
 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

1 

Volume 7(2), 1-17. http://dx.doi.org/10.18608/jla.2020.72.1 

Utilizing Student Time Series Behaviour in Learning 
Management Systems for Early Prediction of Course 
Performance 
Fu Chen1, Ying Cui2 

Abstract 
Predictive analytics in higher education has become increasingly popular in recent years with the growing availability 
of educational big data. Particularly, a wealth of student activity data is available from learning management systems 
(LMSs) in most academic institutions. However, previous investigations into predictive analytics in higher education 
using LMS activity data did not adequatelyaccommodate student behaviours in the form of time series. In this study, 
we have applied a deep learning approach — long short-term memory (LSTM) networks — to analyze student online 
temporal behaviours using their LMS data for the early prediction of course performance. To reveal the potential of 
the deep learning approach in predictive analytics, we compared LSTM networks with eight conventional machine-
learning classifiers in terms of the prediction performance as measured by the area under the ROC (receiver 
operating characteristic) curve (AUC) scores. Results indicate that using the deep learning approach, time series 
information about click frequencies successfully provided early detection of at-risk students with moderate prediction 
accuracy. In addition, the deep learning approach showed higher prediction performance and stronger 
generalizability than the machine learning classifiers. 
 

Notes for Practice 

• Machine learning classifiers have been widely used in predictive learning analytics (PLAs) in higher 
education, which requires extensive work on feature engineering and a large course with many 
failing students. 

• This study finds that, compared with conventional machine learning models, LSTM networks can be 
used to predict student course performance with higher accuracy and generalizability using time-
series dependencies between student daily click frequencies in the learning management system. 

• The LSTM approach uses a simple feature for prediction, which is more likely to be successfully 
applied in a wide range of courses. 

• The LSTM approach can be an effective screening tool for detecting at-risk students regardless of 
course type, which improves the efficiency and affordability of in-process course evaluations. 
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1. Introduction 
Thanks to the increasing availability of and access to educational big data in this era, learning analytics is playing a growing 
role in addressing many contemporary challenges in education (Daniel, 2015; Siemens & Long, 2011). At the first International 
Conference on Learning Analytics and Knowledge, learning analytics was defined as “the measurement, collection, analysis 
and reporting of data about learners and their contexts, for purposes of understanding and optimising learning and the 
environments in which it occurs” (Long, Siemens, Conole, & Gašević, 2011). Particularly, learning analytics in higher 
education has received increasing attention from both the education and computer science communities in recent years. 
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According to a review by Cui, Chen, Shiri, and Fan (2019), the number of publications on predictive learning analytics (PLAs) 
in higher education has dramatically increased in the past ten years. Given the ever-expanding developments in data science 
techniques, more researchers, senior administrators, and educators have realized the potential of data available in different 
educational systems for improving educational outcomes. For instance, predictive analytics, an important strand of research in 
learning analytics, can help institutions identify at-risk students who may drop out of a program or fail a course, make better 
decisions, and derive actionable insights (Daniel, 2015). 

One of the earliest applications of predictive analytics in higher education is the Course Signals system at Purdue University 
(Arnold & Pistilli, 2012), which used student grades, demographic information, and behaviours in the learning management 
system (LMS) to predict their course performance. Subsequently, more and more institutions applied predictive analytics in 
their educational systems to explore the relationships between student data from different sources and their academic 
performance (Sclater, Peasgood, & Mullan, 2016). However, how institutions built the models, incorporated the models in 
LMSs, and how well these models performed have not been well documented. Fortunately, a large body of empirical studies 
from researchers in education and computer science can be found in the literature. For example, in Romero, Espejo, Zafra, 
Romero, and Ventura’s (2013) study, final course marks could be predicted by students’ click frequencies and time in the LMS 
with moderate accuracy. In their study using student online learning behaviours and demographic information extracted from 
the massive open online courses (MOOCs), Al-Shabandar et al. (2017) found that student click stream actions were strongly 
correlated with their academic success. In addition, Luo, Sorour, Goda, and Mine (2015) found that student grades could be 
successfully predicted by their free-style comments after lessons with an accuracy over 80%. These studies have demonstrated 
the beneficial use of predictive analytics in higher education with different sources of information utilized in predictive models. 

In this study, we use students’ daily click frequencies in the LMS to predict their course performance in large undergraduate 
courses at a western Canadian university using a deep learning model — long short-term memory (LSTM) networks. We 
trained the LSTM networks with data within different time frames (i.e., four, six, eight, and ten weeks) to examine how early 
a good prediction can be achieved. We evaluated the performance of the LSTM networks in comparison to conventional 
machine learning classifiers in terms of their prediction accuracy. In the following sections, we provide the rationales for using 
LMS data and the details of our methodologies. 

2. LMS for Learning 
Nowadays, using LMSs for teaching and learning has become increasingly popular in higher education (Cole & Foster, 2007). 
LMSs are web applications providing a variety of tools facilitating teaching and learning, which include sharing course 
materials, online forums, online quizzes, collecting and evaluating assignments, and recording grades (Cole & Foster, 2007). 
By using these tools, instructors are able to deliver timely feedback to students and design appropriate interventions. Moreover, 
student actions in LMSs are recorded and stored by the system, which could be analyzed by institutions, administrators, and 
instructors to gain insights from student online behaviours. 

In terms of constructivist learning theory (Hein, 1991), LMSs are important for learning success in higher education. The 
theory stresses that learning is an active process; learners are not passive recipients of knowledge inputs, but should actively 
engage in learning and construct meaning from learning resources (Duffy & Cunningham, 1996). In this regard, LMSs are 
designed for integrating multiple learning resources and delivering them in a flexible way, which have the potential to provide 
a platform that facilitates students to construct knowledge by themselves. More specifically, LMSs allow students to get access 
to all the course materials in a convenient and contextual manner, facilitate them to integrate what they have learned in the 
course, and help construct meaning from the new course materials. In addition, because learners are able to collectively create 
cognitive strategies or construct common knowledge through the social context provided by the learning community (Edwards 
& Mercer, 2013), the connections between learners and their instructors, peers, and others are important for successful learning. 
In this sense, LMSs are capable of offering students a social tool for communicating with their peers and instructors about 
difficulties in learning, allowing instructors to provide timely and constructive feedback and support. 

Theoretically, in what ways do LMSs affect student learning? A possible answer is that LMSs might play a role in 
influencing self-regulated learning processes. According to Winne and Hadwin’s (1998) model, student self-regulated learning 
is a four-stage event consisting of 1) clarifying tasks, 2) setting goals and making plans, 3) adopting tactics and strategies, and 
4) examining the outcomes from previous stages. Each of these learning stages is initialized by task conditions (e.g., learning 
time, learning resources, and social context) and cognitive conditions (student interest, previous knowledge, and motivation), 
followed by student cognitive processes faced with tasks and then their products (e.g., student behaviours and performance), 
which are finally evaluated by internal or external feedback and standards. These elements of self-regulated learning are 
directly or indirectly associated with the features of LMSs. For example, to improve task conditions of self-regulated learning, 
instructors can provide a variety of learning resources through LMSs and students are able to be socially connected with 
instructors and other students. Moreover, LMSs are capable of recording learning products, explicating internal and external 
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evaluation standards, and stimulating student interest and motivation by establishing a more engaging and intriguing learning 
context. To sum up, self-regulated learning can be facilitated by a well-designed LMS, and thus, student interaction with the 
LMS might be indicative of their learning outcomes. 

Given the common use of the LMS in higher education and its importance for teaching and learning, a large body of studies 
on predictive analytics have used LMS data together with student information from other sources to predict academic 
performance. In their review, Cui et al. (2019) identified several major student-level data sources used in predictive analytics 
literature, including intermediate course performance, like quiz grades (e.g., Luo, Koprinska, & Liu, 2015), student behaviours 
in LMSs (e.g., Romero et al., 2013), survey data on socio-emotional variables (e.g., Guarín, Guzmán, & González, 2015), 
demographic information (e.g., Evale, 2016), and academic history (e.g., Ochoa, 2016). Studies that utilized multiple data 
sources often showed a high classification accuracy rate. For example, using students’ academic history, social behaviours, 
demographic information, and educational background to predict dropout, the prediction accuracy could reach over 80% 
(Meedech, Iam-On, & Boongoen, 2016). 

This study focuses on the use of LMS data for the prediction of student course performance based on two considerations. 
First, the use of multiple sources of information requires a data warehouse that integrates data from various information 
systems, which is not available for all institutions. In most academic institutions, instructors often have access to student data 
from the LMS only. Second, LMS data are particularly useful in generating actionable information that helps design 
interventions. Based on the analytics of LMS data, for example, feedback regarding how students can change their behaviours 
to increase their chances of learning success can be provided (e.g., participate in group discussions or submit assignment on 
time). Therefore, this study focuses on exploring how to make best use of LMS data without other student information for 
prediction, which might be a challenging but valuable topic. 

Moreover, early prediction and intervention is a key goal of predictive analytics (Macfadyen & Dawson, 2010). However, 
some previous studies in this area used student LMS data from the entire course (e.g., Conijn, Snijders, Kleingeld, & Matzat, 
2017), which might reveal the influential online behaviours contributing to academic success, but has limited practical 
implications for timely intervention. Other studies focusing on early detection of at-risk students have shown that data from 
the early stages of a course can be successfully used to predict student learning outcomes. For example, Casey and Azcona 
(2017) used student online behaviours in the LMS to predict their pass/fail results, finding that using the first-four-week data 
could lead to an accuracy rate above 75%. Milne, Jeffrey, Suddaby, and Higgins (2012) found that success in a course was 
positively related to student LMS usage during the first week. In addition, some studies have shown that the accuracy of 
learning outcomes predicted by student LMS behaviours increased over time (e.g., Casey & Azcona, 2017; Hu, Lo, & Shih, 
2014; Schell, Lukoff, & Alvarado, 2014). 

3. Methods for Predictive Analytics 
Examining the methods for predictive analytics in higher education is another common theme in the literature. For example, 
most review papers in this area (e.g., Cui et al., 2019; Shahiri & Husain, 2015) have identified the most commonly used 
machine learning classifiers, such as logistic regression, decision tree, naïve Bayes, support vector machine, neural networks, 
and k-nearest neighbours. In addition, many studies on predictive analytics compared the prediction performance between 
different machine learning classifiers. Despite the success of these methods and their variants, using machine learning 
techniques for predictive modelling often requires many attempts at data preprocessing and feature engineering since structured 
datasets are often required for most machine learning classifiers. Not many studies have explicitly reported how they pre-
processed data and extracted features (Cui et al., 2019), and there is no explicit guidance on how to do data pre-processing and 
feature engineering. This may be because different datasets require different pre-processing procedures, and the selection of 
features is often arbitrarily decided by how researchers think of the potential factors influencing learning outcomes. 

One way to avoid intensive data pre-processing and feature engineering is to use the time-series data in the LMS, such as 
daily student usage. According to the self-regulated learning theory mentioned above, student learning involves several 
consecutive stages. Aggregating student learning behaviours as single components might lead to the loss of information 
revealing how students progressively achieve their learning goals. This might in turn decrease the accuracy of predictive 
models based on machine learning classifiers. One way to analyze student time series data is to use the deep learning approach 
in data science. Deep learning is a subset of machine learning based on artificial neural networks, and it is capable of solving 
complex problems given extremely diverse and unstructured datasets. Among various deep learning models, recurrent neural 
networks, such as LSTM networks, have become increasingly used in recent years to analyze time series or sequential data. 
However, the application of deep learning models in predictive analytics is still rare, with very few studies reported in the 
literature (Coelho & Silveira, 2017). For example, Okubo, Yamashita, Shimada, and Ogata (2017) used 108 student course 
behaviours (e.g., attendance, course views, report submission, etc.) to predict their final course marks using LSTM networks. 
Their results showed that final grades could be predicted by student behaviours during the first four weeks with an accuracy 
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rate over 80%. The potential of their approach for early detection of at-risk students was validated by their other study (later 
the same year) using log data from 937 students in six courses (Okubo, Yamashita, Shimada, & Konomi, 2017). In addition, 
in a study using student event streams in the LMS for graduation prediction, Kim, Vizitei, and Ganapathi (2018) proposed a 
deep learning approach based on the bidirectional LSTM network, which was capable of improving the prediction accuracy 
substantially in the first few course weeks. Generally, these studies have shed light on the potential for using student time series 
behaviours in the LMS to predict course performance by deep learning. Despite their promising findings, however, it is still 
unclear the extent to which the deep learning approach improves the predictive model in contrast to the widely used machine 
learning classifiers with aggregated LMS features. In addition, some of these approaches exploit a variety of student 
information, which sometimes is not fully available to course instructors. Therefore, a simple, generalizable deep learning 
framework is needed and its prediction performance would be more convincing if compared with other conventional machine 
learning models. 

In our study, we use students’ daily click frequencies without any other auxiliary information to predict their final course 
performance. Particularly, our approach is devised to make early detection of at-risk students based on their online activities 
in the LMS, which facilitates timely warning for enhanced course learning. Given the time-series nature of LMS log file data, 
we adopt LSTM networks to model long-term dependencies of LMS activities. To further demonstrate the effectiveness of our 
approach, we conduct a comprehensive examination of conventional machine learning classifiers as baselines. In addition, 
given that machine learning classifiers require multiple aggregated features for prediction, in our approach, we use the most 
influential features to cross validate the choice of daily click frequencies as a representation of LMS behaviour. Our specific 
research questions are as follows: 

1. Do LSTM networks outperform conventional machine learning classifiers in predicting course performance? 
2. Are LSTM networks capable of detecting at-risk students early? 
3. Do machine learning classifiers suggest that click frequencies are predictive of course performance? 

4. Methods 
4.1. Data 
This study used LMS data from a mandatory undergraduate course offered at a large Canadian university. The course was 
administered through Moodle (https://moodle.org/), an open-source, free LMS designed to facilitate learning and teaching in 
the educational context. With Moodle, instructors can flexibly design modules according to their syllabus, providing students 
with online access to activities, course materials, communication tools, and assessments. Students therefore can benefit their 
learning by having more interactions with the instructor, their peers, and the course content. The research team had access to 
anonymized data and all activities were conducted in accordance with the ethical and scientific requirements of the university 
research ethics board. 

In this study, we used log file data and grade books from a mandatory undergraduate course in the Faculty of Education. 
Pre-service teachers take this course to prepare for becoming a primary or high school teacher. Specifically, they learn the 
important concepts and issues regarding how to develop evaluation instruments and evaluate student performance. The course 
is offered every fall and winter semester, and the course structure has been kept consistent in recent years. Students’ final 
grades are determined by their performance in two assignments — a midterm exam and a final exam. To facilitate student 
learning, some practice quizzes and practice assignments are provided on Moodle. 

Data from two semesters were used for training, validating, and testing predictive models. A total of 141 and 527 students 
attended this course in the two semesters, respectively. Considering that using a small training sample with a large number of 
features for learning may lead to overfitting, we used the data from semester 2 (the larger sample) to build the predictive model. 
Seventy-two percent of the data (407 students) in semester 2 was randomly selected for training and validation; the remaining 
28% of the sample (120 students) was used for testing. Although the test dataset from semester 2 was absolutely unseen for 
training each classifier, it shares the same course structure and components with the training dataset. It is therefore expected 
that each classifier should have a reasonable prediction performance on the test dataset from semester 2. Moreover, we also 
tested the models on semester 1 to evaluate the model generalizability. Despite having similar course structures and 
requirements across different academic years, different instructors taught this course across the two semesters. Therefore, the 
datasets from these two semesters were not completely homogeneous. As such, if the predictive models performed well on the 
test dataset from semester 1, their generalizability would be validated to some extent. 

4.2. Class Imbalance Handling 
In this study, we used final grades as the indicator of course performance. Very few students (two in semester 2 and none in 
semester 1) failed the course (see Table 1). Therefore, the at-risk students in this study were defined as those who might get a 
final mark of	C+ or below. This is an arbitrary cut-off point due to the limited number of failing students. For courses with 
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more failing students, it is suggested to use pass/fail as the cut-off point. On average, over 70% of students got a course mark 
above B-, indicating good course performance. The target with fewer than 25% of students as one group (poor performance) 
was imbalanced, which should be handled prior to training. We used a well-known sampling method, synthetic minority 
oversampling technique (SMOTE; Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to mitigate class imbalance. SMOTE first 
finds a data point and its k nearest neighbours in the feature space, and then randomly selects one vector between this data 
point and one of its k nearest neighbours. This vector is then multiplied by a random value between 0 and 1 and added to the 
original data point to generate a synthetic data point. It is worth noting that oversampling by SMOTE is typically used for the 
training dataset but not the validation and test datasets, because the true performance of a classifier can only be validated by 
the original and authentic data, although it is unlikely that the test datasets are balanced in reality. 

Table 1. Final Mark Distribution for Each Dataset 
Target Final Mark Semester 1 Semester 2 
Good  A+ 2 16 

A 7 41 
A- 20 85 
B+ 39 99 
B 25 82 
B- 24 73 

Poor  C+ 13 71 
C 2 35 
C- 6 18 
D+ 3 4 
D 0 1 
F 0 2 

Total Good 117 396 
Poor 24 131 

 

4.3. LSTM Networks 
We used LSTM networks as a deep learning approach for predicting course performance by student time series LMS 
behaviours. We first subset student click frequency data during the first 28 days of the semester and then calculated each 
student’s click frequency for each of the 28 days. The time frame was chosen given the consideration of early prediction. This 
resulted in a dataset of click frequency with 28 time slots for the LSTM network. The outputs of this first-28-days network 
were early predictions of course performance. However, we also implemented the 42-days, 56-days, and 70-days LSTM 
networks to reveal how early the model would be capable of making a good prediction by deep learning. The LSTM networks 
were implemented by keras in python (Chollet, 2015). 

4.3.1. Introduction to LSTM networks 
The LSTM network is a subset of recurrent neural networks (RNNs), which are neural networks (NNs) including temporal 
information. As shown in Figure 1, loops allow information to be transmitted from one time slot to its subsequent time slot in 
RNNs. When unrolled, an RNN looks similar to a normal NN but involves multiple copies of the same NN with information 
passing from one network to a successor. Specifically, the output of a network at one time slot would become its input at a 
subsequent time slot, which makes RNNs very successful in modelling time series data. However, RNNs suffer the vanishing 
or exploding gradient problem, especially when learning over data of long sequences (see Bengio, Simard, & Frasconi, 1994). 
This is because with multiple time slots, successive multiplication with the recurrent weight matrix is needed to update the 
weights, which might lead to either disappearing or explosive gradients during backpropagation. As such, RNNs are only good 
at learning over data of short sequences. In our study, student time series behaviours are in the form of long sequences because 
students might log into the LMS multiple times every day during the semester. In addition, we assume that student learning 
outcomes are attributable to their online behaviours over a long period rather than over several consecutive days. For example, 
given two students with the same aggregated LMS login frequency, one student might check the LMS every day over the 
semester while the other might visit very frequently before assignment due dates or exams. The discrepancy in these long-term 
behaviours might reflect student motivation towards and engagement in learning. As such, long sequences of online behaviours 
rather than aggregated indicators is needed to represent student differences in learning. We therefore use a variant of RNNs — 
LSTM networks (Hochreiter & Schmidhuber, 1997) — to learn over student time-series behaviours in the LMS, given its 
advantage of exploiting long-term memory with long sequences. Specifically, LSTM networks address the problem of 
vanishing and exploding gradients by introducing a forget gate, an input gate, and an output gate in an LSTM cell. These three 
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gates bring in a large degree of flexibility for LSTM networks to model time series dependencies over long sequences by a 
fine-grained control over the information of inputs, the information to be remembered or forgotten in the internal cell state, 
and the information of outputs. LSTM networks demonstrate impressive power in many application domains, such as robot 
control (e.g., Mayer et al., 2008), speech recognition (e.g., Graves & Schmidhuber, 2005), and medicine (e.g., Choi, Bahadori, 
Schuetz, Stewart, & Sun, 2016). In education, applications with LSTM networks are relatively rare, but they have been 
successfully used to address some emerging educational issues of interest in learning analytics (e.g., Coelho & Silveira, 2017) 
and personalized learning recommendations (e.g., Zhou, Huang, Hu, Zhu, & Tang, 2018). 

 

 
Figure 1. Recurrent neural network and its unrolled form. 

Figure 2 demonstrates the architecture of an example LSTM network used in this study, which is built on the data of the 
first-28-days click frequencies. The input data are of three dimensions: a batch size of 64 samples, 28 time slots, and a feature 
size of one (click frequency). On top of the input nodes, an LSTM layer is stacked in the network, which models the time 
dependencies between click frequencies. We conducted a hyperparameter search on five candidate LSTM output node sizes — 
10, 20, 30, 40, and 50 — and selected 20 as the final one. The outputs of the LSTM layer are also of three dimensions: the 
batch size, the number of time slots, and the output node size. Only the last output in the sequence is fed into the next layer, 
leading to a two-dimensional output of batch size and node size. Thereafter, a dropout layer is stacked on the LSTM layer to 
mask its outputs by dropping 50% of them. The dropout layer is used as a regularization technique to prevent overfitting (Gal 
& Ghahramani, 2016). Given that the shape of LSTM outputs does not accord with the target shape, a dense layer with the 
Softmax activation function is added to produce the final predictions. The dense layer changes the LSTM output shape from 
three dimensions to two, dropping the time slots. As such, the final outputs of the model align with the targets in terms of data 
shape. The Adam algorithm (Kingma & Ba, 2014) was used to optimize each LSTM model. An epoch size of 64 samples was 
used for training; the binary cross entropy was used as the cost function. According to previous recommendations 
(e.g., Goodfellow, Bengio, & Courville, 2016, p. 192; Lippmann, 1987), one or two hidden layers are typically sufficient for 
neural networks to classify samples; we therefore adopted one hidden layer. For the number of nodes within each hidden layer, 
however, there are no rules, so configuring the number of nodes by trial and error is considered feasible. In this study, the final 
numbers of nodes used for the 28-day, 42-day, 56-day, and 70-day LSTM networks are 20, 40, 50, and 60 respectively. 
Moreover, given that LSTM networks introduce randomness into learning (e.g., randomly initializing weights, randomly 
shuffling data in optimization), we repeated each model 10 times to reduce the stochastic influence. 

 

Figure 2. Our approach: Modelling time-series behaviours with LSTM networks. 

4.3.2. Evaluation Metric 
In this study, we used AUC as the evaluation metric for both LSTM networks and conventional machine learning classifiers. 
AUC indicates the area under the receiver operating characteristic (ROC) curve (Ling, Huang, & Zhang, 2003). In a ROC 
curve, sensitivity is plotted as a function of the false positive rate (1 minus specificity) for different cut-off values of predicted 
probabilities of a class. The AUC can be interpreted as the probability that a random low-performing student is ranked as more 
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likely to be low-performing than a random high-performing student. AUC rates range from 0 to 1. An AUC rate of 1 indicates 
that the model is perfect in discriminating high- and low-performing students, and an AUC rate of 0 indicates that the model 
incorrectly classified all high-performing students as low-performing and all low-performing students as high-performing, 
which is extremely unlikely. AUC has a chance rate of 0.5, indicating a completely random model. The acceptable AUC range 
for a predictive model depends on the context. Typically, in most research areas, an AUC rate above 0.7 is preferred (e.g., 
Mandrekar, 2010; Rice & Harris, 2005). 

In our study, we used AUC as the evaluation metric because it is insensitive to class imbalance when evaluating models. 
Given a highly imbalanced dataset with many positive samples and very few negative samples, a classifier can reach a very 
high accuracy rate by simply predicting all samples as positive. However, in this case, the classifier should be considered 
useless despite such a high accuracy rate, and AUC should be used as an alternative evaluation metric. Technically, most 
machine learning models use predicted probabilities to produce predicted class labels. Unlike accuracy and other evaluation 
metrics typically assuming the probability of 0.5 as a cut-off value for predicting a sample as positive or negative, AUC 
evaluates a model using different cut-off values. This feature of AUC is especially advantageous for PLAs given that in reality 
only a limited number of students might fail or struggle with a regular university course and a large percentage of students 
might drop an online course. In addition, in terms of model comparison of different machine learning classifiers, it is evident 
that AUC is more discriminating than the metric of accuracy for revealing a model’s predictive capacity. For example, naïve 
Bayes demonstrated higher prediction performance than decision tree in terms of AUC despite their performance being similar 
in terms of accuracy (Ling et al., 2003). In addition, when comparing different predictive models, it is desirable to compare 
the entire ROC curve of different models rather than their performance at a particular point (e.g., accuracy rates), since they 
provide more information on the overall capability of a model discriminating high- and low-performing students. In this sense, 
as a summative indicator of the ROC curve, AUC is preferred in our study. 

4.4. Machine Learning Classifiers 
We implemented eight of the most widely used classifiers including NN, logistic regression (LR), naïve Bayes (NB), support 
vector machine (SVM), decision tree (DT), k-nearest neighbours (kNN), Random forest (RF), and gradient boosting machine 
(GBM) for the predictive modelling using the caret package in R (Kuhn, 2008). All data pre-processing tasks for machine 
learning were conducted in R (R Core Team, 2018). 

4.4.1. Feature Extraction 
For traditional machine learning classifiers, student online activities in the LMS over the same first 28 days as the LSTM 
network approach were used for predictive modelling. We built LSTM network models over different periods to examine 
whether the early prediction was as accurate as that over the full duration of the course. However, we did not extract features 
over longer periods of time for machine learning classifiers because machine learning models were used as baselines in 
comparison with the LSTM network approach in terms of the accuracy of early prediction. In accordance with most previous 
studies (e.g., Casey & Azcona, 2017; Conijn et al., 2017; Romero et al., 2013), we extracted two major features from the log 
data: time-related and frequency-related features. The time-related features measure the time students spent in the LMS as well 
as their time-use habits (e.g., consistency, measured by the standard deviation of time durations). The online time was only 
calculated for modules “Quiz” and “File” because student interactions with the other modules during the first four weeks were 
rare. In addition, it is also unlikely that students spent long in viewing their grades, and most students used the “Assignment” 
module only for the assignment submission. The frequency-related features are simple counts of student clicks in the LMS. In 
addition, click frequencies on/off campus, and during weekdays/weekends were also calculated as features. 

There are several features related to online sessions. In this study, an online session is defined as a series of LMS events 
occurring within a continuous period of time. Unlike click frequency, which only counts all the online events without 
considering their continuity, an online session includes a login action and a logoff or exit action with other online actions in 
between. As such, the number of online sessions can be considered another measure of how frequently students use the LMS. 
However, there are no explicit login/logoff options in the LMS, and likewise there are no login/logoff actions recorded in the 
log files. We therefore use a chunk of consecutive actions in the log files to indicate an online session, which, however, is not 
accurate enough for reflecting students’ real online sessions. In addition, we cannot directly observe what students did in each 
online session, so it is therefore possible that an online session is not a real collection of continuous events on the LMS. For 
example, a student might click on the lecture notes, then leave to visit other websites, then return to read the lecture notes later. 
In this case, although the system records this student’s activities as consecutive events, they can actually be divided into two 
different online sessions. In this study, a total of 21 features are extracted from student log file data with no categorical features 
(see Table 2).  
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Table 2. Descriptive Summary of Each Feature for Training Data for the Education Course 
No. Feature M SD Median 
1 Number of total clicks  188.00 95.37 180.00 
2 Number of clicks on campus 87.27 63.55 73.00 
3 Ratio of on-campus to off-campus clicks 2.79 11.50 0.78 
4 Number of online sessions 1208.47 1285.01 778.00 
5 Total time for all online sessions 143.94 127.18 80.87 
6 Standard deviation of online session time 13.51 5.22 13.00 
7 Mean time of online sessions 85.53 75.99 58.57 
8 Standard deviation of time between online sessions 3064.32 1722.16 2697.03 
9 Number of clicks during weekdays 158.57 80.44 148.00 
10 Number of clicks during weekends 29.44 37.39 16.00 
11 Ratio of weekend to weekday clicks 0.24 0.53 0.11 
12 Number of clicks for module “Assignment” 7.84 6.08 8.00 
13 Number of clicks for module “File” 38.56 19.10 35.00 
14 Number of clicks for module “Forum” 3.01 9.83 0.00 
15 Number of clicks for module “Overview report” 0.06 0.40 0.00 
16 Number of clicks for module “Quiz” 42.69 42.06 37.00 
17 Number of clicks for module “System” 90.63 44.71 83.50 
18 Number of clicks for module “User report” 2.51 4.06 1.00 
19 Total time on module “Quiz” 108.88 294.91 17.00 
20 Total time on module “File” 576.36 700.29 292.50 
21 Standard deviation of time on module “File” 99.14 117.69 41.96 

Note: The descriptive summary of each feature was calculated over the first 28 days.
 
The first ten features relate to the overall student usage of Moodle during the first four weeks. Features 11–21 are related 

to seven Moodle modules utilized by the course instructors, as described below. 
• System: The system provides the bare bones for instructors to construct the course and build modules. Student 

activities here are mainly recorded as viewing the course in the log data. 
• Assignment: Instructors can assign tasks to students, collect student work, and provide grades and feedback. 
• Forum: Course participants can engage in online discussions and other forms of networking. For example, students 

can use the forum as a social place to get to know each other, instructors can deliver course announcements, and 
students can give feedback to their peers and instructor anonymously. 

• Quiz: Instructors may create online quizzes for evaluation purposes, or students may use them for self-assessment. 
Except for essay questions, each quiz question is marked automatically. Students can view their quiz grades in the 
gradebook. 

• File: The file module is for instructors to upload course resources such as lecture notes, in-class presentations, or even 
course-related mini websites. 

• Overview report: The overview allows students to view all the courses in which they are enrolled and their grade 
for each. 

• User report: The user report includes a student’s grades for each assignment, the grading weights of each component, 
the feedback given by instructors or teaching assistants, the grade ranking in comparison with peers, and the overall 
grade for the course. 

4.4.2. Missing Data Handling 
As we analyzed the data, we found that some extracted features had missing values. For example, for the ratio of on-campus 
to off-campus clicks, if all of a student’s LMS clicks were on campus — for example, if they lived in residence — the ratio 
would be infinite, which was recoded as a missing value for imputation. In addition, for the features related to standard 
deviations, if there was only one sample of data, the estimated standard deviation was undefined, which was recoded as a 
missing value for imputation. The k-nearest neighbour imputation (kNN) was carried out for the missing values. kNN is a 
powerful algorithm for handling all kinds of missing data. For an arbitrary missing value, kNN finds its closest neighbouring 
values in the training dataset (e.g., using the mean of these neighbouring values). In addition, each feature was normalized by 
standardizing the data with a mean of 0 and a standard deviation of 1. 
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4.4.3. Feature Selection 
Given a total of 21 features extracted from the log file data, reducing the number of features is helpful for improving the model 
performance, reducing the computation time, and making the prediction more interpretable (Chandrashekar & Sahin, 2014). 
In addition, our approach uses students’ daily click frequencies rather than other LMS features to represent their behaviours. 
Using feature selection to identify those most influential is thus helpful in validating the choice of click frequencies for our 
approach. If the most influential features identified by machine learning classifiers are frequency-related, it is more convincing 
that LMS use patterns over the semester provide an implicit indicator of final course performance. 

In this study, the well-known feature selection algorithm, Recursive Feature Elimination (RFE), was used to remove the 
weakest features. Specifically, the RFE algorithm first uses all predictors to fit the model on the training dataset and calculate 
the model performance. Each feature is then ranked by the feature importance. Thereafter, for a total of 𝑛 features, we can 
define a value of 𝑘 indicating the feature subset size (𝑘 = 1,…𝑛). The corresponding top 𝑘 features are used to fit the model 
and calculate the model performance. As such, we can find the optimal number of features by comparing the model 
performance with different feature subset sizes. In this study, AUC is used as the evaluation metric for RFE. In RFE, a machine 
learning model should be specified for tuning the model with different feature subset sizes. For a particular machine learning 
classifier, the model can be tuned and finalized directly with RFE, which can be in turn evaluated by the test dataset. To remove 
the confounding effect of different features selected by different classifiers, we used a particular machine learning model rather 
than different models in RFE. Among the eight models, we used RFE with random forest for feature selection due to the 
following considerations. Random forest is an extremely popular and powerful ensemble model, which is capable of reducing 
the variance in predictions while maintaining low bias. Moreover, the bootstrapping sampling technique used by random forest 
is a desirable feature for the small dataset used in our study. It is also very friendly with high-dimensional data given that it 
uses a subset of features in training. In addition, it is robust to outliers and non-linear data, and works well with imbalanced 
data. 

Although the optimal feature subset size with the highest prediction accuracy was much larger than five, using more 
features does not improve the model significantly given the negligible difference in prediction accuracy. Therefore, we only 
selected the top five features of the optimal feature subset. Furthermore, in addition to RFE with random forest, the other seven 
machine learning models with all features also provided a ranking of feature importance. Therefore, aside from the top five 
features selected by RFE, we also selected two additional top features with high feature importance identified by most other 
models, resulting in a total of seven selected features for machine learning. 

4.4.4. Hyperparameter Tuning and Model Evaluation 
Consistent with most previous studies (e.g., Casey & Azcona, 2017; Hu et al., 2014; Romero et al., 2013), we used the 10-fold 
cross-validation to tune the hyperparameters and evaluate conventional machine-learning classifiers. The 10-fold cross-
validation is a resampling procedure for evaluating models on unseen data, which is widely used for limited data samples. In 
10-fold cross-validation, the dataset is first shuffled randomly and then split into 10 folds. Each fold in turn is taken as the test 
dataset with the remaining nine folds used for training. A model can then be trained by the training dataset and evaluated on 
the test dataset. This process repeats 10 times and the model performance can be summarized by using the 10 evaluation scores 
obtained. This 10-fold cross-validation is popular because it minimizes both the testing bias and the variance of small datasets. 
Compared with the hold-out method (e.g., holding out half the data for testing and training on the rest), a 10-fold cross-
validation uses almost all available samples for training, which greatly reduces bias. As well, the test performance is 
summarized across all samples, again reducing variance (i.e., with performance stable across different test datasets). In our 
study, each fold included 41 samples, meaning that 366 samples were used for training in each cross-validation iteration. To 
enhance the reliability of model evaluation, our 10-fold cross-validation was repeated five times. 

Regarding hyperparameter tuning for the eight machine-learning classifiers, we evaluated each hypothesized 
hyperparameter value using 10-fold cross-validation. The final values were determined by the model with the highest score on 
AUC. In terms of candidate hyperparameter values, although grid search and manual search are widely used, we used the 
random search for optimization. A random search is more efficient than a grid or manual search, especially when many 
hyperparameters must be tuned, because it is capable of finding models that are just as good with much less computation time 
(Bergstra & Bengio, 2012). For example, we used a single hidden layer neural network with L2 regularization for the algorithm 
considering two hyperparameters: size (the number of nodes in the hidden layer) and decay (the regularization weight). For 
each combination of randomly selected values for these two hyperparameters, the 10-fold cross-validation was applied to select 
the optimal size and decay using the largest score on AUC. We specified 10 combinations of random hyperparameters for each 
model. 
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5. Results 
5.1. LSTM Network Results 
Figure 3 plots the trend of AUC scores of each LSTM network at each experimental repeat. Generally, all LSTM networks 
were estimated stably, given the low standard deviations shown by each network (see Table 3). Specifically, all networks 
showed an average validation AUC above 70%, with the highest for the first-56-days network (75.2%) and the lowest for the 
first-28-days network (71.3%) (see Table 3). For the generalizability of each network, the semester 1 test AUC scores were 
close to those for semester 2 for each LSTM model. Notably, the average AUC score achieved 68.2% when the click events 
of the first 42 days were used for modelling. 

Despite the fact that the 70-days network included almost all the time series information, it did not provide optimal 
predictive performance in terms of either validation or test AUC. However, the discrepancies in AUC scores between models 
were not substantial. Considering the demand for early prediction of course performance, the above results suggest that student 
clicks on Moodle during the early weeks could be successfully used for the timely prediction of their final course performance. 

Table 3. Average AUC (%) and Standard Deviation of Each LSTM Network for the Education Course 

 

 
 

5.2. Machine Learning Results 
Subsequently, we utilized the extracted features to predict student course performance with the eight commonly used machine-
learning classifiers. The performance by AUC for each classifier with all features was approximately 60% on average (see 
Table 4). Specifically, logistic regression and random forest showed the highest (62.8%) and lowest (57.9%) validation AUC 
scores, respectively. However, the generalizability performance of each classifier was lower. 

Aside from modelling with all features, we were also interested in which LMS predictors were more influential for student 
course performance. To this end, using the feature selection method mentioned above, the following seven features were 
selected as the most important for further predictions: 

• Number of total clicks 
• Number of clicks during weekdays 
• Number of clicks for module “File” 
• Number of clicks for module “System” 
• Number of clicks for module “Forum” 
• Number of online sessions 
• Number of clicks on campus 

Table 4. AUC (%) of Each Classifier Using All and Selected Features for the Education Course 

Using fewer features, all classifiers demonstrated higher validation performance (see Table 4). The best validation 
performance and the best test performance on the dataset from semester 2 were found for naïve Bayes (66.2%). In addition, 
some classifiers increased while some decreased in generalizability regarding the change in AUC scores. Generally, support 
vector machine, gradient boosting machine, and k-nearest neighbours showed relatively better performance than other 
classifiers with respect to both validation and test AUC scores. 

 

M (SD) First 28 days 42 days 56 days 70 days 
Validation AUC 71.3 (2.15) 73.4 (0.59) 75.2 (0.97) 73.8 (0.44) 
Test: Semester 1 59.6 (1.27) 68.2 (1.45) 61.1 (3.02) 65.6 (1.47) 
Test: Semester 2 61.6 (1.06) 68.2 (1.82) 64.4 (2.79) 65.0 (2.74) 

Data Features NN LR NB GBM SVM DT kNN RF 

Validation All 58.4 62.8 61.7 59.6 59.2 58.0 58.1 57.9 
Selected 63.6 64.2 66.2 64.2 60.4 57.7 59.3 59.4 

Test: Semester 1 All 57.9 53.5 50.3 55.7 64.6 56.8 60.6 59.5 
Selected 51.3 54.3 54.8 58.3 60.4 51.2 56.6 57.8 

Test: Semester 2 All 64.0 56.6 52.7 53.5 60.5 58.7 63.1 56.8 
Selected 52.9 60.0 63.2 58.8 54.9 56.3 62.2 52.0 
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Figure 3. Frequency trend of student online actions on Moodle for the education course. 
Note: the x-axis indicates the number of repeats. 

6. A Follow-up Study for Generalizability 
The above results indicate the potential of our approach for building a predictive model of student course performance based 
on their behaviours in the LMS. This model can perform well for different types of courses given that it utilizes daily click 
behaviour. A follow-up analysis with a new dataset further demonstrates the generalizability of our approach. 

6.1. Dataset Description 
The dataset used for the follow-up analysis was from a mandatory introductory biology course for undergraduates. The course 
is offered every fall and winter semester. We used the course data from two semesters for analysis. The data of semester 1 was 
partitioned into a training dataset, a validation dataset, and a test dataset; the data of semester 2 was only used for testing. There 
were 290 students in semester 1 and 311 students in semester 2. The analytical procedures for the biology course were exactly 
the same as those for the education course mentioned above. 

6.2. Results 
Table 5 presents the average AUC rates for each LSTM network with respect to different lengths of data for training. In general, 
all LSTM networks were estimated stably, given their low standard deviations. All networks showed a validation AUC above 
or close to 80% with the highest for the 70-days network (83%) and the lowest for the first-42-days network (76.9%). For the 
generalizability of each network, the test AUC scores for semester 1 were around 75%, which was higher than the scores for 
semester 2. This result is not surprising given that the training dataset was also from the course in semester 1 and the dataset 
of semester 2 might differ in content and design features. 

Table 5. Average AUC (%) and Standard Deviation of Each LSTM Network for the Biology Course 
M (SD) First 28 days 42 days 56 days 70 days 
Validation AUC 80.1 (0.00) 76.9 (0.02) 82.6 (0.01) 83.0 (0.01) 
Test: Semester 1 74.6 (0.01) 78.7 (0.01) 73.4 (0.01) 78.2 (0.01) 
Test: Semester 2 63.1 (0.01) 63.5 (0.01) 65.7 (0.00) 64.5 (0.00) 

 
Similar to the results for the education course, the discrepancies in AUC scores between models with different time frames 

were not substantial. Particularly, the training model using the first-28-days data was as competitive as those with more data, 
indicating its potential for early detection of at-risk students. 
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Table 6 presents the AUC rates for each machine learning classifier for the biology course. Most showed a testing AUC 
rate below 60% and performed worse on the test dataset of semester 2. Compared with the results of LSTM networks, it is 
evident that the machine learning classifiers were not advantageous over our approach in terms of predictive capacity. 

Table 6. AUC (%) of Each Classifier Using All and Selected Features for the Biology Course 
Data Features NN LR NB GBM SVM DT kNN RF 

Validation All 61.0 55.2 61.0 58.3 60.4 60.9 59.4 56.0 
Selected 63.0 62.2 67.3 63.5 66.2 62.3 63.1 67.0 

Test: Semester 1 All 55.7 53.2 51.9 56.0 51.1 59.6 55.7 54.4 
Selected 59.3 56.7 50.2 60.0 51.4 57.4 55.3 60.3 

Test: Semester 2 All 50.8 54.2 55.2 59.9 50.0 54.7 52.1 57.1 
Selected 54.4 54.6 50.4 60.9 53.2 51.5 52.1 54.5 

7. Discussion 
In this study, we examine the potential of a deep learning approach — LSTM networks — in predictive analytics of LMS log 
data. In addition, given the limited research comparing deep learning with conventional machine-learning classifiers for 
predictive analytics (e.g., Jiang et al., 2018; Le, Pardos, Meyer, & Thorp, 2018), our study provides further evidence for the 
potential of deep learning to predict learning outcomes. Our results suggest that deep learning could be successful in predicting 
course performance using daily click frequencies in the LMS. Generally, the LSTM networks demonstrated better prediction 
performance than the machine learning classifiers. 

The performance of the eight machine learning classifiers used as baselines for our LSTM approach can be discussed 
separately for using all features versus using selected features. When all features were used, as expected, the AUC scores on 
the test dataset (i.e., semester 2) were close to their validation AUC scores for most classifiers. Some classifiers, such as naïve 
Bayes, however, showed much lower AUC scores on the test dataset than on the validation dataset. Regarding generalizability, 
most classifiers showed poor test performance on the test dataset from the external course (i.e., semester 1) in terms of AUC 
scores, but the performance of NN, SVM, kNN, and RF were relatively better than the others. When the selected top features 
were used, all models improved in terms of validation AUC scores. This finding echoes the idea that using the right features 
may be more important than using more features since feature selection is of great importance for machine learning (Hall & 
Smith, 1998). From the perspective of bias–variance trade-offs, using more features may reduce the bias in training but also 
increases the variance. In other words, more features lead to better model fit to the training data, represented by lower training 
errors. However, when unseen data are used for testing, models often do not perform well because they are built on the features 
important for training but not for testing. 

Another key finding is that the most influential features for machine learning are all frequency-related, suggesting that 
time-related features may not be very useful for prediction. Unlike in-class learning activities, we cannot directly observe how 
much time students actually spend in the LMS. Students might head off in search of coffee, leaving the system open. Other 
researchers have pointed out that time-related LMS features should be treated with caution (e.g., Casey & Azcona, 2017). All 
features related to online sessions were also found to be of limited use in this study. Similarly, we cannot directly observe what 
students actually do in each online session. Therefore, an online session might not be a real collection of consecutive events in 
the LMS. The importance of click frequency for prediction has been observed in other studies as well. For example, in Amrieh, 
Hamtini, and Aljarah’s (2016) study, three of the top four indicators were frequency-related LMS features, with number of 
course resources visited ranked as the most important. This finding also supports using daily click frequencies rather than daily 
time spent on the LMS for time series modelling. 

Regarding the eight machine learning classifiers, predictive models based on aggregated features might be of limited 
predictive capacity for different types of courses. Given the results from the biology course, the testing AUC scores for most 
machine learning classifiers were also not satisfactory. Particularly, test performance did not differ much between the two 
datasets, indicating that the aggregated features extracted from log files for the biology course were not good indicators of 
course performance. Furthermore, the best-performing classifiers were different in the two courses, suggesting that predictive 
models should be customized for different types of courses. 

In general, the LSTM networks used in the education course showed slightly higher test AUC scores than the best-
performing machine learning classifiers (i.e., SVM and kNN). Specifically, the first-28-days network demonstrated a similar 
test performance compared with the best-performing machine learning classifier. The advantages of LSTM networks were 
much more compelling for the biology course. Specifically, the test AUC scores for each were much higher than all the machine 
learning classifiers, irrespective of test datasets. Notably, the first-28-days data showed an AUC rate around 75% on the test 
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dataset from the same semester as the training dataset. These results are promising given that, in contrast to machine learning 
classifiers using multiple aggregated LMS features, LSTM networks modelled a relatively simpler feature — daily click 
frequencies— which required much less feature engineering. Generally, models using data over a longer period had better 
predictive performance than the first-28-days model, but the test performance did not consistently increase as number of weeks 
increased. 

Often overlooked in previous studies, we examined the generalizability evaluation of predictive models. Our approach was 
evaluated by both the test performance on a dataset from a different semester and the comparison between the two types of 
courses. On average, in contrast with the chance level of AUC (i.e., 0.5), our test AUC scores were more than 20% above for 
both the education and biology courses. However, most LSTM networks showed an absolute AUC score above 60% for the 
different semester, which could be considered as moderate generalizability. Since the use of LSTM networks might be 
restricted by sample size, when training on a small dataset, a discrepancy in model performance is expected between training 
and testing. In terms of comparing training and test performance, our approach performed well for both courses, with a slightly 
higher test performance for the biology course, further validating the generalizability of our approach. 

Compared with the majority of machine learning classifiers, our approach demonstrates stronger generalizability in terms 
of higher test AUC scores for the different semesters and courses. When all LMS log features were used, most classifiers 
showed a validation or test AUC score below 60%, consistent with previous studies (e.g., Romero et al., 2013). A possible 
explanation is that the machine learning classifiers used multiple LMS log features for prediction, which introduced more 
variance into the model, while our approach only used daily click frequencies in the LMS — a finding of great practical 
importance. 

One major goal of the institutional application of predictive analytics is to build a flexible model that performs well for a 
wide range of courses. This can be challenging since different courses have distinct structures, teaching and learning activities, 
and requirements. Deriving a set of common aggregated features, which in turn limits the generalizability of conventional 
machine learning classifiers, can be difficult. However, using student time series data might provide a solution, as shown by 
our findings. Some previous studies demonstrated the potential of learners’ time series data in a variety of contexts. The 2018 
special issue of the Journal of Learning Analytics on temporal analyses of learning data featured the results of several studies 
along these lines: 

1. Learners’ temporal sequences of group talk in solving an algebra problem were analyzed with regression analyses to 
predict their group learning outcomes (Chiu, 2018) 

2. Student discourse transcripts were analyzed over time with a combination of socio-semantic network analysis and 
dialogical discourse analysis to characterize and interpret their group discourse and collaboration practises (Oshima, 
Oshima, & Fujita, 2018) 

3. Two novel measures were proposed to identify learners’ timing behaviours in a self-paced online course and examine 
the time effects on learners’ post-course self-efficacy (Riel, Lawless, & Brown, 2018) 

4. A generalizable multi-step approach was developed to analyze multimodal data to interpret learning trajectories in 
intelligent tutoring systems (Liu, Stamper, & Davenport, 2018) 

5. A sequence data model was proposed to analyze student learning records and LMS activities for both a within-
semester prediction of final course grades and a between-semester prediction of program completion (Mahzoon, 
Maher, Eltayeby, Dou, & Grace, 2018) 

Despite these promising uses of time-series data, differences in data types, analytical approaches, and application contexts 
mean that generalizable intervention pathways for learners are unlikely to be developed. Temporal analyses of learning data 
applicable in a wide range of contexts, however, are still worth further exploration. 

The simplicity of our approach would be beneficial for building predictive models for educational institutions in practice. 
Typically, feature engineering is a burdensome and challenging task in conventional machine learning applications. The 
features used in previous models can help to build new learning analytics models (Berland, Baker, & Blikstein, 2014); however, 
extracted features that work well in one scenario might be ineffective in another. For a course in education requiring extensive 
online readings, for example, the frequency of visits to class reading materials might be very indicative of final course 
performance, while the same feature might be useless for predicting performance in a computer science course that emphasizes 
programming skills. 

With conventional machine learning approaches, model designers and developers must collaborate with course instructors 
to identify unique LMS features tailored to each course, which is unlikely feasible in practice. In this sense, given the 
importance of generalizability and simplicity, it is desirable to use simple, generalizable features in learning analytics 
applications. Our results suggest that daily click frequency demonstrates better predictive performance than the combination 
of other aggregated features, and works well for two very different types of courses, indicating good potential in practice. 
Although our approach is simpler and more generalizable, there are still many technical considerations in designing an LSTM 
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framework for building a predictive analytics model. For example, model developers still need to obtain adequate data for 
training, tuning hyperparameters, and deciding the optimal time to send warnings to students. 

Compared to a set of aggregated features, daily LMS usage is relatively simple for instructors to understand and use. Course 
instructors can simply monitor student usage to flag at-risk students, review their other course activities and assignment 
performance, and send them timely warnings through the LMS. This is especially beneficial for large classes (e.g., first-year 
introductory courses) because instructors are less able to pay close attention to every student while frequent in-process 
evaluations of student performance would be costly. In addition, the model built in one school year can be refined and used 
repeatedly in future school years, which reduces the development cost. In general, our approach is not meant to replace other 
evaluation and intervention systems in higher education. Rather it serves as an effective screening system for flagging at-risk 
students regardless of course type, which improves efficiency and saves the cost of in-process course evaluations. 

In terms of limitations, our sample sizes were quite small for predictive modelling, which possibly undermines the power 
of the deep learning approach. Future studies analyzing data from courses with more students are encouraged to validate our 
findings. Another concern relates to the class imbalance for which we used the SMOTE oversampling approach to compensate. 
Despite this, oversampling still introduced bias in training given that many synthetic samples were generated. In addition, most 
machine learning models require that the training and test data come from the same feature and target distributions. In our 
analysis, the test datasets were largely imbalanced. As such, the difference in target class distribution between training and test 
data also undermined the model generalizability. Future studies are needed to examine how to better address class imbalance 
for LSTM analysis. 
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