has been extensively studied by psycholinguists under the name of grounding; Clark & Brennan, 1991). 

5.4. Applying Our Multimodal Learning Analytics (MMLA) Framework 
To illustrate the findings in more depth, we describe case examples that illustrate changes in group CPS processes by applying 
our MMLA framework. The groups selected include Group 4 (described in Section 5.2) and Group 5, who performed below 



 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

66 

the median split of task scores on the instructional task and improved to the 2nd highest overall score and highest CT score by 
the final challenge task. The talk examples in Tables 9–11 were identified based on the result of tri-gram analysis. 

5.4.1. Case Example of the Instructional 2D Task 
The examples in Table 9 demonstrate initial usage of SR during the instructional task (the bolded text identifies the POS tri-
gram from Section 5.3). Group 4 initiated their computational modelling process with predominantly SR codes (as shown in 
Group 4’s CORDTRA graph in Figure 5), but concluded with SSR, as seen in Table 9, Example 2. While there was instructive 
discourse, initial attempts were made to explain reasoning, although the explanations are domain-focused and do not indicate 
use of system tools (e.g., data tools). In this case, the S1 could be identified as the Driver (Dowell et al., 2019) or Owner (Pino-
Pasternak et al., 2018) when students were investing a high degree of effort in collaborative discussion and displayed self-
regulatory and social-regulatory skills. However, by the end of the session, there was a switch to more SSR, as they noticed 
they were making several errors. So, they applied metacognitive planning and monitoring to figure out why their debugging 
actions were not working, and how to fix their errors. 

Group 5 demonstrated more SR throughout and the use of “do trial and error” indicate difficulties in systematically 
planning and building their model. This coincides with the process mining results described above. An interesting finding in 
this discourse is the lack of reaction to group members’ contributions (for instance, the response to the trial and error 
suggestion). The implication is that the contribution was not seen as valuable by the other group members. This constitutes an 
ignored socially shared regulation attempt (e.g., Molenaar, Chiu, Sleegers, & van Boxtel, 2011). This pattern of talk was 
identified by Dowell et al. (2019) as Socially Detached: when the pattern appears to capture students who were not productively 
engaged with their collaborating peers, but instead focused solely on themselves and their own narrative. A possible 
explanation for this is that when the students are first introduced with new domain content during the scaffolded instructional 
task, students with higher prior knowledge of the content may assume control, resulting in greater self-regulatory and cognitive 
regulation processes (e.g., instructing on next steps with no explanation, as seen in the Group 5 example). This may pose a 
problem as computational models require the translation of domain knowledge into computational form. 

Table 9. Groups 4 and 5 Discourse: Regulation Processes and Types During 2D Instructional Task 
Student “words” and [actions] Regulation processes Regulation types 
Example 1 — Group 5 
S1: [first moves the change x velocity 
block, but then removes it] 
S1: “…or we would want it to be … yeah 
change velocity by … so” 
S1: [clicks on a river object to show pre-
programmed velocity.] 
S1: [clicks on boat object to return to code]. 

Problem representation This talk identified as self-
regulation (SR) 
S1 is externalizing his thinking during 
doing actions, and in doing so, 
involving the partners. S2 is engaged, 
representing what is needed, however 
S1 is ignoring S2’s proposal while 
performing all the actions and most of 
the talk. 

S1: I think we should do trial and error 
just, uh 

Problem representation 

S2: we need to make it go this way Problem representation 
S1: “Just like experiment with degrees. I 
mean just like with random numbers show 
that it faces like that.” “Just put random 
stuff in.” 

Model test and assess 

Example 2 — Group 4 Transition of Regulation: SSR/SR 
demonstrates the types of talk at the 
end of session 
Students activate socially shared 
regulation as they notice that S1 is 
making errors. So, they engaged in 
asking for modifying by S2 then 
metacognitive plan and monitoring by 
S1 about how to debug their code. 
S3 activated self-regulation by asking 
questions to understand S1 actions 
without adding contribution. 

S1: [Runs simulation to test his model]  
S2: that should be 38 degrees also Problem representation 
S1: yeah, I know but we have to find the 
velocity of this line 

Plan 

S1: so square root. square root of 5 over 2, 
right? 

Monitoring 

S3: yes. Why are you using multiplication? Monitoring 
S1: cause the square Problem representation 
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5.4.2 Case Example of the 1D Challenge Task 
Table 10 presents the regulatory processes of Groups 4 and 5 in the first challenge task (1D challenge task). Analysis of the 
groups’ discourse indicates increased use of planning and model testing and evaluation (as shown in Group 4’s CORDTRA 
graph in Figure 6), which may have supported more systematic model construction and debugging. This is further supported 
by combining the PM and NLP analysis with sequences such as “MODIFY” to “PLAY” demonstrating increased testing and 
increased use of the data tools, potentially indicating the acquisition of more information from the model to plan. 

In general, the results further support the hypothesis that there was adoption of more SSR when students collaborated with 
each other on a more open-ended task than when they were provided with scaffolds (in the instructional task). These results 
reflect those of De Backer et al. (2015), who also found that evolution in socially shared metacognition regulation significantly 
increases in a reciprocal peer collaboration, and significantly decreases when students were prompted by their teacher. Another 
interesting finding is the higher frequency of POS tri-grams in the first challenge task including the words “wait” and “what” 
could be consistent with that of Sobocinski et al. (2020), who explained that group members engage in SR at the beginning of 
a challenge task such as an exam because this may give them the opportunity to spend more of their attention on engaging with 
the learning material before engaging in SSR, which is presented by our case example. 

Table 10. Groups 4 and 5 Discourse: Regulation Processes and Types During 1D Challenge Task 
Student “words” and [actions] Regulation 

processes 
Regulation types 

Example 1 — Group 5 
S1: Slow down (reading 
instructions) 

Problem 
representation 

Transition of Regulation: SSR 
At the start of the session, S1 is regulating his 
modelling by using a cognitive strategy first 
(read task instruction out aloud) to help in 
identifying the next step. So, S1 first moves 
the change x velocity block without 
explaining his behaviour to others, but then 
removes it. However, before S1 tries to add a 
new block, S2 gives instruction to group 
members by waiting “have to wait” to think 
and monitor how to organize their next step 
for the group’s code construction.  

S1: so then we have to make it go 
[save then remove x velocity] … 

Problem 
representation 

S2: we have to wait. so we need to 
find out once it decreases how long 
it takes to decrease so we need to 
add a … wait 

Planning 

Example 2 — Group 4 Transition of Regulation: SSR 
By the end, groups check their behaviour by 
testing their variables and monitoring their 
approach. S3 was responsible for constructing 
a model to help the group solve their problem 
and inviting them to add to or monitor their 
planning enactment. When S2 has difficulty 
contributing information about monitoring 
and understanding the model misbehaviour, 
S1 successfully prompts S3 to recall their 
prior experience in the environment so he can 
bring that knowledge or expertise to the 
group discussion. 

S3: set x velocity to 0 and then it 
will accelerate 

Planning 

S2: I just don’t know what’s going 
on, I don’t know but I’m really 
trying though 

Model test and 
assessment 

S3: okay so Model test and 
assessment 

S1: we have to change this, change 
this, like the sloth remember? 
Right? 

Planning  

5.4.3 Case Example of the (2D) Challenge Task (Final Boat Problem) 
Groups 4 and 5 performed higher than the median split of the groups on the final challenge task. Coinciding with our findings 
comparing learning performance and regulation, both groups demonstrated high usage of SSR (as shown in Group 4’s 
CORDTRA graph in Figure 7). Group 5’s discourse is highlighted by the usage of “I think if you” and “because,” indicating 
the sharing of contributions and abilities to reason and explain based on model features. Group 4 added to this approach by 
using the data tools, providing an example of our process mining and NLP findings in Section 5.3. Through discourse and 
logged actions, we are provided with a comprehensive understanding of the regulation process and associated environment 
actions that supported CPS leading to high learning performance. 
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Table 11. Groups 4 and 5 Discourse: Regulation Processes and Types During 2D Challenge Task 
Student “words” and [actions] Regulation 

processes 
Regulation types 

Example 1 — Group 5 Transition of Regulation: 
SSR/SSR/SSR 
S2 is checking his next step before 
doing it. 
S1 does not totally agree but 
immediately they jointly build on 
each other’s contributions using 
argumentation, explanation, and 
coming to consensus on next steps. 
Group also verbalizes their 
problem-solving strategies and 
demonstrates CPS processes. 

S2: Velocity of 5? Planning 
S1: I don’t think it’s possible to have a velocity of 5 that can 
go this way. I think if you had a velocity of… 

Monitoring 

S2: I mean… Problem 
representation 

S1: unless, because I think if you angled it really far this 
way and then as it goes up and it’ll kind of go and the river 
push this back some 

Monitoring 

S2: I mean you could have just a really low um, a really low 
y velocity and a really high x I guess as high as possible 

Planning 

S1: so we need to find a way to find x and y values that 
equal that will equal a hypotenuse of 5, aside from 3 and 4 

Planning 

S3: like -5 and 10 with x? Monitoring 
Example 2 — Group 4 Transition of Regulation: 

SSR/SSR/SSR 
Here, the group is: 
1. Monitoring and reflecting on 
each other’s work 
2. Taking appropriate action to 
solve the problem — enacting 
plans together 
3. Asking questions and responding 
 
Overall: S2 is monitoring S1’s 
actions and calls out on a potential 
error made that S1 subsequently 
fixes. 

S1: how do we...? wait how do we look at it, the variables? 
[opens data tools] 

Monitoring 

S2: I think it’s at 0,0 Monitoring 
S1: what did you do last time? Monitoring 
S3: go to here and display x position, y position. Planning 
S2: “for the time being we will have it repeat it until get an 
and operator two equals operators and then x position and y 
position of this one” 

Planning 

6. Conclusions 
The aim of this study was to gain insights into regulation of CPS processes — and their evolution over tasks of differing 
complexity — during computational modelling in science. We applied multimodal analytics (Figure 3) that combined student 
discourse and activity data from the computer-based model building environment, C2STEM for this analysis. This provided a 
novel approach, which allowed us to interpret student model building actions by linking them to their discourse. Analyzing 
the discourse using NLP methods also provided a mechanism for studying the dynamic and evolving regulation processes 
among collaborating students, and how the different forms of these regulation processes could be linked to their model building 
performance. Key findings from our analyses demonstrate that: 

• Student CPS strategies evolve over time as they work together through computational modelling tasks of varying 
complexity. This can be seen through increased applications of SSR and, correspondingly, the use of more systematic 
model-building action sequences (e.g., testing modifications to the code by running the simulation). 

• The combination of analytic approaches supports a deeper understanding of the problem-solving process. For instance, 
increased use of the data tools coincided with increased planning and testing. In addition, an analysis of tri-grams in 
student discourse showed use of terms like “because” to explain model-building decisions as students collaborated and 
engaged in socially shared regulation. 

• Task scaffolding may impact the regulatory behaviour of groups, with more difficult tasks prompting increased 
applications of SSR. 

Our findings are well aligned with the literature on collaborative learning. For instance, more productive SSR has been 
shown to be correlated with more productive strategy use, and reflected in the higher model building scores. Recently, Bakhtiar 
& Hadwin (2020) have shown that the more frequently students engage in SSR, the more frequently they use strategic 
responses, resulting in more learning and co-construction of knowledge. Moreover, when students engage in more open-ended 
challenge tasks, such as in challenge task 2, they use more SSR and productive collaboration, using persuasive and explanatory 
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words such as “because” and phrases of higher verbal complexity, such as active requests for sharing contributions (e.g., 
“think_if_you”). In other words, groups shifted to using more metacognitive collaborative processes rather than focus on lower-
level cognition processes. This was illustrated by their greater elaboration of the learning material, integration and synthesis 
of one another’s perspectives, and ideas to make sense of the learning task jointly (Schoor & Bannert, 2012; Weinberger & 
Fischer, 2006). 

The combination of PM, NLP, and CORDTRA findings provide a useful framework for constructing argument prompts to 
help learners engage in persuasive argumentation, which is also a key science practice that learners must develop. This has 
been extensively studied in analyzing rhetorical arguments such as claims, grounds, and warrants (see Toulmin, 2001; Verheij, 
2005). For example, in our NLP analysis, “Think_if_you,” “look_at_it,” and “because_I_think” are examples of a claim, 
ground, and warrant. For the second 2D challenge task, students invoked monitoring processes more often than in other tasks. 
This was also followed using SSR for evaluation and planning activities. This pattern seems to be more in line with what is 
referred to as interactive feedback and conflict, where group members seriously and critically consider each other’s ideas, and 
differences in opinion can be resolved (Van den Bossche et al., 2011). These findings may help us to provide a prompt for 
feedback analysis focusing on clarification of the problem case based on individual analysis of the problem-solving partners’ 
arguments (e.g., “okay_wait_how”; see Weinberger & Fischer, 2006). In contrast, the instructional task saw more use of 
cognitive processes and a “trial and error” approach, which led to disengagement, indicating that students who perceived below 
median peer support tended to express task understanding, motivation, planning, reflection, and co-regulation less frequently. 
Mapping these to the logged actions can help us refine methods for designing and developing collaborative scaffolds at 
appropriate junctures in model-building processes. For example, the student can support his claim to convince his partner to 
do a specific action with the supporting data (i.e., the student says “look at it” combined with OPEN DATA action). 

7. Limitations and Future Work 
This study has some limitations. First, the sample size was small, which limits our claims of generalizability. However, the 
small sample size also allowed us to perform a detailed multimodal learning analytics in a widely used, authentic (non-
laboratory) OELE environment across different CPS tasks. This may not have been possible with a larger number of 
participants. In future work, we plan to extend this approach to examining data from a larger number of students. Second, our 
study also addresses how to monitor CPS processes over time, both within a single CPS session and across multiple sessions. 
Do teams improve regulation of CPS as the session progresses, and is the degree of improvement correlated to the outcomes? 
However, our results are correlational, not causal. An experimental design may help to make stronger claims. Another 
interesting study would involve comparing student behaviours, talk, and performance when they work individually (when 
using the think-aloud protocol) versus when they work in groups. Third, our NLP computational method is not intended to be 
a fully automated classification approach of regulation of CPS, nor is it meant to function as a solution to the problem of 
different NLP methods. Rather, our approach is a powerful aid to map the POS n-grams to our coding scheme (i.e., regulation 
of CPS coding system) and to the meaningful interpretation of computationally identified segments of the transcript. In future 
studies, we plan to automate the coding of verbal indicators. Researchers have begun investigating best practices for automated 
assessment using the PISA and ICAP frameworks (e.g., Hao, Chen, Flor, Liu, & von Davier, 2017; von Davier et al., 2017). 
Such automated coding could also be used as the basis to provide timely feedback to support students and teachers (Awwal, 
Scoular, & Alom, 2017). Future analysis could additionally be extended beyond analysis of verbal and log data by coding 
group-level regulation processes with respect to attunement, including back-channelling or nonverbal reactions (e.g., laughing, 
leaning in, eye contact; Grover et al., 2016; Isohätälä et al., 2017). 

Overall, in this paper, by combining learning analytics and machine learning techniques, such as process mining and NLP, 
we have successfully performed a finer-grained analysis of student regulation processes during collaborative problem solving, 
and have shown how they impact their co-construction of knowledge, their model development process, and their learning. 
The CORTDRA diagrams provided us with visualizations of how student cognitive and regulation processes evolve over time. 
Clearly, student behaviours and regulation become more productive as they progress in a unit, and across units. Interestingly, 
the complexity of the tasks also influences student regulation and learning behaviours. These results provide actionable 
implications for designing collaborative activities involving coding in computer science and STEM classrooms. 
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