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Abstract 
Confusion is an important epistemic emotion because it can help students focus their attention and effort when 
solving complex learning tasks. However, unresolved confusion can be detrimental because it may result in students’ 
disengagement. This is especially concerning in simulation environments using discovery-based learning, which 
puts more of the onus for learning on the students. Thus, students with misconceptions may become confused. 
In this study, the possible moments of confusion in a simulation-based predict-observe-explain (POE) environment 
were investigated. Log-based interaction patterns of undergraduate students from a fully online course were 
analyzed. It was found that POE environments can offer a level of difficulty that potentially triggers some confusion, 
and a likely moment of students’ confusion was the observe task. It was also found that confidence in prior 
knowledge is an important factor that can contribute to students’ confusion. Students mostly struggled when they 
discovered a mismatch between the subjective and objective correctness of their responses. The effects of such a 
mismatch were more pronounced when confusion markers were analyzed than when students’ learning outcomes 
were observed. These findings may guide future works to bridge the knowledge gaps that lead to confusion in POE 
environments. 
 

Notes for Practice 

• Confusion is an epistemic emotion that is unlikely to be avoided in complex learning tasks. 

• Confusion can promote a deeper understanding of the concepts because its resolution often requires 
critical thinking, inquiry, and effortful problem-solving. 

• Simulation-based predict-observe-explain (POE) environments can promote a degree of difficulty that 
can potentially confuse students. 

• One of the likely moments of students’ confusion is during the observe phase of the POE learning design. 

• Students with misconceptions or incorrect prior knowledge are more likely to become confused during 
the observe phase than students with correct prior knowledge. 

• Students’ confidence in their prior knowledge can strongly influence how confused they become. 

• Students who have high confidence but make incorrect responses are more likely to show signs of 
confusion—their effort associated with confusion seems to positively influence their learning outcomes. 
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1. Introduction 
Students in higher education are now routinely offered the opportunity to learn in digital environments and technology-
enhanced courses. While these environments can offer scalability (such as MOOCs) and flexibility (with the provision of 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

119 

anytime, anywhere access), they often require students to be more autonomous in terms of exploring and covering the content 
of courses and keeping track of their own progress. This may be particularly true for simulation-based learning environments, 
in part because of their discovery-based nature. In order to effectively learn in these environments, students need to have a 
certain level of motivation and self-regulated learning skills (Huang, 2002). Students need to negotiate any technical challenges 
these digital learning environments pose, while at the same time, they need to grapple with new, complex information in the 
absence of instructors’ immediate feedback (Mansour & Mupinga, 2007). There is a high chance for students to become 
confused while handling these multiple demands (Pachman, Arguel, & Lockyer, 2015). 

Confusion is an “epistemic emotion” (Pekrun, Goetz, Titz, & Perry, 2002; Pekrun & Stephens, 2012) that, unlike basic 
emotions (such as “happy,” “sad,” or “angry”), is particularly prevalent in educational settings. Confusion is typically 
experienced as an affective response to the cognitive processing of complex material. It has often been referred to as a 
“cognitive feeling” or a feeling about one’s knowledge state (Clore, 1992; Storm & Storm, 1987). Researchers have also 
defined confusion as a “noticeable lack of understanding” (Baker, D’Mello, Rodrigo, & Graesser, 2010; D’Mello, Lehman, 
Pekrun, & Graesser, 2014), or as a feeling of uncertainty (D’Mello et al., 2005), where students do not know what to do next 
or how to proceed (Keltner & Shiota, 2003; Rozin & Cohen, 2003). 

If students’ confusion is sustained, it can lead to frustration and boredom (Chiu, Hong, & Dweck, 1997; D’Mello & 
Graesser, 2014b; D’Mello & Graesser, 2012a; Kostyuk, Almeda, & Baker, 2018; Rodrigo et al., 2007). Under these conditions, 
students’ goal-blockages and misconceptions become reinforced rather than getting corrected (Arguel & Lane, 2015; Arguel, 
Lockyer, Lipp, Lodge, & Kennedy, 2017). Such a persistent or prolonged state of confusion is associated with negative learning 
experiences that can lead to students’ disengagement (Baker et al., 2010; D’Mello & Graesser, 2012b; D’Mello et al., 2014). 

While confusion can be detrimental to learning, not all episodes of confusion are alike (D’Mello et al., 2014). In certain 
situations, it has been found to positively affect students’ learning outcomes by promoting a deeper understanding of the 
concepts (Craig, Graesser, Sullins, & Gholson, 2004; D’Mello & Graesser, 2014a; D’Mello et al., 2014). Some researchers 
have argued that in order to resolve their confusion, students need to engage in adaptive learning behaviours, such as making 
inferences, reflecting on and integrating new knowledge, and reviewing their prior conceptions (Graesser, Ozuru, & Sullins, 
2010). Moreover, some learning designs have been proposed as beneficial because they present students with difficulties that 
can induce cognitive conflict or disequilibrium (Graesser & Olde, 2003). This can potentially confuse the learners, making 
these educational frameworks effective for students’ learning (Ballantyne & Bain, 1995). Examples of such learning designs 
are refutation texts (Tippett, 2010), desirable difficulties (Bjork, 2011), productive failure (Kapur, 2016), and impasse-driven 
learning (Brown & VanLehn, 1980; VanLehn, Siler, Murray, Yamauchi, & Baggett, 2003). Another learning design that has 
the potential to trigger confusion in students is the simulation-based predict-observe-explain paradigm (White & Gunstone, 
1992). Predict-observe-explain (POE), as the name suggests, is a three-phase, iterative learning design (Dalziel, 2010). 

1. During the prediction phase, students formulate a hypothesis and are often asked to provide their reasons for committing 
to a particular hypothesis. It has been suggested that questions that draw on explanatory reasoning may be diagnostic 
of deeper comprehension (Graesser, Baggett, & Williams, 1996). 

2. During the observation phase, students test their hypothesis by changing parameters or variables in a simulation so they 
can see the effects of their manipulations. The observation phase is crucial for providing students with important 
insights into their prior-held ideas and beliefs (Driver, 1983). This phase is especially critical for students who propose 
an incorrect hypothesis, because they can then see a mismatch between their predictions and their observations. 

3. Finally, in the explain phase, clarifications are provided to students detailing the relationship between variables or 
parameters that represent the conceptual phenomenon under investigation. This phase aims to help students reconcile 
any discrepancies between what they predicted and what they observed in the simulation (Gunstone & White, 1980). 

A POE learning design can be applied in a range of learning contexts—face to face, online, computer labs, and so on—and 
can be used to promote students’ discussion (White & Gunstone, 1992) and improve their understanding of science concepts 
(Bowen & Haysom, 2014). Computer-mediated and multimedia-based POE tasks have been found to promote peer-learning 
opportunities, and other POE tasks have the potential to support conceptual change by probing students’ prior knowledge and 
beliefs (Gunstone, 1990; Tao & Gunstone, 1999). Researchers have encouraged the use of POE-based learning designs and 
have called them an “inevitable way” of making science courses more interesting and engaging (Karamustafaoğlu & Mamlok-
Naaman, 2015; Kibirige, Osodo, & Tlala, 2014; Sreerekha, Arun, & Sankar, 2016). 

While POE learning designs have been promoted, the ways in which students make inferences, reflect on their new 
knowledge, and then assimilate that knowledge while reviewing their prior conceptions has not received much attention. These 
behaviours of reflecting upon and reviewing prior conceptions have also been associated with students’ struggle and confusion 
resolution behaviours (D’Mello & Graesser, 2014a; D’Mello et al., 2014). Therefore, students’ confusion can play an important 
role in developing their understanding within the POE environments. 
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It is important to mention that confusion has been studied in different learning environments by a large number of 
researchers. For example, Bosch, D’Mello, and Mills (2013); Lee, Rodrigo, Baker, Sugay, and Coronel (2011); and Rodrigo 
et al. (2009) have analyzed the emotions experienced by novices in programming contexts. They report that students’ confusion 
could impact their learning outcomes and their eventual success in a computer science class. Confusion has been analyzed in 
a mathematical context where students needed to solve algebra problems (Lagud & Rodrigo, 2010). Confusion has also been 
the focus of research in visual art and aesthetic research (Silvia, 2009, 2010); in tutoring sessions using the AutoTutor system, 
where students needed to work on difficult questions related to computer literacy (D’Mello & Graesser, 2011); in chemistry, 
using virtual laboratory software (Baker et al., 2011); in narrative-centred learning environments (McQuiggan, Robison, & 
Lester, 2010); and in many others. Confusion has, however, not received much attention in POE-based environments. 
Therefore, this study capitalizes on a POE learning environment that focuses on the educational model of conceptual 
simulation. Specifically, it aims to identify how the POE educational paradigm can guide analytics work in the prediction of 
confusion. 

Detecting students’ confusion is “both critical and complex” (Graesser, 2011). It is an essential step in identifying optimally 
effective behaviours within digital learning environments. Understanding confusion using learning analytics will help 
researchers understand how students complete assigned tasks in self-directed environments, and when real-time feedback and 
support may be provided to guide them, with the possibility of improving their affect, enhancing their engagement, and 
advancing their learning (Baker et al., 2012). Detection of confusion can be particularly useful for helping students avoid 
persistent or prolonged confusion, which has been associated with poor learning outcomes and performance (D’Mello, Person, 
& Lehman, 2009; Lee et al., 2011). 

2. Background 
Regarding emotions in a learning context, McLeod (1989) suggests that given a difficult problem, students’ reactions may 
include many emotions. A major source of these emotions is an interruption (Mandler, 1984), a cognitive conflict (Piaget, 
1952b), an impasse (Brown & VanLehn, 1980; VanLehn et al., 2003), or a dissonance (Festinger, 1957) in students’ plans or 
their planned behaviours. When such an interruption or dissonance arises, students cannot complete tasks as they normally 
would, and they often experience physiological arousal. The arousal is then interpreted as an emotion (Mandler, 1984; McLeod, 
1989). 

To describe and understand the events that lead to students’ confusion, D’Mello & Graesser (2010) have used the cognitive 
disequilibrium theory (Piaget, 1952b, 1985). According to this theory, when students are exposed to complex information, 
contradictions, anomalies, novelties, or misconceptions or when they encounter a discrepant event where their observations of 
a phenomenon are inconsistent with their expectations, cognitive disequilibrium is triggered. Cognitive disequilibrium is of 
critical importance in students’ comprehension and learning processes (Graesser, Lu, Olde, Cooper-Pye, & Whitten, 2005). 
Graesser and D’Mello (2012) suggest that “there may be a causal relationship between cognitive disequilibrium and deep 
learning, with confusion playing either a mediating or moderating role in the process.” Therefore, cognitive disequilibrium has 
been attributed as a “key signature” (D’Mello, Taylor, & Graesser, 2007), a “prime candidate” (Graesser & D’Mello, 2012), 
and a “vital element” (Lodge, Kennedy, Lockyer, Arguel, & Pachman, 2018) that may lead to students’ confusion. 
Additionally, cognitive disequilibrium theory suggests that a persistent or prolonged state of confusion could result in students’ 
being stuck—often attributed as a state of frustration. Frustration has also been called “hopeless” confusion, where students 
have a more impoverished understanding of the subject matter and lack available resolution plans (D’Mello & Graesser, 2014a; 
D’Mello & Graesser, 2012a). So while dissonance or disequilibrium within an “optimal” zone may be associated with 
confusion, its prolonged state is more likely to result in frustration (Arguel, Lockyer, Kennedy, Lodge, & Pachman, 2019; 
D’Mello & Graesser, 2014b). 

Within the context of the POE framework, an opportunity for students’ learning is created as a result of contradictions or 
inconsistencies between their predictions and their observations (Liew & Treagust, 1998). These inconsistencies between 
students’ observations and their expectations can be useful motivation for their learning (Fensham & Kass, 1988) and 
information gathering (Markant, Settles, & Gureckis, 2016). They could result in the onset of cognitive conflict or 
disequilibrium (Fensham & Kass, 1988) and, presumably, confusion during the observation task. Students who attend to their 
confusion and engage in effortful problem solving may be able to resolve their learning impasses and inconsistencies as they 
complete the observation task—a likely occurrence of “productive” or “hopeful” confusion (D’Mello & Graesser, 2012a). For 
the other students, who are unable to resolve their confusion, chances are that their learning impasses from the observation 
task would sustain, turning their confusion into frustration as they arrive at the explanation task—a possible onset of “vicious” 
confusion (D’Mello, Picard, & Graesser, 2007). 

Kennedy and Lodge (2016) conducted a study to analyze students’ affective experience within a simulation-based POE 
environment. Students’ sessions were captured using screen-recording software. At the end of the session, students were asked 
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to complete a video-stimulated recall. The findings suggest that students mostly reported being confused during the observation 
phase, and none of the students felt frustrated at this task. As these students progressed to the explanation tasks, those who had 
resolved their learning impasses from the observation phase appeared to be “engaged,” whereas others “became frustrated and 
disengaged by the time they reached the explanation screens” (Kennedy & Lodge, 2016). Given the cognitive disequilibrium 
theory (Piaget, 1985) and the previous research (Kennedy & Lodge, 2016), it would be expected that within POE environments 
the most likely moment of students’ confusion is during the observation phase. 

The research hypothesis stating that students are most likely to experience confusion within the observation phase of a 
POE environment leads to the question of what factors may influence these moments of confusion. Poor knowledge in the 
content area is clearly a factor that can lead to students’ confusion (Graesser et al., 2005; Pachman et al., 2015). Previous 
research has established that poor prior knowledge or misconceptions can act as “central obstacles” that impede learning of 
new information (Duit & Treagust, 2003; Kendeou & Broek, 2005). Research has also established that it is not only the level 
of knowledge that can affect students’ learning behaviours but also their confidence in the knowledge they hold (Kulhavy, 
1977; Kulhavy, Yekovich, & Dyer, 1976). Therefore, in addition to prior knowledge, confidence may be important in 
understanding the role of confusion in POE-based learning environments. 

An area of research that relates directly to confusion and confidence in learning is hypercorrection. It refers to the situation 
when students having high confidence in their knowledge or response are provided with feedback suggesting that they are 
incorrect (Butterfield & Metcalfe, 2001, 2006). A number of studies (Butterfield & Metcalfe, 2001, 2006; Fazio & Marsh, 
2009, 2010; Metcalfe & Finn, 2011) have shown that the hypercorrection effect occurs due to enhanced attention arising as a 
result of a metacognitive mismatch. This mismatch arises when people find an inconsistency between the subjective and 
objective correctness of their responses. Thus, a correct response made with low confidence or an incorrect response made 
with high confidence could result in a metacognitive mismatch. Researchers have suggested that the metacognitive mismatch 
could impact students’ learning processes and outcomes. 

A number of scholars have explored how students with high and low confidence respond to making errors and getting 
feedback (Anderson, Kulhavy, & Andre, 1971; Butler, Karpicke, & Roediger, 2008; Butterfield & Metcalfe, 2001, 2006; 
Kulhavy, 1977; Kulhavy & Stock, 1989; Kulhavy et al., 1976). For example, it has been suggested that learners tend to spend 
the longest time on feedback when high-confidence responses turn out to be incorrect (Anderson et al., 1971). That extra time 
on feedback could help them identify the inconsistencies between their existing knowledge and the new information (Kulhavy, 
1977; Kulhavy & Stock, 1989). While for errors with high confidence, students’ response could be surprise or confusion, the 
response to low-confidence errors is acceptance, leading students to spend less time on feedback (Kulhavy et al., 1976). Further, 
from a cognitive neuroscience perspective, Butterfield and Metcalfe (2001, 2006) found that high-confidence errors were more 
likely to be corrected on a subsequent retest than errors made with low confidence. 

3. Research Questions 
Given these previous research findings, the first general hypothesis investigated in this study was that students who make an 
incorrect prediction would be more likely to feel confused during the observation phase than those who make a correct 
prediction. Second, and more specifically, it was expected that students who were high in confidence and made an incorrect 
prediction would show more signs of confusion (during the observation phase) than students who were 

1. low in confidence and made a similarly incorrect prediction or 
2. high in confidence but made a correct prediction. 
It should be noted that because of the exploratory nature of this study and the design of the POE learning environments, 

the hypercorrection effect was investigated in two directions: (1) between the high-confidence correct-predicting students and 
the high-confidence incorrect-predicting students, and (2) between the high-confidence incorrect-predicting students and the 
low-confidence incorrect-predicting students (see Figure 1). Because it is less clear from the literature whether students who 
make correct responses with lower confidence show any signs of confusion, this analysis is not presented in this paper. 

Last, it was expected that students who were likely to experience confusion due to a hypercorrection effect (confident but 
erroneous) would perform better than the other students (less confidence and erroneous, high confidence and correct) on a task 
that assessed knowledge and understanding. 
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Figure 1: Research hypothesis for the likely moments of students’ confusion in a POE-based simulation environment.  
It is expected that the students who get confused and hypercorrected may develop a better understanding of concepts. 

4. Methods 
4.1. Learning Environment 
The learning environment in this study was a conceptual simulation contained within a fully online course called Habitable 
Worlds, which is offered to undergraduate students over eight weeks (Horodyskyj et al., 2018). Habitable Worlds is an 
introductory science course that encourages students’ problem solving and reasoning through interactive tasks and is built 
using Smart Sparrow—an “adaptive” e-learning platform that records students’ interactions and activities. Adaptive in this 
context could mean learning-pathway modifications or provision of personalized feedback and hints on students’ responses 
(or lack of responses). 

The Habitable Worlds course consisted of 67 modules, which were mostly built around “training” and “application” tasks. 
A task or screen in the current context could be one or more of the following: answering questions through drop-down menus, 
responding to multiple-choice questions (MCQs), writing free-text answers to the questions, making hypotheses, watching 
short lecture-style videos, or making submissions associated with simulations. On a given screen as students hit the “submit” 
or “continue” button to progress to the next task, it was recorded in the system as a task attempt. 

Each “training” module introduced a new concept. These modules were mostly linear in structure, with occasional pathway 
adaptivity for remediation of learners with prior misconceptions (Pardos & Horodyskyj, 2019). Students could not proceed in 
a training module unless they correctly completed the current task. Moreover, students could not go back to a previously 
completed task without restarting the module. “Application” modules comprised quizzes. No new content was introduced, but 
there was a requirement for students to show competency in the topics that had already been covered. 

The primary focus of this paper was on an initial POE-based training module called Stellar Lifecycles. This module was 
made available to students during the second week of the course, and it was assumed that most students would complete it 
within that week. Overall, this module consisted of 23 different tasks or screens, but this study only focused on a subset of 
POE-related tasks. Additionally, the associated application module of Stellar Lifecycles, called Stellar Applications, was 
included as knowledge-transfer task. This module (transfer task) was available to students for only one week. In Stellar 
Lifecycles the key concept students were asked to investigate was the relationship between the mass of a star and its associated 
lifespan. The main sequence of POE-based activities for this module is provided below. 

1. During the prediction phase, students needed to hypothesize the possible relationship between a star’s mass and its 
lifespan (see Figure 2). They were also required to state the reasons they believed in their proposed hypothesis. Notably, 
students were not provided with content relating to this concept before making predictions. 
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Figure 2: Predict task: Students are required to select a hypothesis and state the reasons they believe in that hypothesis. 

 
2. The observation phase was divided into two separate tasks. 

(a) The first task introduced the stellar simulator so that students could learn how to manipulate stars of varying solar 
mass and how to run a simulation about them. Students could run the stellar simulator as many times as they wanted. 

(b) The second task asked students to create and run simulations about stars by varying their mass. Then they needed 
to record the mass and lifespans of these stars in the space provided (see Figure 3). Last, students were asked to 
either endorse or reject their earlier proposed predictions. Again, they could run the simulation as many times as 
they wished. 

 

 
Figure 3: Observe task: Students engaged in an interactive task; they needed to create and  
run virtual stars and then record their observations of stellar mass and associated lifespans.  

In the end, they needed to either endorse or reject their prior predictions. 
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3. The explain phase was divided into three tasks. 
(a) The first task was only available to students who made incorrect predictions and endorsed them or those who made 

correct predictions but rejected them. This task aimed to help students rectify their hypotheses. 
(b) The second task asked students to report on the minimum and the maximum lifespan of seven different stellar 

classes. For this aspect of the task, students were asked to create and run simulations about stars of a specified mass 
range and then to report on the associated lifespans. This task aimed to promote further understanding of the 
concepts by allowing students to reconcile or resolve their cognitive conflict. 

(c) The third task explained concepts through a short lecture-style video. This task summarized students’ earlier 
proposed predictions, their newly formed predictions, and their evaluation of the lifespans of the seven stellar 
classes. Students were then tested on some of the new content from the video. 

4. After the POE task, students made observations of how, as a star aged, it changed its stellar classification. They were 
then asked to respond to MCQs about the observed stellar classes. 

5. Finally, a knowledge-transfer task was presented to students, asking them to calculate the properties of six stars 
(properties such as luminosity, temperature, and mass) and to identify the longest-lived and the shortest-lived stars. The 
maximum achievable score was 10 for completely correct answers. While students could make multiple attempts at 
this task, they were penalized by two marks for each incorrect attempt. 

In Figures 2 and 3, some visual information is presented to students through the HertzSprung–Russell (H–R) diagram. It 
depicts the zones that a dying star may pass through and does not provide direct information on how a star’s mass may be 
related to its lifespan. Therefore, within the current context, the H–R diagram is “interesting but superfluous” (Kennedy & 
Lodge, 2016). 

4.2. Participants 
This study utilized the data from the Spring 2016 offering of the course Habitable Worlds. In accordance with an approved 
institutional review board (IRB) protocol, student data was anonymized. The participants were 364 non-science major 
undergraduate students from a large US-based university. Of the students who attempted the Stellar Lifecycles module within 
the Habitable Worlds course, 51% were female and 49% were male. 

Based on age, 44% of students were 20 years old or younger, 38% were older than 20 and younger than 30, and the 
remaining 18% were older than 30. Based on the academic level, 9% were in their first year, 34% were in their second, 33% 
were in their third, and the remaining 24% were in their fourth. 

4.3. Measures 
In this naturalistic study, the majority of analyses focused on the observe phase of the POE learning design—given that this is 
where moments of confusion were expected, as predicted by theory (Fensham & Kass, 1988; Graesser & D’Mello, 2012; Liew 
& Treagust, 1995, 1998; Lodge et al., 2018; Piaget, 1985). Furthermore, the previous study (Kennedy & Lodge, 2016) within 
the same simulation environment suggested that most students experience confusion during the observation phase. This was 
based on students’ affective experiences through video-stimulated recall (Kennedy & Lodge, 2016). This paper aims to extend 
these previous works to explore whether learning analytics can help identify students’ moments of confusion. 

This study used trace data to interpret students’ behaviours relating to confusion. Trace data or log files are created when 
students take actions within the digital or online environments, for example, when they watch a video, when they make a 
submission associated with tasks or questions, when they open a module, or when they close a learning session by signing out 
of the system (Bunderson, Inouye, & Olsen, 1989; Greiff et al., 2014). Task attempts were used as a first measure of analyzing 
confusion. This measure was calculated by aggregating the numerical count of task-related submissions—referred to as “count 
data” (Kovanovic et al., 2015). This data is useful because it can provide an overview of students’ learning-based activities. 
The second parameter used to measure confusion in this study was students’ time on task. Research suggests that time on task 
can be an “accurate” measure for analyzing students’ effort on learning (Kovanovic et al., 2015). 

Some studies have analyzed students’ confusion in terms of their interaction patterns. Baker et al. (2012), in their work on 
Cognitive Tutor Algebra I, discussed students’ features of confusion. They described how the confused students seemed to 
struggle, becoming slower (i.e., taking more time) on tasks after making two or more errors. These students made errors more 
frequently and were also found to be less sure and guess more in their responses. Pardos, Baker, Pedro, Gowda, and Gowda 
(2014), within the web-based tutoring platform ASSISTments, used a complex set of parameters to identify students’ 
confusion. Overall, the behaviours of confused students were characterized by (i) repeated sequential errors and (ii) incorrect 
skill-based actions prior to spending a long time on a current related task. Lee et al. (2011b) analyzed how novices learn to 
code. Students’ confusion was found to be commonly associated with novices making repeated compilation errors. Similarly, 
while solving algebra problems, students who experienced confusion were those who had minimal correct responses and spent 
the longest time on problem solving (Lagud & Rodrigo, 2010). Another study that aimed to teach introductory computer 
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literacy with AutoTutor reported that when confused, participants seemed puzzled, they were unsure about how to continue, 
and they struggled to understand the material (Craig et al., 2004). Finally, it has been reported that students who experience a 
metacognitive mismatch (in this case confident but in error) would spend more time on the feedback (Anderson et al., 1971; 
Kulhavy, 1977; Kulhavy & Stock, 1989). 

Given these findings, it is not unreasonable to expect that students who were confused during the observe phase of a POE 
task may spend longer on that task and may take several attempts on that task to correct their understanding. Moreover, unlike 
the previous studies, where students were provided with immediate corrective or confirmatory feedback, in the current 
simulation-based environment students were required to discover the correct responses through interactive engagement with 
the tasks. They could not proceed to the next task unless the current task was completed correctly. Therefore, students’ efforts 
to find a correct response or to overcome their learning impasses could manifest in terms of their task attempts and time-on-
task behaviours. 

In this study, students’ performance or conceptual understanding was measured using their scores from the knowledge-
transfer task described above. Student groups were compared using the t-test, where the results are reported in terms of p-
value statistic, t-value statistic, and Cohen’s d for effect size. In the results section, the effect size can be interpreted as small 
when d = 0.20, medium when d = 0.50, and large when d = 0.80 (Rosenthal, 1996; Rosenthal & Rosnow, 1984). The selected 
significance level was α = 0.05 (*), and the tests were considered marginally significant when α < 0.10 (·). Because the analysis 
involved multiple comparisons, Benjamini–Hochberg (BH) post hoc correction was applied to control for false positives. This 
correction procedure has frequently been used in previous studies on students’ task difficulties and their affective analyses 
(Botelho, Baker, Ocumpaugh, & Heffernan, 2018; Karumbaiah, Andres, Botelho, Baker, & Ocumpaugh, 2018; Nawaz, 
Srivastava, Yu, Baker, et al., 2020; Nawaz, Srivastava, Yu, Khan, et al., 2020; Ocumpaugh et al., 2017). 

4.4. Data Processing 
In this study, data from the January 2016 offering of the course Habitable Worlds was analyzed. The trace data for this course 
consisted of 814,441 interaction entries, which were recorded in the system. Of these interactions, over 15,000 were related to 
the Stellar Lifecycles module. 

One of the challenges in data processing was coming up with rules that could identify outliers for the session time. In a 
fully online environment, session time is most susceptible to errors (Sun, 2006). Therefore, as a first step, all module-based 
activities where students’ session time exceeded five standard deviations (SD) from the median were excluded. This subjective 
judgment was made after analyzing the frequency tables, which revealed that nearly 99% of all module-based sessions were 
completed within this time. Other researchers have also used such procedures (del Valle & Duffy, 2009; Wise, Speer, Marbouti, 
& Hsiao, 2013). It was important to eliminate such interactions because it could be that students start a learning session and 
then leave the browser window open without actively engaging in a meaningful learning activity (e.g., in one instance a 
student’s session time was 20 hours long). 

Next, a cluster analysis was performed using module-based features such as mean module scores, mean module task 
completions, mean attempts, and mean time at the module tasks. The purpose of cluster analysis was to group the students 
based on the similarities of their behavioural patterns within the Stellar Lifecycles module. To determine the number of clusters 
on normalized data, a visual assessment of tendency (VAT) algorithm was run (Bezdek & Hathaway, 2002). Later, the k-
means algorithm (MacQueen, 1967) was applied for clustering since it resulted in more balanced, well-connected, and well-
separated clusters. To ensure the convergence of the centroid update, the algorithm was run multiple times (Kassambara, 2017). 
This analysis ultimately resulted in two clear groups or clusters of students (Group 1: n = 212; Group 2: n = 130). A comparison 
of the two groups seemed to suggest that 

• students in both groups were persistent as they completed all task-related submissions; 
• based on students’ choice of hypothesis, both groups had similar levels of prior knowledge; a comparable proportion 

of students across the two groups proposed the correct hypothesis—34% of students from Group 1 and 32% from 
Group 2; and 

• students’ chosen hypotheses also revealed that they had misconceptions of a similar nature; the majority of students in 
both groups endorsed a common misconception—43% from Group 1 and 49% from Group 2. 

Next, in accordance with existing works (Dienes, 2012; Nawaz, Kennedy, Bailey, Mead, & Horodyskyj, 2018), students’ 
confidence in their proposed hypotheses was inferred through their free-text responses. During the prediction task, students 
were asked to report on why they proposed a hypothesis. The reasoning provided by students often included phrases such as 
“I am just guessing,” “It’s just a guess,” “I am not sure, but this seems to be making sense.” The authors labelled each response 
as guessing or not guessing behaviour and then attributed guessing to a “lack” of confidence (Dienes, 2012; Engelbrecht, 
Harding, & Potgieter, 2005). The labelling decision was based on students’ expression of doubt regarding their selected 
hypotheses, or their reasoning for the selected hypotheses, or both. It was also found that students who were labelled as less 
confident generally used less technical language in the reasoning associated with hypotheses and they also wrote a shorter 
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amount of text while reasoning about the hypotheses (Nawaz et al., 2018). Overall, an analysis of the number of words entered 
by students, the number of scientific or key technical terms used by students, and students’ expression of guessing and doubts 
in their hypothesis-reasoning suggested that Group 1 students were more confident than the students in Group 2. 

Regarding students’ confidence, Kang et al. (2011) suggest that there exists a link between confidence and the accuracy of 
students’ responses. Responses made with higher confidence are more likely to be accurate than responses made with lower 
confidence. Rangel, Möller, Sitter, Stibane, and Strzelczyk (2017) found that “confidence for incorrect answers is significantly 
lower than confidence for correct answers.” If this is the case, it would be expected that guessing is less likely to result in a 
correct response. When investigated in the current study, it was found that only 7% of students were guessing when they 
proposed a correct hypothesis—suggesting the validity of the operationalization of confidence. 

Next, students’ task-based interactions during the observe phase were extracted, as this is where moments of confusion 
were expected. First, task-based interactions were extracted for students who make a correct prediction and those who make 
incorrect predictions. Then, these task-based interactions were refined (in terms of the response correctness) for the two student 
groups that had emerged from clustering. Last, the distribution of these task-based interactions was analyzed, and further 
cleaning was performed using time-oriented heuristics. In this case, an upper limit of 40 minutes was defined for time on the 
observe task. Studies have discussed the reliability of such measures (del Valle & Duffy, 2009; Kovanovic et al., 2015). 

5. Results 
In this paper, the goal was to identify specific moments of students’ confusion, as would be predicted by theory. Students’ 
confusion may be reflected in the way in which they respond to feedback, specifically in the observation phase of the POE 
task. To investigate generally whether students who make an incorrect prediction would be more likely to feel confused than 
students who make a correct prediction, comparisons between these students were made. Table 1 shows comparisons at a 
global level between students who made a correct prediction and those who made an incorrect prediction. 

Table 1: Comparison of Students Who Made a Correct Prediction  
with Those Who Made Incorrect Predictions 

 Global Comparison 

 Correct Prediction Incorrect 
Prediction T p 

sig after 
BH 

correction 
d 

Mean ± SD Mean ± SD 
Avg. Attempts 1.12 ± 0.46 1.34 ± 1.04 −2.74 <0.01 * 0.28 
Avg. Time 3.88 ± 4.97 4.03 ± 3.80 −1.29 0.20  0.14 

 
It can be seen from Table 1 that students who made incorrect predictions were likely to make significantly more attempts 

in the observe phase than students who made correct predictions, although the time the two groups spent on the task did not 
differ significantly. 

The next set of analyses compared the behaviours of incorrectly predicting students: those who were high in confidence 
(Group 1) with those who were low in confidence (Group 2). Table 2 shows that there were no significant differences between 
students when it came to average task attempts. However, after making an incorrect prediction, Group 1 students spent 
marginally more time in the observation phase than Group 2 students. 

Table 2: Comparison of the Incorrectly Predicting Students from Group 1  
with the Incorrectly Predicting Students from Group 2 

 Students Who Made Incorrect Predictions 

 
Group 1—High 

Confidence 
Group 2—Low 

Confidence T p 
sig after  

BH 
correction 

d 
Mean ± SD Mean ± SD 

Avg. Attempts 1.25 ± 0.96 1.47 ± 1.15 −1.50 0.13  0.21 
Avg. Time 4.40 ± 4.42 3.46 ± 2.50 2.03 <0.05 . 0.26 

 
Table 3 presents the data only for high-confidence (Group 1) students. It compares those who made a correct prediction 

with those who made an incorrect prediction. Incorrectly predicting students in Group 1 were found to make significantly more 
attempts and spend a marginally longer time in the observe phase than students who made a correct prediction. 
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Table 3: Comparison of Group 1 Students Who Made Correct Predictions with  
Group 1 Students Who Made Incorrect Predictions 

 Group 1—High Confidence 

 
Correct 

Prediction 
Incorrect 
Prediction T p 

sig after 
BH 

correction 
d 

Mean ± SD Mean ± SD 
Avg. Attempts 1.01 ± 0.12 1.25 ± 0.96 −2.89 <0.00 * 0.35 
Avg. Time 3.46 ± 2.26 4.40 ± 4.42 −2.02 <0.05 . 0.27 

 
Finally, analyses were completed to determine whether those students who possibly experienced a hypercorrection effect 

or a metacognitive mismatch developed a better conceptual understanding than those students who did not. Previous research 
would suggest that a hypercorrection effect would be particularly apparent for a comparison of the incorrectly predicting 
students (comparison of high-confidence Group 1 students with low-confidence Group 2 students). Table 4 shows this 
comparison. While the results are marginally significant (α < 0.1), there is a clear trend in the expected direction (the incorrectly 
predicting students from Group 1 perform better; effect size = 0.24). 

Table 4: Comparison of Incorrectly Predicting Students of Group 1 with  
Incorrectly Predicting Students of Group 2 at the Knowledge-Transfer Task 

 Students Who Made Incorrect Predictions 

 
Group 1—High 

Confidence 
Group 2—Low 

Confidence T p 
sig after 

BH 
correction 

d 
Mean ± SD Mean ± SD 

Transfer Score 7.62 ± 3.12 6.82 ± 3.74 1.67 0.06 . 0.24 
 

To further investigate whether the hypercorrection effect influenced students’ conceptual understanding, the high-
confidence (Group 1) correctly predicting students were compared with the high-confidence (Group 1) incorrectly predicting 
students at the knowledge-transfer task. Table 5 shows this comparison, and although no difference was found between the 
learning outcomes of these groups, it is, however, interesting to see that the high-confidence incorrectly predicting students 
could achieve similar learning outcomes as the high-confidence correctly predicting students. 

Table 5: Comparison of the Group 1 Incorrectly Predicting Students with  
the Group 1 Correctly Predicting Students at the Knowledge-Transfer Task 

 Group 1—High Confidence 

 
Correct 

Prediction 
Incorrect 
Prediction T p 

sig after 
BH 

correction 
d 

Mean ± SD Mean ± SD 
Transfer Score 7.04 ± 3.29 7.62 ± 3.12 −0.94 0.37  0.07 

 
Most of the results presented above are in line with the theoretical predictions. However, it is important to note that the 

effect sizes associated with these findings are generally modest (Cohen, 1988). This is noted in the discussion section. 

6. Discussion 
Overall, this paper investigated whether specific moments of students’ confusion could be identified using behavioural markers 
derived from learning analytics in a digital, simulation-based learning environment. While, generally, students who made 
errors during their learning process were expected to show more signs of confusion, the concepts of hypercorrection and 
metacognitive mismatch suggest that students’ confidence plays a role in how they respond to errors (see Figure 4). 
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Figure 4: Moments of confusion in a POE-based simulation environment. Students’ confidence in their predictions  
may affect how they respond to errors during their observations. Students with higher confidence in their incorrect  

predictions are likely to be confused and hypercorrected, which may result in better learning outcomes. 

Specifically, it was expected that students who were confident and made errors would show more signs of confusion than 
other students. The overall findings of this study indicate that students show signs of confusion in ways that align with 
theoretical predictions. 

This study mainly investigated students who were high in confidence and made an incorrect prediction. These students, 
compared to those who made a high-confidence correct prediction, spent significantly more time and made marginally more 
attempts in the observation phase of the simulation-based learning task. They also spent marginally more time in this phase 
than students who were lower in confidence and made an incorrect prediction. These results are entirely consistent with, and 
predicted by, the hypercorrection effect, as described by Butterfield and Metcalfe (2001, 2006). 

It is important to mention that contrary to the previous studies where students were provided with immediate corrective or 
confirmatory feedback (Butterfield & Metcalfe, 2001), students in the current simulation-based environment were required to 
discover the correct responses through interactive engagement with the tasks. They could not proceed to the next task unless 
the current task was completed correctly. Therefore, students’ efforts to find a correct response or to overcome their learning 
impasses could manifest in terms of their task attempts and time-on-task behaviours. In particular, their learning behaviours, 
such as making repeated attempts at the task and spending a greater amount of time on the task, are indicative of students who 
are attending to and responding to an error they have made and making an effort to solve or resolve their confusion about the 
concepts presented in the task. Previous studies that investigated students’ confusion have called these behaviours students’ 
“effort” (Lehman & Graesser, 2015) and “struggle” (Nawaz et al., 2018) toward confusion resolution. 

With regard to the hypercorrection effect and students’ learning outcomes, Butterfield and Metcalfe (2001, 2006) suggest 
that students who experience a hypercorrection effect pay additional attention to the learning material, which results in their 
having a better understanding of the concepts they are covering. Before discussing the findings of this study, it is important to 
mention that the mark used for students’ assessment on the knowledge-transfer task was a more stringent measure than in the 
existing studies. Unlike most studies on the hypercorrection effect, where students were tested on general knowledge or non-
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academic material (Butterfield & Metcalfe, 2001, 2006; Fazio & Marsh, 2009, 2010; Metcalfe & Finn, 2011), this study tested 
them on academic content. Also, while the previous studies assessed students’ performance on repeated MCQs (matching 
questions during the pre-test and post-test), this study measured students’ performance on a knowledge-transfer task built on 
advanced material. It could, thus, be argued that the outcome measure in this study was more rigorous. 

1. First, the hypercorrection effect would be borne out by higher-confidence students who made an incorrect prediction 
performing better (i.e., have better learning outcomes) than lower-confidence students who made a similar incorrect 
prediction. In the context of this investigation, although the difference between these groups was marginally significant 
(α < 0.10), the trends of the mean scores and the effect size were in line with theory. 

2. Second, the hypercorrection effect could be observed when the learning outcomes of the high-confidence incorrectly 
predicting students are compared to the high-confidence correctly predicting students. While not better, the incorrectly 
predicting students achieved similar scores as the correctly predicting students. It could be that when the high-
confidence incorrectly predicting students discovered an error, they were surprised and, thus, paid more attention. 
Apparently, it enabled them to achieve similar scores to those of the high-confidence correctly predicting students. 

Because it was less clear from the literature whether students who make correct responses with lower confidence show any 
signs of confusion, this analysis was not presented in this paper. Taken together, the results tend to suggest that when students 
commit to a position within a simulation-based learning task with some confidence and then find they have made a mistake, 
they get a bit confused and subsequently pay more attention. As a result, they put in additional effort, which may ultimately 
lead them to form a better understanding. This is entirely consistent with the cognitive conflict (Limón, 2001), cognitive 
disequilibrium (Festinger, 1957; Graesser et al., 2005; Piaget, 1952a), and impasse-driven theories of learning (Brown & 
VanLehn, 1980; VanLehn et al., 2003b), suggesting that effortful cognitive activities can promote confusion resolution and 
ultimately benefit student learning. The findings of this paper are also compatible with previous empirical studies on confusion 
(Lee et al., 2011; Liu, Pataranutaporn, Ocumpaugh, & Baker, 2013). 

Chen, Pan, Sung, & Chang (2013) report that students’ erroneous predictions in POE-based learning designs can result in 
cognitive conflict, dissonance, or disequilibrium, which can ultimately lead to students’ dissatisfaction with their current views 
and may help them bring about a conceptual change and remediation of misconceptions. Overall, while the previous studies 
suggest that POE environments can probe students’ prior knowledge (Liew & Treagust, 1995) and can promote a conceptual 
change (Chairam, Somsook, & Coll, 2009), the current study seems to suggest that students’ confidence in prior knowledge 
can affect their behaviours relating to error correction. In particular, this study proposes that students who face a metacognitive 
mismatch and associated hypercorrection are more likely to benefit from the POE instructional design than students who have 
lower confidence in their prior knowledge. 

Moreover, some of the prior works that analyzed students’ confusion experimentally manipulated cognitive disequilibrium 
and reported that “cognitive disequilibrium causes an increase in uncertainty and allegedly confusion” (D’Mello et al., 2014; 
Lehman, D’Mello, & Graesser, 2012; Lehman et al., 2011). This study showed that a naturalistic simulation-based POE 
learning environment has the potential to naturally trigger a cognitive conflict or disequilibrium in students, especially for 
those students whose expectations do not match their predictions (Fensham & Kass, 1988). The present study also suggests 
that POE environments might represent a good candidate for learning design for future research on emotions and affect. 

7. Conclusion 
Overall, this study investigated students’ moments of confusion in line with theory. The value of having a strong theory to aid 
in the interpretation of the learning analytic measures used in this study should not be underestimated. Several researchers 
have argued the critical need to connect analytics with learning theory for further advancement in research and practice of 
learning analytics. In one study, while examining the association between students’ trace data and their learning outcomes, the 
importance of instructional conditions was empirically shown (Gašević, Dawson, Rogers, & Gasevic, 2016). Researchers have 
further suggested that to gain “actionable” insights into students’ learning progress, to improve study designs, and to enhance 
and interpret the study findings, existing theory should be utilized (Gašević, Dawson, & Siemens, 2014). 

This study presented an innovative methodological approach to confusion research. Through cluster analysis, two groups 
of students were identified who, broadly speaking, exhibited similar levels of persistence (because they completed all the 
module tasks) and had similar levels of prior knowledge and misconceptions (based on their selection of hypotheses at the 
prediction task). The only apparent difference between the two groups was their confidence in prior knowledge—which was 
inferred from students’ free-text data that they wrote while providing the reasoning for their choice of hypotheses. This 
difference in students’ confidence seemed to influence how they interacted within a simulation-based POE environment—in 
particular, during the observation phase, which was the focus of this study. 

There does seem to be value in looking for digital markers of confusion, particularly during the observe phase of a 
simulation-based POE environment. Broadly speaking, knowledge of student profiles in terms of their confidence and prior 
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knowledge can help interpret their effort associated with confusion. This can ultimately enable timely interventions. 
Interventions or feedback is important in learning (Shute, 2008); feedback is “the process whereby learners obtain information 
about their work in order to appreciate the similarities and differences between the appropriate standards for any given work, 
and the qualities of the work itself, in order to generate improved work” (Boud & Molloy, 2012). The importance of 
interventions in learning analytics to “close the feedback loop” has been emphasized by several researchers (Barker & Pinard, 
2014; Clow, 2012, 2014). Within the current context, student intervention can prevent persistent or prolonged confusion, which 
has been associated with poor learning outcomes and performance (D’Mello et al., 2009; Lee et al., 2011). 

Knowing when students get confused or which students are more likely to be confused could be useful for the provision of 
automated feedback by using learning analytic techniques. On the one hand, this can allow educators to identify students who 
need more guidance and support. This approach, where teachers offer dynamically planned interventions to one or more 
students, is termed “proactive remediation” (Miller et al., 2015). Through the teacher’s assistance, this can possibly lead to 
students’ enhanced engagement and persistence in the task. On the other hand, a knowledge of the likely moments of students’ 
confusion could help educators know when the material is getting more complex, so that they may change the pace of the task 
or include additional support. 

The approach to confusion detection used in this research leverages learning analytics. The only data used in this study is 
students’ interaction-based trace data. There is potential, therefore, to deploy the processes and findings from this study at 
scale. In time, these measures may be used as the basis for digital systems that can automatically detect and respond to learners’ 
difficulties and cater to their confusion. A key challenge with such a development would be knowing the precise moment to 
provide feedback to confused students. Immediate feedback could hinder the productive educational benefits of being 
confused, while overly delayed feedback may risk students disengaging from the task (Graesser & D’Mello, 2012). 

8. Limitations and Future Work 
There are some limitations to the present analysis that need to be addressed in the future. This preliminary study only included 
the observe phase of the POE learning design, given that this is where students’ moments of confusion were expected. In future, 
students’ emotions in the complete POE cycle could be analyzed. This would allow a more in depth understanding of the 
various emotions that students can undergo in a complete POE-based design. For example, future research could use learning 
analytic techniques to explore the expectation that students with sustained misconceptions from the observation task would 
likely be frustrated as they arrive at the explanation tasks. 

In future, this study could also benefit by including external criterion, such as students’ self-reports. Researchers in learning 
sciences have used self-report instruments extensively (Colthorpe, Zimbardi, Ainscough, & Anderson, 2015; Ellis, Han, & 
Pardo, 2017; Gašević, Jovanovic, Pardo, & Dawson, 2017; Rodriguez et al., 2019). However, self-reports pose some challenges 
of their own, such as being influenced by social desirability bias (Krosnick, 1999; Paulhaus, 1991). This refers to the inclination 
of people to answer in line with what society or researchers view as favourable rather than their actual behaviours, attitudes, 
and beliefs. Another issue with self-report is that people often have a different conceptual understanding of the questions, and 
hence the participants may interpret the self-report items differently (White, 1989). Moreover, it has been suggested that self-
reports can influence cognition or affects in subtle ways (Lazarus, 1991). Additionally, trace data and self-reports on the same 
construct often lack an association (Winne & Jamieson-Noel, 2002), and learners’ poor reflection is a likely reason for this 
mismatch (Zhou & Winne, 2012). Last, in some of the prior studies, trace data has been found to have a stronger association 
with students’ learning outcomes and study tactics than their self-report measures (Winne & Jamieson-Noel, 2002; Zhou & 
Winne, 2012). 

Another possible future direction within a POE framework could be to explore how students select a hypothesis and then 
gather information about it. For this, students could be asked to express their confidence in each of the options with which they 
are presented. Research suggests that given a complex learning task, the participants can test their hypotheses through either 
selection or reception (Markant & Gureckis, 2014b). The different approaches participants adopt can be affected by their level 
of uncertainty or confidence, which, in turn, can influence their learning (Markant & Gureckis, 2014a; Markant et al., 2016). 

Declaration of Conflicting Interest 
The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. 

Funding 
Sadia Nawaz is supported by the Research Training Program (RTP) Scholarship, the Melbourne Research Scholarship, and 
the Science of Learning Research Center (SLRC) top-up scholarship. Any opinions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the funding agencies. 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

131 

Acknowledgements 
We are thankful to the anonymous reviewers for their time and valuable feedback on this paper. The quality of this manuscript 
has improved because of their insightful suggestions. We also wish to thank Namrata Srivastava for her feedback on this work. 

References 
Anderson, R. C., Kulhavy, R. W., & Andre, T. (1971). Feedback procedures in programmed instruction. Journal of 

Educational Psychology, 62(2), 148–156. https://dx.doi.org/10.1037/h0030766 
Arguel, A., & Lane, R. (2015). Fostering deep understanding in geography by inducing and managing confusion: an online 

learning approach. In T. Reiners et al. (Eds.), Globally connected, digitally enabled. Proceedings of the 32nd Annual 
Conference of the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE 2015), 29 
November–2 December 2015, Perth, Western Australia (pp. 373–377). Australasian Society for Computers in 
Learning in Tertiary Education. Retrieved from http://www.2015conference.ascilite.org/wp-
content/uploads/2015/11/ascilite-2015-proceedings.pdf 

Arguel, A., Lockyer, L., Kennedy, G., Lodge, J., & Pachman, M. (2019). Seeking optimal confusion: A review on epistemic 
emotion management in interactive digital learning environments. Interactive Learning Environments, 27(2), 200–210. 
https://dx.doi.org/10.1080/10494820.2018.1457544 

Arguel, A., Lockyer, L., Lipp, O. V., Lodge, J. M., & Kennedy, G. (2017). Inside out: Detecting learners’ confusion to 
improve interactive digital learning environments. Journal of Educational Computing Research, 55(4), 526–551. 
https://dx.doi.org/10.1177%2F0735633116674732 

Baker, R., D’Mello, S., Rodrigo, M. M. T., & Graesser, A. (2010). Better to be frustrated than bored: The incidence, 
persistence, and impact of learners’ cognitive–affective states during interactions with three different computer-based 
learning environments. International Journal of Human-Computer Studies, 68(4), 223–241. 
https://dx.doi.org/10.1016/j.ijhcs.2009.12.003 

Baker, R., Kalka, J., Aleven, V., Rossi, L., Gowda, S. M., Wagner, A. Z., …, Ocumpaugh, J. (2012). Towards sensor-free 
affect detection in cognitive tutor algebra. In K. Yacef et al. (Eds.), Proceedings of the 5th International Conference 
on Educational Data Mining (EDM2012), 19–21 June 2012, Chania, Greece (pp. 126–133). International Educational 
Data Mining Society. Retrieved from 
https://educationaldatamining.org/EDM2012/uploads/procs/EDM_2012_proceedings.pdf 

Baker, R., Moore, G. R., Wagner, A. Z., Kalka, J., Salvi, A., Karabinos, M., & Yaron, D. (2011). The dynamics between 
student affect and behavior occurring outside of educational software. In Proceedings of the 2011 Conference on 
Affective Computing and Intelligent Interaction (ACII ’11), 9–12 October 2011, Memphis, TN, USA (pp. 14–24). 
Springer. https://dx.doi.org/10.1007/978-3-642-24600-5_5 

Ballantyne, R., & Bain, J. (1995). Enhancing environmental conceptions: An evaluation of cognitive conflict and structured 
controversy learning units. Studies in Higher Education, 20(3), 293–303. 
https://dx.doi.org/10.1080/03075079512331381565 

Barker, M., & Pinard, M. (2014). Closing the feedback loop? Iterative feedback between tutor and student in coursework 
assessments. Assessment & Evaluation in Higher Education, 39(8), 899–915. 
https://dx.doi.org/10.1080/02602938.2013.875985 

Bezdek, J. C., & Hathaway, R. J. (2002). VAT: A tool for visual assessment of (cluster) tendency. In Proceedings of the 
2002 International Joint Conference on Neural Networks (IJCNN 2002), 12–17 May 2002, Honolulu, HI, USA 
(pp. 2225–2230). IEEE Computer Society. https://dx.doi.org/10.1109/IJCNN.2002.1007487 

Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. 
In M. A. Gernsbacher, R. W. Pew, L. M. Hough, J. R. Pomerantz (Eds.), & FABBS Foundation, Psychology and the 
real world: Essays illustrating fundamental contributions to society (pp. 56–64). Worth Publishers. Retrieved from 
https://psycnet.apa.org/record/2011-19926-008 

Bosch, N., D’Mello, S., & Mills, C. (2013). What emotions do novices experience during their first computer programming 
learning session? In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th International 
Conference on Artificial Intelligence in Education (AIED ʼ13), 9–13 July 2013, Memphis, TN, USA (pp. 11–20). 
Springer. https://dx.doi.org/10.1007/978-3-642-39112-5_2 

Botelho, A. F., Baker, R., Ocumpaugh, J., & Heffernan, N. T. (2018). Studying affect dynamics and chronometry using 
sensor-free detectors. In K. E. Boyer & M. Yudelson (Eds.), Proceedings of the 11th International Conference on 
Educational Data Mining (EDM2018), 15–18 July 2018, Buffalo, NY, USA (pp. 157–166). International Educational 
Data Mining Society. Retrieved from 
https://educationaldatamining.org/files/conferences/EDM2018/EDM2018_Preface_TOC_Proceedings.pdf 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

132 

Boud, D., & Molloy, E. (2012). Feedback in higher and professional education: Understanding it and doing it well (1st Ed.): 
London, UK: Routledge. Retrieved from https://www.routledge.com/Feedback-in-Higher-and-Professional-Education-
Understanding-it-and-doing/Boud-Molloy/p/book/9780415692298 https://dx.doi.org/10.4324/9780203074336  

Bowen, M., & Haysom, J. (2014). Predict, observe, explain: Activities enhancing science understanding. Arlington, VA: 
NSTA Press. Retrieved from https://my.nsta.org/resource/2625 

Brown, J., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. In Cognitive Science, 
4(4), 379–426. https://dx.doi.org/10.1016/S0364-0213(80)80010-3 

Bunderson, V. C., Inouye, D. K., & Olsen, J. B. (1989). The four generations of computerized educational measurement. In 
R. L. Linn (Ed.), Educational measurement (Vol. 3). New York, NY: Macmillan. https://dx.doi.org/10.1002/j.2330-
8516.1988.tb00291.x 

Butler, A. C., Karpicke, J. D., & Roediger, H. L. (2008). Correcting a metacognitive error: Feedback increases retention of 
low confidence correct responses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 
918–928. https://dx.doi.org/10.1037/0278-7393.34.4.918 

Butterfield, B., & Metcalfe, J. (2001). Errors committed with high confidence are hypercorrected. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 27, 1491–1494. https://dx.doi.org/10.1037/0278-7393.27.6.1491 

Butterfield, B., & Metcalfe, J. (2006). The correction of errors committed with high confidence. Metacognition and 
Learning, 1(1), 69–84. https://dx.doi.org/10.1007/s11409-006-6894-z 

Chairam, S., Somsook, E., & Coll, R. K. (2009). Enhancing Thai students’ learning of chemical kinetics. Research in 
Science & Technological Education, 27(1), 95–115. https://dx.doi.org/10.1080/02635140802658933 

Chen, Y. L., Pan, P. R., Sung, Y. T., & Chang, K. E. (2013). Correcting misconceptions on electronics: Effects of a 
simulation-based learning environment backed by a conceptual change model. Journal of Educational Technology & 
Society, 16(2), 212–227. Retrieved from 
https://drive.google.com/file/d/1dgiywBcc1xq6fKyGmHUzxw6DzzxsD2Z1/view 

Chiu, C. Y., Hong, Y. Y., & Dweck, C. S. (1997). Lay dispositionism and implicit theories of personality. Journal of 
Personality and Social Psychology, 73, 19–30. https://dx.doi.org/10.1037/0022-3514.73.1.19  

Clore, G. L. (1992). Cognitive phenomenology: Feelings and the construction of judgment. In L. L. Martin & A. Tesser 
(Eds.), The construction of social judgments (pp. 133–163). Hillsdale, NJ: Lawrence Erlbaum Associates. Retrieved 
from https://psycnet.apa.org/record/1992-98414-005 

Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. In S. Buckingham Shum, D. Gašević, & R. 
Ferguson (Eds.), Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ʼ12), 
29 April–2 May 2012, Vancouver, BC, Canada (pp. 134–138). New York, NY: ACM. 
https://dx.doi.org/10.1145/2330601.2330636 

Clow, D. (2014). Data wranglers: Human interpreters to help close the feedback loop. In Proceedings of the 4th 
International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, 
USA (pp. 49–53). New York, NY: ACM. https://dx.doi.org/10.1145/2567574.2567603 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillside, NJ, USA: Lawrence Erlbaum 
Associates. https://dx.doi.org/10.4324/9780203771587 

Colthorpe, K., Zimbardi, K., Ainscough, L., & Anderson, S. (2015). Know thy student! Combining learning analytics and 
critical reflections to increase understanding of students’ self-regulated learning in an authentic setting. Journal of 
Learning Analytics, 2(1), 134–155. https://dx.doi.org/10.18608/jla.2015.21.7 

Craig, S., Graesser, A., Sullins, J., & Gholson, B. (2004). Affect and learning: An exploratory look into the role of affect in 
learning with AutoTutor. Journal of Educational Media, 29(3), 241–250. 
https://dx.doi.org/10.1080/1358165042000283101 

Dalziel, J. (2010). Practical eTeaching strategies for predict—observe—explain, problem-based learning and role plays. 
Sydney, Australia: LAMS International. Retrieve from 
https://practicaleteachingstrategies.com/files/LAMSbook2010.Final.pdf 

del Valle, R., & Duffy, T. M. (2009). Online learning: Learner characteristics and their approaches to managing learning. 
Instructional Science, 37(2), 129–149. https://dx.doi.org/10.1007/s11251-007-9039-0 

Dienes, Z. (2012). Conscious versus unconscious learning of structure. In P. Rebuschat & J. N. Williams (Eds.), Statistical 
learning and language acquisition, Vol. 1 (pp. 337–364). Berlin, Germany: De Gruyter Mouton. 
https://dx.doi.org/10.1515/9781934078242.337 

D’Mello, S., Craig, S. D., Gholson, B., Franklin, S., Picard, R., & Graesser, A. (2005). Integrating affect sensors in an 
intelligent tutoring system. In Affective interactions: The computer in the affective loop workshop at 2005 
International Conference on Intelligent User Interfaces (pp. 7–13). New York, NY: ACM Press.  



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

133 

D’Mello, S., & Graesser, A. (2010). Modeling cognitive-affective dynamics with hidden Markov models. In S. Ohlsson & R. 
Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society, 11–14 August 2010, 
Portland, OR, USA (pp. 2721–2726). Austin, TX: Cognitive Science Society. Retrieved from 
https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci10_proceedings.pdf 

D’Mello, S., & Graesser, A. (2011). The half-life of cognitive-affective states during complex learning. Cognition and 
Emotion, 25(7), 1299–1308. https://dx.doi.org/10.1080/02699931.2011.613668 

D’Mello, S., & Graesser, A. (2012a). Dynamics of affective states during complex learning. Learning and Instruction, 22(2), 
145–157. https://dx.doi.org/10.1016/j.learninstruc.2011.10.001 

D’Mello, S., & Graesser, A. (2012b). Emotions during learning with AutoTutor. In P. Durlach & A. Lesgold (Eds.), 
Adaptive technologies for training and education (pp. 117–139). Cambridge, UK: Cambridge University Press. 
https://dx.doi.org/10.1017/CBO9781139049580.010 

D’Mello, S., & Graesser, A. (2014a). Confusion. In R. Pekrun & L. G. Lisa (Eds.), International handbook of emotions in 
education (pp. 289–310). Hoboken, NJ, USA: Taylor and Francis. 

D’Mello, S., & Graesser, A. (2014b). Confusion and its dynamics during device comprehension with breakdown scenarios. 
Acta Psychologica, 151, 106–116. https://dx.doi.org/10.1016/j.actpsy.2014.06.005 

D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for learning. Learning and 
Instruction, 29, 153–170. https://dx.doi.org/10.1016/j.learninstruc.2012.05.003 

D’Mello, S., Person, N., & Lehman, B. (2009). Antecedent-consequent relationships and cyclical patterns between affective 
states and problem solving outcomes. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), 
Proceedings of the 14th International Conference on Artificial Intelligence in Education (AIED ʼ09), 6–10 July 2009, 
Brighton, UK (pp. 57–64). IOS Press. https://dl.acm.org/doi/10.5555/1659450.1659463 

D’Mello, S., Picard, R. W., & Graesser, A. (2007). Toward an affect-sensitive AutoTutor. IEEE Intelligent Systems, 22(4), 
53–61. https://dx.doi.org/10.1109/MIS.2007.79 

D’Mello, S., Taylor, R. S., & Graesser, A. (2007). Monitoring affective trajectories during complex learning. In D. S. 
McNamara & G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society (CogSci 
2007), 1–4 August 2007, Nashville, TN, USA (pp. 197–202). Austin, TX: Cognitive Science Society. 

Driver, R. (1983). The pupil as scientist? Milton Keynes, UK: Open University Press. 
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. 

International Journal of Science Education, 25(6), 671–688. https://dx.doi.org/10.1080/09500690305016 
Ellis, R. A., Han, F., & Pardo, A., (2017). Improving learning analytics—Combining observational and self-report data on 

student learning. Educational Technology & Society, 20(3), 158–169. Retrieved from 
https://www.jstor.org/stable/26196127 

Engelbrecht, J., Harding, A., & Potgieter, M. (2005). Undergraduate students’ performance and confidence in procedural and 
conceptual mathematics. International Journal of Mathematical Education in Science and Technology, 36(7), 701–
712. https://dx.doi.org/10.1080/00207390500271107 

Fazio, L. K., & Marsh, E. J. (2009). Surprising feedback improves later memory. Psychonomic Bulletin & Review, 16(1), 
88–92. https://dx.doi.org/10.3758/PBR.16.1.88 

Fazio, L. K., & Marsh, E. J. (2010). Correcting false memories. Psychological Science, 21(6), 801–803. 
https://dx.doi.org/10.1177/0956797610371341 

Fensham, P. J., & Kass, H. (1988). Inconsistent or discrepant events in science instruction. Studies in Science Education, 
15(1), 1–16. https://dx.doi.org/10.1080/03057268808559946 

Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press. Retrieved from 
https://psycnet.apa.org/record/1993-97948-000 

Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The 
effects of instructional conditions in predicting learning success. The Internet and Higher Education, 28, 68–84. 
https://dx.doi.org/10.1016/j.iheduc.2015.10.002 

Gašević, D., Dawson, S., & Siemens, G. (2014). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 
64–71. https://dx.doi.org/10.1007/s11528-014-0822-x 

Gašević, D., Jovanovic, J., Pardo, A., & Dawson, S. (2017). Detecting learning strategies with analytics: Links with self-
reported measures and academic performance. Journal of Learning Analytics, 4(2), 113–128. 
https://dx.doi.org/10.18608/jla.2017.42.10 

Graesser, A. (2011). Learning, thinking, and emoting with discourse technologies. American Psychologist, 66(8), 746–757. 
https://dx.doi.org/10.1037/a0024974 

Graesser, A., Baggett, W., & Williams, K. (1996). Question-driven explanatory reasoning. Applied Cognitive Psychology, 
10(7), 17–31. https://dx.doi.org/10.1002/(SICI)1099-0720(199611)10:7<17::AID-ACP435>3.0.CO;2-7 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

134 

Graesser, A., & D’Mello, S. (2012). Emotions during the learning of difficult material. Psychology of Learning and 
Motivation, 57, 183–225. https://dx.doi.org/10.1016/B978-0-12-394293-7.00005-4 

Graesser, A., Lu, S., Olde, B. A., Cooper-Pye, E., & Whitten, S. (2005). Question asking and eye tracking during cognitive 
disequilibrium: Comprehending illustrated texts on devices when the devices break down. Memory & Cognition, 
33(7), 1235–1247. https://dx.doi.org/10.3758/BF03193225 

Graesser, A., & Olde, B. A. (2003). How does one know whether a person understands a device? The quality of the 
questions the person asks when the device breaks down. Journal of Educational Psychology, 95(3), 524–536. 
https://dx.doi.org/10.1037/0022-0663.95.3.524 

Graesser, A., Ozuru, Y., & Sullins, J. (2010). What is a good question? In M. G. McKeown & L. Kucan (Eds.), Bringing 
reading research to life (pp. 112–141). New York, NY: Guilford. Retreived from https://psycnet.apa.org/record/2010-
03564-007 

Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A., & Martin, R. (2014). Domain-general 
problem solving skills and education in the 21st century. Educational Research Review, 13, 74–83. 
https://dx.doi.org/10.1016/j.edurev.2014.10.002 

Gunstone, R. F. (1990). Children’s science: A decade of developments in constructivist views of science teaching and 
learning. The Australian Science Teachers Journal, 36(4). 

Gunstone, R. F., & White, R. T. (1980). A matter of gravity. Research in Science Education, 10(1), 35–44. 
https://dx.doi.org/10.1007/BF02356307 

Horodyskyj, L. B., Mead, C., Belinson, Z., Buxner, S., Semken, S., & Anbar, A. D. (2018). Habitable Worlds: Delivering on 
the promises of online education. Astrobiology, 18(1), 86–99. https://dx.doi.org/10.1089/ast.2016.1550 

Huang, H. M. (2002). Toward constructivism for adult learners in online learning environments. British Journal of 
Educational Technology, 33(1), 27–37. https://dx.doi.org/10.1111/1467-8535.00236 

Kang, S. H., Pashler, H., Cepeda, N. J., Rohrer, D., Carpenter, S. K., & Mozer, M. C. (2011). Does incorrect guessing impair 
fact learning? Journal of Educational Psychology, 103(1), 48–59. https://dx.doi.org/10.1037/a0021977 

Kapur, M. (2016). Examining productive failure, productive success, unproductive failure and unproductive success in 
learning. Educational Psychologist, 51(2), 289–299. https://dx.doi.org/10.1080/00461520.2016.1155457 

Karamustafaoğlu, S., & Mamlok-Naaman, R. (2015). Understanding electrochemistry concepts using the predict-observe-
explain strategy. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 923–936. 
https://dx.doi.org/10.12973/eurasia.2015.1364a 

Karumbaiah, S., Andres, J. M. A. L., Botelho, A. F., Baker, R., & Ocumpaugh, J. (2018). The implications of a subtle 
difference in the calculation of affect dynamics. In Proceedings of the 26th International Conference on Computers in 
Education (ICCE ’18), 26–30 November 2018, Manila, Philippines (pp. 29–38). Philippines: Asia-Pacific Society for 
Computers in Education. Retrieved from http://icce2018.ateneo.edu/wp-content/uploads/2018/12/C1-04.pdf 

Kassambara, A. (2017). Practical guide to cluster analysis in R—Unsupervised machine learning. STHDA. Retredfddfived 
from https://www.sthda.com 

Keltner, D., & Shiota, M. N. (2003). New displays and new emotions: A commentary on Rozin and Cohen (2003). Emotion, 
3, 86–91. https://dx.doi.org/10.1037/1528-3542.3.1.86 

Kendeou, P., & Broek, P. V. D. (2005). The effects of readers’ misconceptions on comprehension of scientific text. Journal 
of Educational Psychology, 97(2). https://dx.doi.org/10.1037/0022-0663.97.2.235 

Kennedy, G., & Lodge, J. (2016). All roads lead to Rome: Tracking students’ affect as they overcome misconceptions. In S. 
Barker, S. Dawson, A. Pardo, & C. Colvin (Eds.), Show Me The Learning: Proceedings of the 33rd Annual 
Conference of the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE 2016). 28–30 
November 2016, Wellington, New Zealand (pp. 318–328). Australasian Society for Computers in Learning in Tertiary 
Education. Retrieved from https://2016conference.ascilite.org/wp-content/uploads/ascilite2016_kennedy_full.pdf 

Kibirige, I., Osodo, J., & Tlala, K. M. (2014). The effect of predict-observe-explain strategy on learners’ misconceptions 
about dissolved salts. Mediterranean Journal of Social Sciences, 5(4), 300–310. 
https://dx.doi.org/10.5901/mjss.2014.v5n4p300 

Kostyuk, V., Almeda, M., & Baker, R. (2018). Correlating affect and behavior in reasoning mind with state test 
achievement. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge (LAK ’18), 
5–9 March 2018, Sydney, Australia (pp. 26–30). New York, NY: ACM. https://dx.doi.org/10.1145/3170358.3170378 

Kovanovic, V., Gašević, D., Dawson, S., Joksimovic, S., Baker, R., & Hatala, M. (2015). Does time-on-task estimation 
matter? Implications for the validity of learning analytics findings. Journal of Learning Analytics, 2(3), 81–110. 
https://dx.doi.org/10.18608/jla.2015.23.6 

Krosnick, J. A. (1999). Survey research. Annual Review of Psychology, 50, 537–567. 
https://dx.doi.org/10.1146/annurev.psych.50.1.537 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

135 

Kulhavy, R. W. (1977). Feedback in written instruction. Review of Educational Research, 47(2), 211–232. 
https://dx.doi.org/10.3102/00346543047002211 

Kulhavy, R. W., & Stock, W. A. (1989). Feedback in written instruction: The place of response certitude. Educational 
Psychology Review, 1(4), 279–308. https://dx.doi.org/10.1007/BF01320096 

Kulhavy, R. W., Yekovich, F. R., & Dyer, J. W. (1976). Feedback and response confidence. Journal of Educational 
Psychology, 68(5), 522–528. https://dx.doi.org/10.1037/0022-0663.68.5.522 

Lagud, M. C. V., & Rodrigo, M. M. T. (2010). The affective and learning profiles of students using an intelligent tutoring 
system for algebra. In V. Aleven, J. Kay, & J. Mostow (Eds.), Proceedings of the 10th International Conference on 
Intelligent Tutoring Systems (ITS 2010), 14–18 June 2010, Pittsburgh, PA, USA, (pp. 255–263). Berlin, Germany: 
Springer. https://dx.doi.org/10.1007/978-3-642-13388-6_30 

Lazarus, R. S. (1991). Cognition and motivation in emotion. American Psychologist, 46, 352–367. 
https://dx.doi.org/10.1037/0003-066X.46.4.352 

Lee, D. M. C., Rodrigo, M. M. T., Baker, R., Sugay, J. O., & Coronel, A. (2011). Exploring the relationship between novice 
programmer confusion and achievement. In S. K. D’Mello, A. C. Graesser, B. W. Schuller, & Jean-Claude Martin 
(Eds.), Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII ’11), 9–
12 October 2011, Memphis, TN, USA (pp. 175–184). Berlin, Germany: Springer. https://dx.doi.org/10.1007/978-3-
642-24600-5_21 

Lehman, B., D’Mello, S., Chauncey, A., Gross, M., Dobbins, A., Wallace, P., …, Graesser, A. (2011). Inducing and tracking 
confusion with contradictions during critical thinking and scientific reasoning. In G. Biswas, S. Bull, J. Kay, & A. 
Mitrovic (Eds.), Proceedings of the 15th International Conference on Artificial Intelligence in Education (AIED ʼ11), 
28 June–2 July 2011, Auckland, New Zealand (pp. 171–178). Berlin, Germany: Springer. 
https://dx.doi.org/10.1007/978-3-642-21869-9_24 

Lehman, B., D’Mello, S., & Graesser, A. (2012). Confusion and complex learning during interactions with computer 
learning environments. The Internet and Higher Education, 15(3), 184–194. 
https://dx.doi.org/10.1016/j.iheduc.2012.01.002 

Lehman, B., & Graesser, A. (2015). To resolve or not to resolve? That is the big question about confusion. In C. Conati, N. 
Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.), Proceedings of the 17th International Conference on Artificial 
Intelligence in Education (AIED ʼ15), 22–26 June 2015, Madrid, Spain (pp. 216–225). Berlin, Germany: Springer. 
https://dx.doi.org/10.1007/978-3-319-19773-9_22 

Liew, C. W., & Treagust, D. F. (1995). A predict-observe-explain teaching sequence for learning about students’ 
understanding of heat and expansion of liquids. Australian Science Teachers’ Journal, 41(1), 68–71. Retrieved from 
https://www.researchgate.net/publication/234752631_A_Predict-Observe-
Explain_Teaching_Sequence_for_Learning_about_Students'_Understanding_of_Heat_and_Expansion_Liquids 

Liew, C. W., & Treagust, D. F. (1998). The effectiveness of predict-observe-explain tasks in diagnosing students’ 
understanding of science and in identifying their levels of achievement. Retrieved from 
https://eric.ed.gov/?id=ED420715 

Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning 
and Instruction, 11(4-5), 357–380. https://dx.doi.org/10.1016/S0959-4752(00)00037-2 

Liu, Z., Pataranutaporn, V., Ocumpaugh, J., & Baker, R. (2013). Sequences of frustration and confusion, and learning. In S. 
K. DʼMello et al. (Eds.), Proceedings of the 6th International Conference on Educational Data Mining (EDM2013), 
6–9 July 2013, Memphis, TN, USA (pp. 114–120). International Educational Data Mining Society/Springer. Retrieved 
from https://files.eric.ed.gov/fulltext/ED558215.pdf 

Lodge, J., Kennedy, G., Lockyer, L., Arguel, A., & Pachman, M. (2018). Understanding difficulties and resulting confusion 
in learning: An integrative review. Frontiers in Education, 3, 49. https://dx.doi.org/10.3389/feduc.2018.00049 

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth 
Berkeley Symposium on Mathematical Statistics and Probability, 1 January 1967, Oakland, CA, USA (pp. 281–297). 

Mandler, G. (1984). Mind and body: Psychology of emotion and stress. New York, NY: Norton. 
Mansour, B. E., & Mupinga, D. M. (2007). Students’ positive and negative experiences in hybrid and online classes. College 

Student Journal, 41(1). Retrieved from https://eric.ed.gov/?id=EJ765422 
Markant, D., & Gureckis, T. M. (2014a). A preference for the unpredictable over the informative during self-directed 

learning. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of 
the Cognitive Science Society (CogSci 2014), 23–26 July 2014, Quebec City, QC, Canada (pp. 958–963). Austin, TX: 
Cognitive Science Society. Retrieved from https://cogsci.mindmodeling.org/2014/papers/172/paper172.pdf 

Markant, D. B., & Gureckis, T. M. (2014b). Is it better to select or to receive? Learning via active and passive hypothesis 
testing. Journal of Experimental Psychology: General, 143(1), 94–122. https://dx.doi.org/10.1037/a0032108 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

136 

Markant, D. B., Settles, B., & Gureckis, T. M. (2016). Self-directed learning favors local, rather than global, uncertainty. 
Cognitive Science, 40(1), 100–120. https://dx.doi.org/10.1111/cogs.12220 

McLeod, D. B. (1989). The role of affect in mathematical problem solving. In D. B. McLeod & V. M. Adams (Eds.), Affect 
and Mathematical Problem Solving (pp. 20–36). New York, NY: Springer. https://dx.doi.org/10.1007/978-1-4612-
3614-6_2 

McQuiggan, S. W., Robison, J. L., & Lester, J. C. (2010). Affective transitions in narrative-centered learning environments. 
Educational Technology & Society, 13(1), 40–53. Retrieved from https://www.jstor.org/stable/jeductechsoci.13.1.40 

Metcalfe, J., & Finn, B. (2011). People’s hypercorrection of high-confidence errors: Did they know it all along? Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 37(2). https://dx.doi.org/10.1037/a0021962 

Miller, W. L., Baker, R., Labrum, M. J., Petsche, K., Liu, Y. H., & Wagner, A. Z. (2015). Automated detection of proactive 
remediation by teachers in Reasoning Mind classrooms. Proceedings of the 5th International Conference on Learning 
Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 290–294). New York, NY: 
ACM. https://dx.doi.org/10.1145/2723576.2723607 

Nawaz, S., Kennedy, G., Bailey, J., Mead, C., & Horodyskyj, L. (2018). Struggle town? Developing profiles of student 
confusion in simulation-based learning environments. Proceedings of the 35th Annual Conference of the Australasian 
Society for Computers in Learning in Tertiary Education (ASCILITE 2018), 25–28 November 2018, Geelong, 
Australia (pp. 224–233). Australasian Society for Computers in Learning in Tertiary Education. Retrieved from 
https://2018conference.ascilite.org/wp-content/uploads/2018/12/ASCILITE-2018-Proceedings-Final.pdf 

Nawaz, S., Srivastava, N., Yu, J. H., Baker, R., Kennedy, G., & Bailey, J. (2020). Analysis of task difficulty sequences in a 
simulation-based POE environment. In I. I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), 
Proceedings of the 21st International Conference on Artificial Intelligence in Education (AIED ʼ20), 6–10 July 2020, 
Ifrane, Morocco (virtual conference due to COVID-19) (pp. 423–436). Berlin, Germany: Springer. 
https://dx.doi.org/10.1007/978-3-030-52237-7_34 

Nawaz, S., Srivastava, N., Yu, J. H., Khan, A. A., Kennedy, G., Bailey, J., & Baker, R. (2020). How difficult is the task for 
you? Modelling and analysis of students’ task difficulty sequences. International Journal of Artificial Intelligence in 
Education (IJAIED), submitted. 

Ocumpaugh, J., Andres, J. M., Baker, R., DeFalco, J., Paquette, L., Rowe, J., … , Sottilare, R. (2017). Affect dynamics in 
military trainees using vMedic: From engaged concentration to boredom to confusion. In E. André, R. S. Baker, X. 
Hu, M. M. T. Rodrigo, & B. du Boulay (Eds.), Proceedings of the 18th International Conference on Artificial 
Intelligence in Education (AIED 2017), 28 June–1 July 2017, Wuhan, China (pp. 238–249). Berlin, Germany: 
Springer. https://dx.doi.org/10.1007/978-3-319-61425-0_20 

Pachman, M., Arguel, A., & Lockyer, L. (2015). Learners’ confusion: Faulty prior knowledge or a metacognitive monitoring 
error? In T. Reiners et al. (Eds.), Globally connected, digitally enabled. Proceedings of the 32nd Annual Conference of 
the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE 2015), 29 November–2 
December 2015, Perth, Western Australia (pp. 522–526). Australasian Society for Computers in Learning in Tertiary 
Education. Retrieved from http://www.2015conference.ascilite.org/wp-content/uploads/2015/11/ascilite-2015-
proceedings.pdf 

Pardos, Z. A., Baker, R. S. J. D., Pedro, M. S., Gowda, S. M., & Gowda, S. M. (2014). Affective states and state tests: 
Investigating how affect throughout the school year predicts end of year learning outcomes. Journal of Learning 
Analytics, 1(1), 107–128. https://dx.doi.org/10.18608/jla.2014.11.6 

Pardos, Z. A., & Horodyskyj, L. (2019). Analysis of student behaviour in Habitable Worlds using continuous representation 
visualization. Journal of Learning Analytics, 6(1), 1–15. https://dx.doi.org/10.18608/jla.2019.61.1 

Paulhaus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman 
(Eds.), Measures of social psychological attitudes, Vol. 1. Measures of personality and social psychological attitudes 
(pp. 17–59). San Diego, CA: Academic Press. https://dx.doi.org/10.1016/B978-0-12-590241-0.50006-X 

Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and 
achievement: A program of quantitative and qualitative research. Educational Psychologist, 37(2), 91–106. 
https://dx.doi.org/10.1207/S15326985EP3702_4 

Pekrun, R., & Stephens, E. J. (2012). Academic emotions. In K. R. Harris, S. Graham, T. Urdan, S. Graham, J. M. Royer, & 
M. Zeidner (Eds.), APA handbooks in psychology®. APA educational psychology handbook, Vol. 2. Individual 
differences and cultural and contextual factors (pp. 3–31). Washington, DC: American Psychological Association. 
https://dx.doi.org/10.1037/13274-001 

Piaget, J. (1952a). The origins of intelligence. New York, NY: International University Press. 
Piaget, J. (1952b). The origins of intelligence in children (Vol. 8). New York, NY: International University Press. 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

137 

Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development. Chicago, IL: 
University of Chicago Press. 

Rangel, R. H., Möller, L., Sitter, H., Stibane, T., & Strzelczyk, A. (2017). Sure, or unsure? Measuring students’ confidence 
and the potential impact on patient safety in multiple-choice questions. Medical Teacher, 39(11), 1189–1194. 
https://dx.doi.org/10.1080/0142159X.2017.1362103 

Rodrigo, M. M. T., Baker, R. S., Jadud, M. C., Amarra, A. C. M., Dy, T., Espejo-Lanoz, M. B. V., …, Tabanao, E. S. 
(2009). Affective and behavioral predictors of novice programmer achievement. In Proceedings of the 14th Annual 
ACM SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE ’09), 6–9 July 
2009, Paris, France (pp. 156–160). New York, NY: ACM. https://dx.doi.org/10.1145/1562877.1562929 

Rodrigo, M. M. T., Baker, R., Lagud, M. C. V., Lim, S. A. L., Macapanpan, A. F., Pascua, S. A. M. S., …, Viehland, N. J. 
B. (2007). Affect and usage choices in simulation problem solving environments. In Proceedings of the 13th 
International Conference on Artificial Intelligence in Education (AIED 2007), 9–13 July 2007, Los Angeles, CA, 
USA (pp. 145–152). The Netherlands: IOS Press. Retrieved from https://dl.acm.org/doi/10.5555/1563601.1563629 

Rodriguez, F., Yu, R., Park, J., Rivas, M. J., Warschauer, M., & Sato, B. K. (2019). Utilizing learning analytics to map 
students’ self-reported study strategies to click behaviors in STEM courses. Proceedings of the 9th International 
Conference on Learning Analytics and Knowledge (LAK ’19), 4–8 March 2018, Tempe, AZ, USA (pp. 456–460). 
New York, NY: ACM. https://dx.doi.org/10.1145/3303772.3303841 

Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. Journal of Social Service Research, 
21(4), 37–59. https://dx.doi.org/10.1300/J079v21n04_02 

Rosenthal, R., & Rosnow, R. L. (1984). Essentials of behavioral research: Methods and data analysis. New York, NY: 
McGraw-Hill. 

Rozin, P., & Cohen, A. B. (2003). High frequency of facial expressions corresponding to confusion, concentration, and 
worry in an analysis of naturally occurring facial expressions of Americans. Emotion, 3, 68–75. 
https://dx.doi.org/10.1037/1528-3542.3.1.68 

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189. 
https://dx.doi.org/10.3102/0034654307313795 

Silvia, P. J. (2009). Looking past pleasure: Anger, confusion, disgust, pride, surprise, and other unusual aesthetic emotions. 
Psychology of Aesthetics, Creativity, and the Arts, 3(1), 48–51. https://dx.doi.org/10.1037/a0014632 

Silvia, P. J. (2010). Confusion and interest: The role of knowledge emotions in aesthetic experience. Psychology of 
Aesthetics, Creativity, and the Arts, 4(2), 75–80. https://dx.doi.org/10.1037/a0017081 

Sreerekha, S., Arun, R. R., & Sankar, S. (2016). Effect of predict-observe-explain strategy on achievement in chemistry of 
secondary school students. International Journal of Education & Teaching Analytics, 1(1). Retrieved from 
http://www.innoriginal.com/index.php/ijeta/article/view/35 

Storm, C., & Storm, T. (1987). A taxonomic study of the vocabulary of emotions. Journal of Personality and Social 
Psychology, 53, 805–816. https://dx.doi.org/10.1037/0022-3514.53.4.805 

Sun, P. (2006). Outlier detection in high dimensional, spatial and sequential data sets (PhD thesis). Sydney University. 
Tao, P. K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer-supported 

physics instruction. Journal of Research in Science Teaching, 36(7), 859–882. https://dx.doi.org/10.1002/(SICI)1098-
2736(199909)36:7<859::AID-TEA7>3.0.CO;2-J 

Tippett, C. D. (2010). Refutation text in science education: A review of two decades of research. International Journal of 
Science and Mathematics Education, 8(6), 951–970. https://dx.doi.org/10.1007/s10763-010-9203-x 

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. (2003). Why do only some events cause learning during 
human tutoring? Cognition and Instruction, 21(3), 209–249. https://dx.doi.org/10.1207/S1532690XCI2103_01 

White, P. A. (1989). Evidence for the use of information about internal events to improve the accuracy of causal reports. 
British Journal of Psychology, 80, 375–382. https://dx.doi.org/10.1111/j.2044-8295.1989.tb02327.x 

White, R. F., & Gunstone, R. T. (1992). Probing understanding. London, UK: Routledge. 
https://dx.doi.org/10.4324/9780203761342 

Winne, P. H., & Jamieson-Noel, D. (2002). Exploring students’ calibration of self reports about study tactics and 
achievement. Contemporary Educational Psychology, 27(4), 551–572. https://dx.doi.org/10.1016/S0361-
476X(02)00006-1  

Wise, A., Speer, J., Marbouti, F., & Hsiao, Y. T. (2013). Broadening the notion of participation in online discussions: 
Examining patterns in learners’ online listening behaviors. Instructional Science, 41, 323–343. 
https://dx.doi.org/10.1007/s11251-012-9230-9 

Zhou, M., & Winne, P. H. (2012). Modeling academic achievement by self-reported versus traced goal orientation. Learning 
and Instruction, 22(6), 413–419. https://dx.doi.org/10.1016/j.learninstruc.2012.03.004 


