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Co-enrollment, Assortativity, and Grade Prediction
in Undergraduate Courses
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Abstract
In this paper, we evaluate the complete undergraduate co-enrollment network over a decade of education at a
large American public university. We provide descriptive and exploratory analyses of the network, demonstrating
that the co-enrollment networks evaluated follow power-law degree distributions similar to many other large-scale
networks; that they reveal strong performance-based assortativity; and that network-based features can improve
GPA-based student performance predictors. We model the university-wide undergraduate co-enrollment network as
an undirected graph, and implement multiple network-augmented approaches to student grade prediction, including
an adaption of the structural modelling approach from (Getoor, 2005; Lu & Getoor, 2003a). We compare the
performance of this predictor to traditional methods used for grade prediction in undergraduate university courses,
and demonstrate that a multi-view ensembling approach outperforms both prior “flat” and network-based models for
grade prediction across several classification metrics. These findings demonstrate the usefulness of combining
diverse approaches in models of student success, and demonstrate specific network-based modelling strategies
that are likely to be most effective for grade prediction.

Notes for Practice

• The co-enrollment networks evaluated here demonstrate power-law degree distributions common to many
other types of networks.

• Structural models and, in particular, multi-view ensembles of structural models and traditional “flat” models
can improve over the performance of non-network models for student grade prediction in residential higher
education courses.

• Assumptions of independence between network and non-network features in statistical models may be
strongly violated, which can reduce the performance of models that cannot model or otherwise incorporate
this dependence.
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1. Introduction
Co-enrollment networks, or networks of students enrolled in the same courses at an institution, represent a powerful source of
information about student performance and about broader patterns of student engagement in higher education. In this work, we
conduct a large-scale analysis of co-enrollment networks to 1) analyze the properties of these networks at a scale not previously
examined, and 2) explore the effectiveness of grade prediction techniques that utilize co-enrollment networks. The motivation
for this approach is twofold: First, prior research suggests that there are aspects of university social networks that may be
relevant to student performance (Gasevic 2013), but such research has not examined co-enrollment networks at scale, nor has it
used these networks for predictive modelling. Our exploratory analysis reveals important properties of co-enrollment networks
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in a large American university, and confirms that network properties are indeed related to student performance in this data at a
scale not previously evaluated.

Second, we hypothesize that graph-based prediction models should perform better than “flat” models by capturing
relationships between observations in data that are otherwise assumed to be independent. We find that structural models
using student-level co-enrollment networks outperform traditional “flat” models, and that network-based features only provide
performance improvements when used as a part of such structural models (they do not improve traditional flat models by simply
being added to the input feature set). Furthermore, we demonstrate that by combining network-based and flat models using a
multi-view blended ensemble, we achieve predictive performance superior to prior link-based classification methods.

These results demonstrate the effectiveness of network-based models in learning analytics, and the importance of co-
enrollment networks to student success prediction in higher education. Such predictive models have potential applications in
dropout prediction and “early warning” models, for broader instructor- and student-facing support systems, course selection
tools, and other applications that require accurate predictions of student performance before academic data from a course is
available.

1.1 Network Notation and Classification Task
In this section we briefly introduce the notation used to describe the co-enrollment network and the classification task used in
this work. We present the co-enrollment network as a graph G= (O,L) where O is the set of n objects (students), and L is the
set of undirected links (co-enrollments). For each node oi ∈O, we know a set of object attributes OA(oi) that here include
student- and course-specific attributes such as gender, ethnicity, cumulative GPA, subject, and major (these are the attributes
normally available to institutions from student information systems, self-reports on admissions applications, etc.). In addition,
for each of these nodes, we derive a set of link attributes, LA(oi). Link attributes are aggregations of class labels across oi’s
neighbours (our process for constructing G and extracting LA(oi) is detailed in Section 3.2).

In general, we use blackboard bold letters to refer to vectors or collections of items (i.e., O for the set of objects, or nodes)
and indexed, lowercase letters to refer to individual elements of those vectors (oi for an individual node).

Our experiment in Section 5 addresses the following task:

The link-based classification task (LBCT): Learn a model from a student graph, G, such that the accuracy of
the class predictions Ĉ(∗) on a disjoint future graph G(∗) is maximized.

Note that in this task, the disjoint graph G(∗) is a future academic semester in which we wish to predict grades, where all
object attributes OA(oi) are known for each oi ∈O.

2. Previous Work
2.1 Social Learning and Graph-Based Modelling in Higher Education
Social learning theory provides a theoretical foundation for the impact of social networks on learning. Social interaction among
peers has been recognized as a core component of the learning process for several decades (Gašević, Zouaq, & Janzen, 2013)
and lies at the core of many modern pedagogical approaches, including social constructivism (Adams, 2006) and co-operative
learning (Johnson & Johnson, 2009). A variety of empirical and experimental research has demonstrated positive relationships
between social interactions in courses and learning outcomes (Gašević et al., 2013), including elevated cognition (Schrire,
2006) and self-regulation (Hadwin & Järvelä, 2011).

Network analysis has seen limited application in higher education research, where the influence of other students on a given
student’s performance is known as a “peer effect,” but analysis of co-enrollment networks has been limited in both quantity
and scale. In a thorough overview, (Biancani & McFarland, 2013) identifies at least 56 social network-based studies that use
individual university students as the unit of analysis, noting that this research has been primarily descriptive and explanatory,
not predictive. Prior work has explored other networks in higher education, including dorm roommate networks (Baker, Mayer,
& Puller, 2011), friendship networks (Wimmer & Lewis, 2010), and demographic networks based on geographic background
(Lee, Scherngell, & Barber, 2011), and networks based on institutional factors such as major and class year (Traud, Kelsic,
Mucha, & Porter, 2011). Many of these analyses use external data from social networking sites such as Facebook to construct
models of social ties.1 Network analyses have also been used to describe relationships between departments competing for
undergraduate co-op placements (Y. Jiang & Golab, 2016), faculty authorship (M. E. Newman, 2001), and citation networks
(Redner, 1998).

Prior work specifically on the influence of social networks on undergraduate student achievement exists, but its findings
have been mixed, limited in scope, and largely exploratory. Prior evidence has suggested that grades are correlated within
friendship networks (Antrobus, Dobbelaer, & Salzinger, 1988) and dorm roommate networks (Sacerdote, 2000; Stinebrickner

1See (Biancani & McFarland, 2013) for a thorough survey of research on social networking sites in this context.
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& Stinebrickner, 2006). Some researchers (Zimmerman, 2003; Winston & Zimmerman, 2004) find roommate effects only
for the middle 70% of performers; while others (Hoel, Parker, & Rivenburg, 2005) find significant effects for roommates and
dorm-mates, but not classmates. Still others (Brunello, de Paola, & Scoppa, 2010) observe roommate peer effects that are
dependent on major, with large, positive peer effects in the hard sciences and much smaller, ambiguous effects in the humanities
and social sciences. Cohort-based co-enrollment and team grouping are found to generate networks that are predictive of
student grades in a small N = 250 MBA cohort (Baldwin, Bedell, & Johnson, 1997). Other research has found no peer effects
in roommate (McEwan & Soderberg, 2006; Foster, 2006; Siegfried & Gleason, 2006), cohort (Lyle, 2007), and friendship
networks (Foster, 2006). Finally, we note that “curving” (enforcing specific grade distributions) is also a common practice at
American universities, which can cause student grades to depend explicitly upon those of their peers.

There is also evidence suggesting that analysis of co-enrollment might be particularly informative for learning analytics
research. For example, (Kossinets & Watts, 2006) demonstrates that co-enrollment is strongly related to social tie formation,
finding that co-enrollment makes individuals three times more likely to interact (relative to non-co-enrolled peers) if they also
share an acquaintance, and 140 times more likely if they do not share an acquaintance, in a university-scale email network
N = 43,553. The impact of co-enrollment on performance in a small (N = 505) online masters program has been demonstrated
(Gašević et al., 2013), but the interactions that take place online are different from the in-person interactions in residential
higher education. Exploration of co-enrollment-based effects on performance at scale, across an entire university network, has
not verified this result.

2.2 Network-Based Modelling and Multi-View Learning
If peer effects do exist and if the features relevant to these effects are observable, a sufficiently flexible predictive model should
be able to capture these effects, even if the underlying relationships are complex and vary by course or subject. However,
traditional supervised learning techniques are often unable to account for relationships between observations. Indeed, a core
assumption of most supervised learning methods is the independence of each observation from all others. This motivates a
network-based modelling approach to account for dependence between observations.

Link-based modelling is one such approach, and consists of tasks where G = (O,L) is fully known, as are all object
attributes OA(G). The objective is to label each node oi ∈O by predicting ci ∈ C, the class label (final course grade A,B,C,D)
for each node oi ∈O. Cases where C is also (at least partially) known are called “within-network classification,” because the
classification takes place within a network where at least some neighbouring nodes are already classified. Models in these
contexts can exploit the information contained in the labels of neighbouring nodes. The LBCT as specified here is not a
within-network classification task, because in the prediction scenario, C is entirely unknown: our goal is to make predictions for
all students at the beginning of a semester, when no student’s final grades are known (but all student and course attributes are
known). We therefore adapt a within-network model to use a proxy labelling approach described in Section 3.2. Other modelling
algorithms that have been applied to network classification tasks include conditional random fields (Lafferty, McCallum, &
Pereira, 2001), relational Markov networks (Taskar, Abbeel, & Koller, 2002), and probabilistic relational models (Koller, 1999;
Friedman, Getoor, Koller, & Pfeffer, 1999).

Link-based classification techniques have been applied to a diverse array of domain-specific tasks, including hypertext
categorization (Chakrabarti, Dom, & Indyk, 1998; Oh, Myaeng, & Lee, 2000; Zhang, Popescul, & Dom, 2006), blog
classification (Bhagat, Rozenbaum, & Cormode, 2007), user classification in targeted advertising (Hill, Provost, & Volinsky,
2006; Provost, Dalessandro, Hook, Zhang, & Murray, 2009; Tang & Liu, 2011), spam detection (Becchetti, Castillo, Donato,
& others, 2008), customer valuation (Domingos & Richardson, 2001), and fraud detection (Cortes, Pregibon, & Volinsky,
2001; Fawcett & Provost, 1997; Pandit, Chau, Wang, & Faloutsos, 2007). Many of these methods are based on the “Markov
assumption” that conditional distributions within each class can be approximated using near neighbours instead of full graph;
this assumption is central to the structural approach used in the experiment in Section 5.

Previous research has found that feature extraction in network-based models should focus on neighbouring labels only, and
that models separating link-based and object-based attributes often perform best. In many cases, incorporating object attributes
(as opposed to class labels) from neighbours actually decreases classification accuracy while incorporating information about
neighbouring classes increases classification accuracy (Chakrabarti et al., 1998; Getoor & Diehl, 2005; Lu & Getoor, 2003b).
The structural model implemented here (described in Section 5.1) follows this finding by using only the proxy labels of
neighbouring nodes, but not other features of these nodes, to construct LA(O,L)(Getoor, 2005; Getoor & Mihalkova, 2011; Lu
& Getoor, 2003a, 2003b).

Finally, the use of multi-view supervised learning, where models are trained on non-overlapping feature sets and are
ensembled to produce a single, more robust prediction, has previously been applied to learning analytics research in other
contexts. In particular, multi-view learning has been used to model the complex phenomena contributing to MOOC dropout
(F. Jiang & Li, 2017; Li et al., 2016), but it has not been used in residential grade prediction to the authors’ knowledge.
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3. Data
3.1 Student-Course Dataset
The data used in this analysis were drawn from the University of Michigan Learning Analytics Data Architecture (LARC),
built from the University of Michigan enrollment and student information systems. LARC includes student-, semester-, and
course-level data similar to the records retained by many institutions: student demographic, performance, and registration
information; course details such as subject, enrollment, credit hours, meeting days and times; and facility information for the
course location, such as instructional technology.2 The data utilized for this experiment were drawn from winter semesters
(January-April) between 2005 and 2015, and represent all undergraduate course records at the University of Michigan in these
semesters. The number of records from each semester ranged from 198,544 (Winter 2005) to 232,509 (Winter 2015) before
pre-processing.

3.1.1 Data Pre-processing
We perform data pre-processing and filtering for several reasons: 1) institutional factors suggested that grade prediction models
would be substantially different between certain student populations (i.e., across student populations – undergraduate vs.
graduate vs. professional – or across departments – biochemistry vs. economics vs. English); 2) computational and modelling
factors limited the types of data we were able to consider (i.e., high-cardinality categorical variables); and 3) practical factors
limited types of records for which any model would be able to make predictions (i.e., only for courses in subjects previously
observed; only information that is known at the time of registration).

We therefore perform the following filtering and pre-processing steps: First, we only include records for undergraduate
students who received a valid grade (no auditors, dropouts, withdraws, or other special cases, as we do not attempt to predict
these completion states). Next, we filter the predictors, dropping those not known at beginning of semester or those we do not
want the model to depend on (i.e., date of most recent SAT/ACT test) and those with ≥ 10% missing data (most modelling
algorithms used below require complete cases with no missing data; dropping highly sparse columns is preferable to dropping
many observations at modelling time). We create indicator values for missingness in any remaining categorical variables, and
drop any categorical variables with > 20 levels, as many predictive algorithms limit the cardinality of categorical predictors
allowed, and exploratory analysis suggested that the 20-level cutoff retained most variables while only excluding the “long
tail” of very high-cardinality predictors. We also chose not to binarize all categorical predictors because there were dozens of
categorical fields with hundreds of values each; binarization would have led to an explosion of dimensionality. Finally, we keep
only the remaining complete cases (which was > 96% of the remaining data at this step).

After filtering and pre-processing, the training dataset (compiled from Winter 2005-2014 records) included 985,291
observations of 116 variables, and the testing dataset (Winter 2015) included 106,265 observations of these same variables.

3.2 Network-Based Features

From the raw tabular dataset, we construct a network G= (O,L). Each object (or node) oi ∈O is a student (these are given
from the raw data, as are their individual attributes OA(O)), and undirected links (or edges) L are formed based on student
co-enrollment and link attributes LA(O,L) are constructed. Building the network dataset G consists of two main tasks: network
construction and network feature extraction; we discuss approaches to both tasks here.

Network Construction: This is the procedure for adding links L to the graph. There are at least three reasonable methods
for building L in the context of a co-enrollment network. Consider that there typically exist multiple records for a given student
in a single semester, each representing one course the student is enrolled in. Within a given semester, we could construct a
network where a student’s records are linked to all students they are enrolled in any courses with, which leads to a larger
co-enrollment network that accounts for all potential links across classes; or we could construct a network where each record is
only linked to other students in the same class, which leads to a narrower, course-specific co-enrollment network. We could
also look back to a previous semester, to observe which students had completed courses together in the prior semester and use
these links to connect observations in the target semester. We refer to the methods for building these networks from the raw
data as network-building functions or simply network builders; the three network-building functions are shown in Table 1.3

Network builders define the Markov neighbourhood over which we extract link-based features.
Feature Extraction: This is the procedure for generating link attributes, LA(O,L), once the network has been constructed.

The appropriate method to extract or aggregate features across a node’s neighbourhood is not obvious and may depend on
contextual factors; prior research has also indicated that it can substantially affect the performance of predictive models using

2For a more detailed description of the LARC dataset, see https://enrollment.umich.edu/data-research/learning-analytics
-data-architecture-larc .

3In prior research, these are often called “link types” (Getoor, 2005); we find the terminology of “link types” and “link models” to be unnecessarily abstruse
and adopt the more descriptive “network builder” function.
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COURSE Mean-Link Count-Link Binary-Link Proportion-Link…
ECON101
MATH250
BIO185
STATS215

Student 1
GPA: 3.5

COURSE …
ECON101
GRK200
CHEM250
STATS100

Student 2
GPA: 2.7

COURSE …
MATH250
EECS183
CHEM280
STATS310

Student 3
GPA: 2.2

COURSE …
BIO185
SPAN250
ART101
STATS100

Student 4
GPA: 3.8

COURSE …
CHEM101
GEO400
MEMS265
STATS100

Student 5
GPA: 1.8

}
No coenrollments 
with Student 1

Link Features LA(O, L)

2.9
2.9
2.9
2.9

{0, 2, 1, 0, 0}
{0, 2, 1, 0, 0}
{0, 2, 1, 0, 0}
{0, 2, 1, 0, 0}

{0, 0.67, 0.33, 0, 0}
{0, 0.67, 0.33, 0, 0}
{0, 0.67, 0.33, 0, 0}
{0, 0.67, 0.33, 0, 0}

{0, 1, 1, 0, 0}
{0, 1, 1, 0, 0}
{0, 1, 1, 0, 0}
{0, 1, 1, 0, 0}

Figure 1. Example of co-enrollment-based link features, LA(O, L). In the co-enrollment graph shown above, students
connected by an edge are co-enrolled in a class together. Link features for Student 1 are shown. This example shows
student-link features, where each observation’s neighbourhood includes students co-enrolled in any course with the target
student. In course-link features (not shown here), the neighbourhood only uses links between records within the same course
(links to students in other courses are excluded, considering a more restricted neighbourhood for each observation);
temporal-link features use student-links from the previous semester.

LA(O,L) (Getoor, 2005). We may think that the absolute number of connections in various performance groups (i.e., the
number of links to ‘A’ students, ‘B’ students, etc.) may be relevant to a given student’s performance; or, perhaps the proportion
of links to each type of student may be a better predictor. We explore four different link feature aggregation functions (or link
feature aggregators), to perform this task. These are mean-link, count-link, binary-link, and proportion-link. Each function
takes a set of neighbouring nodes and their attributes as its input, and returns a single feature vector representing the aggregate
features for a given student’s co-enrollment neighbourhood. Definitions of the four feature aggregators used here are shown in
Table 1; all but proportion-link are replicated from (Getoor, 2005; Lu & Getoor, 2003a) (proportion-link was added to explore
the potential of proportions, not counts, as useful network features).

As we will discuss below, each structural model uses at least one network builder to first define the edges L of G, and then
applies a link feature aggregation function type to aggregate information about class labels over each node’s neighbourhood in
to generate link attributes LA(O,L). In this experiment, we test one set of models using each individual link type (student,
course, and temporal), and one set of models that uses both course-link and student-link features, following the use of multiple
link types (Getoor, 2005; Lu & Getoor, 2003a), which led to more stable performance across datasets in the original work. See
Table 5 for more information on the model specifications in this experiment.

A final note on network features: a key difference between our task and many other link-based classification tasks is that
here, we do not know the labels of any nodes at the time of prediction; C(∗) is entirely unknown, that is, we do not know
any student’s neighbour’s final grade at the time we want to predict that student’s grade; ideally at the beginning of a course.
Therefore, we are unable to directly generate link attributes LA(O,L) from each node’s neighbouring class labels as most
link-based models do: the input for a feature aggregation function (neighbouring nodes’ final course grades) would not be
known at the beginning of the course. However, in our data (and in most educational settings where this model would be
applied), we have a feature that can serve as a strong proxy label: student cumulative GPA in prior semesters. Cumulative GPA
is known for every student who is not in their first semester at the institution, and this measure of past performance is strongly
correlated to future performance. We thus use student prior cumulative GPA as a proxy for C in order to generate network
features. The concept of proxy labelling has been used in other predictive tasks in education (Whitehill, Mohan, Seaton, Rosen,
& Tingley, 2017), but to our knowledge has not been applied to network-based prediction. This allows us to train and test
models exactly as they would be in the real-world version of the LBCT: training on historical data, and predicting on new,
disjoint networks, for which all object and link attributes (but no labels) are known. Without this proxy labelling approach, we
would have no link attributes for G(∗) and would not be able to make beginning-of-semester predictions with the structural
models defined below.
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Table 1. Feature aggregators. These represent the method for aggregating link attributes LA(O,L) over the neighbourhood
(referred to as link models in prior work) (Lu & Getoor, 2003b, 2003a; Getoor, 2005; Getoor & Mihalkova, 2011). All GPAs in
the dataset range from 0 through 4.35. A 4.0 generally represents an ‘A’ average, a 3.0 a ‘B’ average, etc.

Feature Aggregator Definition
Count Count of neighbours with cumulative GPA in letter grade-level buckets: (4.0, ∞], (3.0, 4.0],

(2.0, 3.0], (1.0, 2.0], (0.0, 1.0].
Mean Mean cumulative GPA of all students in neighbourhood of target student.
Binary Binary indicator for having neighbours in (4.0, ∞], (3.0, 4.0], (2.0, 3.0], (1.0, 2.0], (0.0, 1.0].
Proportion Proportion of neighbours in (4.0, ∞], (3.0, 4.0], (2.0, 3.0], (1.0, 2.0], (0.0, 1.0].

Table 2. Network-builder functions. These represent the method for defining the neighbourhood over which a given feature
aggregation function (Table 1) is applied (referred to as link types in prior work).

Network-Builder Definition
Course Generate links only to other students in the same course. This generates unique feature values

for each individual course, but considers a narrower co-enrollment network.
Student Generate links to any student co-enrolled with target student, even those in other courses.

This generates identical feature values for each record for a given student, as it builds the
co-enrollment network across all courses (these are the links shown in Fig. 1).

Temporal Generate links to any student co-enrolled with the target student in any course in the preceding
semester. This is the equivalent of using student-links from the previous semester.

4. The Co-enrollment Network
The exploration, description, and analysis of large and complex networks is an area of open and active research in computer
science, statistics, and related fields. In this section, we address this task for the co-enrollment network by exploring network
properties of degree distribution and assortativity to motivate our modelling approach.

4.0.1 Co-enrollment Networks Display Power-Law Degree Distribution
Degree distribution is the distribution of the number of edges (called the degree) of nodes across G, and is commonly examined
by exploring a histogram of the node degree values for each oi ∈O. This is a useful exploration in the case of co-enrollment
networks because 1) it provides a novel analysis of a previously unexplored property of co-enrollment networks on a full-scale
network; 2) it provides evidence about whether the co-enrollment possesses properties similar to other general network types;
3) it can specifically confirm whether the co-enrollment network is sufficiently similar to a document citation network so as
to justify the use of the link-based classification model applied to citations; and 4) it can provide initial evidence of potential
differences in network properties based on student performance.

We examined the cumulative degree distribution (proportion of nodes with degree > n) for the co-enrollment network for
each of the 12 semesters evaluated in this analysis. A visualization of the cumulative degree distribution of a co-enrollment
network is shown in Figure 2a and is compared to the cumulative degree distribution of a citation network from (M. Newman,
2003; Redner, 1998) in Figure 2b. The similarity suggests a power-law distribution, or scale-free network, which means that
co-enrollment networks are similar in shape to many network types, including social networks, web-page networks, internet
nodes, and document citation networks (M. Newman, 2003).

4.0.2 Exploratory Co-enrollment Network Analysis
Before providing an analysis of assortativity and the predictive capacity of network-based features, we offer exploratory
results, both to motivate the models implemented in Section 5 and to provide an empirical basis for comparison in future work
analyzing different co-enrollment networks. First, we evaluate the degree distribution across a coarse grouping of students’
cumulative GPA. This analysis is shown in Figure 3, and demonstrates only minor differences in students’ network degree by
GPA. Kolmogorov-Smirnov tests rejected the null hypothesis that the degree distribution for each adjacent group was identical
(e.g., rejected the null that the distribution of degree for students in (3,4] is identical to the distribution for students in (2,3], with
p≤ 0.002 for all comparisons). However, this visual display suggests that while these differences are statistically significant, if
assortativity can be utilized in grade prediction, the patterns are likely much more complex than simply partitioning based on
students’ network degree. We will demonstrate an approach to utilizing network-based assortativity data in conjunction with
node-based student data in Section 5.

Second, we also explored the identification of groupings in the network by applying t-Stochastic Neighbour Embedding
(t-SNE) to the union of all network features. These results are shown in Figure 4, which demonstrates potential relationships
between various student majors and the network features describing those nodes. We account for potential subject-based
relationships in the network by creating separate models with fully independent parameters for each course subject area (further
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(a) Coenrollment Network (b) Citation Network
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Figure 2. Cumulative degree distribution of (a) co-enrollment networks for the 11 semesters evaluated, representing
approximately 22,000 nodes per network, compared to the (b) cumulative degree distribution of a citation network from
(M. Newman, 2003; Redner, 1998). The similarity of shape on the log scale demonstrates that both networks conform to
power-law degree distributions.
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Figure 3. Distribution of students’ network degree across various GPAs (using student links). While the plot shows statistically
significant differences in the distribution of degree according to Kolmogorov-Smirnov testing, it also suggests that complex
models may be required to fully capture relationships between performance and student position in the co-enrollment network.
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Figure 4. Two-dimensional projection of t-SNE performed on network-based features. These results show potential patterns in
network-based features according to major of study (and potentially other aspects of network-based features), but also suggest
that the relationships are complex and subtle.

detail in Section 5). Future work should explore more refined clustering within the co-enrollment network; such an analysis is
beyond the scope of this paper.

4.0.3 Assortativity and Explanatory Power of Co-enrollment Network Features
This experiment is particularly concerned with uncovering and modelling relationships between the co-enrollment network and
student performance. As such, we also examined the assortativity of each co-enrollment network. Assortativity measures the
tendency for nodes in networks to be connected to other nodes that are like (or unlike) them in some way (M. E. J. Newman,
2003). We calculate the assortativity coefficient as

r =
∑xy xy(exy−axby)

σaσb
(1)

as described in (M. E. J. Newman, 2003) using students’ previous cumulative GPA (the same outcome used to generate
network-based features) to examine the relationship between performance and connectedness in the network. The assortativity
coefficient measures the strength of association between a property of nodes in the network and those they are connected to.
In this case, the assortativity coefficient measures the association between a student’s GPA and the GPA of students they are
connected to in the co-enrollment network. Essentially, the assortativity coefficient measures whether “birds of a feather flock
together,” “opposites attract,” or neither (with respect to academic performance) in the co-enrollment network. As a correlation
coefficient (r), assortativity ranges from -1 to 1, with positive r values indicating a positive association (high-GPA students are
more likely to connect to higher-performing peers), negative r values indicating negative association, and values near zero
indicating no association.

Results of this analysis are shown in Table 3. For each of the 12 semesters examined, we find strong evidence of positive
assortativity, with r̄ = 0.622 and SD(r) = 0.07; t-testing indicates that these results are highly significant (p≤ 10−16). These
results demonstrate strong, consistent performance-based assortativity at scale across the entire undergraduate co-enrollment
network at a major U.S. university, revealing at scale a result that has previously been only suggested by smaller-scale
co-enrollment network analysis (Gašević et al., 2013). Furthermore, this result suggests that there are performance-based
network dynamics across the student co-enrollment network that an effective predictive model might capture and use for grade
prediction.

Having demonstrated some graphical properties of the network that suggest parallels to networks used in previous link-based
predictive models, we finally conducted an initial exploration of the predictiveness of network-based features to verify whether
the features we extracted above actually provide additional predictive power in simple models. We construct three simple
linear models for each dataset: 1) a model with only the network-based features described above; 2) a model with only
previous cumulative GPA; 3) a model with both network features and GPA. Each model is a simple ordinary least squares linear
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Table 3. Assortativity coefficients (M. E. J. Newman, 2003) for G across each semester and t-test of Pearson’s correlation
coefficient. These results demonstrate strong and consistent performance-based assortativity across the entire undergraduate
co-enrollment network.

Semester Assortativity Coefficient t-statistic p≤ 10−16

W2005 0.69 178.9 *
W2006 0.69 180.2 *
W2007 0.69 184.4 *
W2008 0.69 184.3 *
W2009 0.69 182.0 *
W2010 0.68 182.7 *
W2011 0.59 142.4 *
W2012 0.58 139.5 *
W2013 0.54 128.7 *
W2014 0.54 129.5 *
W2015 0.54 129.8 *

Table 4. Initial predictive analysis using simple OLS regression. R2 values, which demonstrate the proportion of variance in the
outcome explained by the predictors, are shown for network (all link-based features), GPA (only cumulative GPA), and a
combined model including both for each semester. ANOVA results compare the GPA-only model to the combined model, and
test whether the network-based features explain a statistically significant additional proportion of the variance in outcome over
the GPA-only model. “All Train” represents all training semesters (W2005-W2014).

Semester Network GPA Combined ANOVA F-Statistic p≤ 10−16

W2005 0.073 0.224 0.269 185.677 *
W2006 0.089 0.221 0.277 239.578 *
W2007 0.087 0.232 0.274 181.471 *
W2008 0.087 0.218 0.27 235.175 *
W2009 0.079 0.228 0.268 181.421 *
W2010 0.09 0.255 0.285 138.792 *
W2011 0.091 0.251 0.283 155.24 *
W2012 0.074 0.209 0.254 212.028 *
W2013 0.078 0.212 0.257 219.821 *
W2014 0.074 0.204 0.258 261.856 *
ALL TRAIN 0.079 0.226 0.266 1839.833 *
W2015 0.074 0.203 0.252 242.673 *
ALL 0.079 0.224 0.265 2035.109 *

regression model with only first-order terms, and predicts a continuous outcome of student grade for each record (i.e., 4.0 = A;
3.5 = B+, etc.).

Results of this initial analysis are shown in Table 4 and demonstrate several relevant results. First, network-based features
alone explain between 6-8% of the variance in student performance across each semester. Second, even when accounting
for GPA (the strongest overall predictor of future student performance), these network-based features explain a statistically
significant additional proportion of the variance. The proportion of additional variance explained by network features over a
GPA-only model is remarkably consistent at around 3% and is highly statistically significant (p < 10−16 for each semester
evaluated). This provides further evidence that network-based features can indeed be effective predictors of student performance,
and that a network-based model may perform better than a student-only model by accounting for the performance of a student’s
co-enrolled peers, motivating the more complex modelling approach in the following experiment.

5. Prediction Experiment
In this section, we describe our methodology for building a network-based structural classification model, beginning with the
extraction of network-based features used to construct the model. We implement a version of the structural logistic regression
proposed by (Getoor, 2005; Getoor & Mihalkova, 2011; Lu & Getoor, 2003a, 2003b). Then, we test alternative model
specifications, including a single “flat” model that trains a single discriminative classifier on the union of all object and link
features, and a multi-view “blended” ensemble.
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Table 5. Structural model specifications for the student-link model (top) and course-link model (bottom). C represents the class
label, in this case the course grade. The student-course-link model uses both types of links, following (Getoor & Diehl, 2005).
Temporal-link and student-link models are identical in structure to the student-link model, but use LAtemp, LAcr in place of LAst ,
respectively.

Structural Model with Student Links

Ĉ(X) = argmaxc∈C
P(c|OA(O)) ·P(c|LAst(X))

P(c)

Structural Model with Course and Student Links

Ĉ(X) = argmaxc∈C
P(c|OA(O)) ·∏t∈cr,st P(c|LAt(X))

P(c)

5.1 Structural Models
The procedure used in this experiment first builds two separate models, a node-based model constructed using each node’s
object attributes, OA(O) (hereafter called the student model) and a network-based model constructed using each node’s link
attributes LA(O,L) (hereafter called the co-enrollment model). Recall that object attributes, OA(O), are the features derived
from the student information system; link attributes, LA(O,L), are the network-based features described in Table 2. These two
models are trained separately on disjoint feature sets: the student model on all 116 object attributes; the co-enrollment model
on link attributes only (between 1 and 5 features, depending on the link feature aggregator used. From these two models, a
single model (called the structural model) is built by combining the predicted probabilities for each record under an assumption
of independence between the two models (see Figure 5 and Table 5).

The procedure for implementing this model is as follows. First, we fit a typical “flat” object-based model, the student
model, to estimate the probability of each class label P(c|OA(O)). In the original implementation, this is a penalized logistic
regression; however, we instead use a random forest for several reasons: 1) random forests allowed us to consider the wide
object attribute feature space without having to perform potentially expensive feature selection or manage multicollinearity; 2)
random forests can capture complex interactions between variables, while in a logistic regression these interactions would
need to be manually specified; 3) random forests still capture the benefits of discriminative classifiers (Getoor & Diehl, 2005);
and 4) prior research suggested that random forests are effective for network-based modelling (Van Assche, Vens, Blockeel, &
Dzeroski, 2004).

We then fit a network-based model, the co-enrollment model, to capture the dependence between nodes using the proxy
labelling technique described above, estimating P(c|LA(O,L) using a multinomial logistic regression. Recall that, unlike other
implementations of the structural model, this model uses link attributes generated from the cumulative GPA of neighbours,
which is known at the time of prediction (this is the proxy labelling), not from the true labels (final course grade), which are not
known at the beginning of a semester.

Finally, following the original implementation, this procedure makes the (useful but almost certainly violated) assumption
that these two models are independent in order to calculate a joint predicted probability for each observation and each potential
outcome class, normalizing by the prior class probability (estimated from the training data) to generate the structural model.
The specifications for the structural models tested in this experiment are shown in Table 5. The structural modelling approach
thus uses two types of models – a student (flat) model, and a co-enrollment (network) model – to predict student grades. Note
in Table 5 that the structural modelling approach with student-link features utilizes both course and student links separately,
following previous formulations of these models (Getoor & Diehl, 2005). This allows each link type to have different model
parameters.

We fit one model per course subject – i.e., separate models for courses in Mathematics, Statistics, Spanish, etc. – because
of previous experience suggesting that instructional approaches as well as course grading policies (curving) were most often
formed on a subject/department level. This allowed the models for each subject to have different parameters instead of assuming
any similarity in effect across subjects, and produced 221 unique subject-level models for each specification examined, which
required training a total of more than 2,600 unique models.

5.2 Blended Ensemble Models
In addition to evaluating the structural models, whose independence assumptions were likely to be violated, we also explored
ensembling these models. An ensemble can directly account for the dependence between the different models’ predictions,
learning the relationship between each model’s predictions of each individual outcome class in order to produce a single, more
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Raw Data

Object Features
OA(O)

Link Features
LA(O, L)

Flat Model
Random Forest

Network Model
Logistic Regression

Structural Model
P(c|OA((O)) · P((c|LA(O, L))

P(c)argmax c ∈ C 

Network Builder

Feature Aggregator

Figure 5. Structural model-building procedure. Separate flat (student) and network (co-enrollment) models are constructed
from disjoint feature sets. The models are combined to generate a structural model using the predicted probabilities for each
class label C and the class prior probability.

accurate final prediction (Dietterich, 2000; Sun, 2013). We implemented a model “blending” approach (Bennett, Lanning, &
Others, 2007; Töscher, Jahrer, & Bell, 2009), which is an alternative to the more common stacked generalization technique
(Wolpert, 1992). Instead of using the complex cross-validation/prediction scheme required by stacked generalization, which is
prone to data leakage, blending uses a “probe set,” similar to a validation set, which is the only dataset used to fit the ensemble
on the predictions of the base learners (here, the base learners consist of the flat model plus each of the 12 network models –
four network builders × three feature aggregators). For the ensembles, 75% of training data was used for training the base
classifiers, and 25% was reserved for the probe set, which base models make predictions on (but are not trained on). We
use eXtreme Gradient Boosting classifiers, or XGBoost (Chen & Guestrin, 2016), for the meta-learner classifier. XGboost
is a common, highly flexible classifier that is often used for ensembling. While a neural network was used in the original
blending experiment (Bennett et al., 2007; Töscher et al., 2009), initial experiments with this setup suggested that the neural
network architecture failed to provide a substantial boost in performance (Gardner & Brooks, 2018), despite requiring extensive
hyperparameter tuning and substantially more training time (approximately two orders of magnitude) for each iteration than the
XGBoost model. The results of the ensemble model are shown in Table 6.

This specific ensembling approach, in which base models are fit using disjoint sets of conceptually grouped features and the
results ensembled into a single model, is referred to as “multi-view learning” because the base models are trained on different
“views” or representations of the data. Multi-view learning is often able to achieve both greater stability and generalization
accuracy over traditional “single-view” machine learning techniques (Sun, 2013; C. Xu, Tao, & Xu, 2013). Multi-view learning
has been used in learning analytics for MOOC dropout prediction (F. Jiang & Li, 2017; Li et al., 2016) as well as for other
tasks, such as image recognition (where the term “view” applies more naturally). Other boosting algorithms (Adaboost) have
been adapted elsewhere successfully for multi-view ensemble learning (Z. Xu & Sun, 2010). Multi-view models are also useful
because inspection of learned models can yield insights on which “views” of the data contribute most to effective models,
similar to a feature importance analysis, where the sets of features actually represent lower-order models; we demonstrate such
an analysis in Figure 6.

5.3 Results
The results of our prediction experiment are shown in Table 6. We find that the multi-view ensemble outperforms all other
model specifications across all performance metrics considered (Multiclass AUC (Hand & Till, 2001), accuracy, Fleiss’ Kappa
and average multiclass sensitivity, specificity), demonstrating how sophisticated models may capture the complex interplay
between student and link attributes across the multiple “views” represented by several lower-order models. Models using the
student-link network builder function also achieve performance consistently above traditional “flat” models, suggesting that
even these models (which are simpler to train than the multi-view ensembles) can improve upon non-network approaches.

The more sophisticated structural models, which utilize both student- and course-network builders and replicates the
original structural model (Getoor & Diehl, 2005), performs below the flat model, and even below a baseline of simply predicting
grades using student GPA. This finding, that multiple link types do not improve performance when combined in a structural
model as specified in Table 5, is counter to previous findings (Getoor & Diehl, 2005). This suggests that the structural model’s
core assumption – that the object and link features are independent – may be so strongly violated in this data that it mitigates
the performance gains from link modelling originally observed in (Getoor & Diehl, 2005).

Such a conclusion is supported by the superior performance of the ensemble. The ensemble, which takes the predictions
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Table 6. Structural model performance results on independent test dataset (future semester). All structural models achieve
performance above the baselines, but only the ensembles and student-link models exceed the “flat” model, which uses no
structural features. Ensemble models can utilize the information from both the flat and network models while modelling the
dependency between them (instead of assuming their independence, as a structural model does). Reported sensitivity and
specificity are mean one-vs-all values measured across each of the four outcome classes (A, B, C, D); AUC value is multiclass
AUC, see (Hand & Till, 2001) for details.

Model (Link type, feature type) Multiclass AUC Accuracy Kappa Sensitivity Specificity
Multi-view Ensemble 0.729 0.657 0.339 NA 0.918
Structural (Temporal, Binary-Link) 0.713 0.642 0.325 0.398 0.833
Structural (Course, Mean-Link) 0.713 0.644 0.324 0.395 0.833
Structural (Temporal, Mean-Link) 0.712 0.646 0.324 0.393 0.832
Structural (Course, Binary-Link) 0.712 0.641 0.323 0.397 0.833
Structural (Temporal, Count-Link) 0.711 0.645 0.319 0.391 0.831
Structural (Temporal, Proportion-Link) 0.711 0.646 0.321 0.39 0.831
Structural (Student, Mean-Link) 0.71 0.646 0.319 0.388 0.831
Structural (Student, Binary-Link) 0.71 0.643 0.325 0.397 0.833
Structural (Course, Proportion-Link) 0.709 0.642 0.318 0.393 0.831
Structural (Student, Count-Link) 0.709 0.645 0.315 0.388 0.829
Structural (Student, Proportion-Link) 0.709 0.644 0.314 0.386 0.829
(Course, Count-Link) 0.707 0.639 0.313 0.39 0.83
Flat 0.695 0.651 0.304 0.358 0.825
Full 0.693 0.649 0.297 0.351 0.824
Predict GPA Baseline 0.684 0.523 0.212 0.355 0.812
Structural (Course + Student, Mean-Link) 0.672 0.64 0.284 0.342 0.821
Structural (Course + Student, Binary-Link) 0.671 0.638 0.291 0.351 0.824
Structural (Course + Student, Count-Link) 0.666 0.637 0.276 0.343 0.819
Structural (Course + Student, Proportion-Link) 0.664 0.637 0.274 0.339 0.818
Majority Class Baseline 0.5 0.571 0 0.25 0.75

of each (flat + twelve network models) for each potential outcome class as input, is able to directly model and exploit
the dependencies between the predictions of each model, instead of assuming their independence. We note that only the
ensemble utilizes this information about dependence between network and flat features in a way that improves future prediction
performance. The flat model trained with structural features (i.e., using the union of the disjoint student and network features,
OA(O)∪LA(O,L)) showed almost no difference in performance, or a slight decrease, relative to the flat model with only
student features.

The results of the different network-builders and feature aggregators were relatively similar. This suggests that each network
formulation, with any of the four methods for aggregating features across this network, capture relevant information about
students’ neighbours in the graph, and that the additional data provided by a model that combines multiple network-builders is
overwhelmed by the additional assumption of independence between the two link types shown in the formulation in Table 5. In
particular, it is relevant that mean-link models generally performed quite well, because the network component of these models
contained only a single feature (the mean cumulative GPA of a given student’s neighbours in the graph).

An expanded flat model with structural features, identical to the original flat model but with features for all link-based
attributes simply appended to the student features, does not achieve a performance improvement over a model without network
features, suggesting that building flat and network models independently, but then modelling the dependence between those
models with an ensemble, might be the most performant approach: ensemble models achieved better performance than any of
the structural or flat models.

As a note for practical implementation of the ensemble model, we observe that training this model requires considerably
more computation than an individual structural model, as it requires first training 13 models – 12 structural models, plus a flat
model – on the base classifier training set (75% of the full training data), and then training a meta-learner using the procedure
described in Section 5.2. However, because the training of each of the base structural models is fully independent of each other
base model, their training can be parallelized. Hence, the training time of the ensemble is reduced only to the time required to
train the slowest of the 12 base structural models, plus the time required to train a meta-learner on the probe dataset (which is
considerably faster, containing only 25% of the initial training data).
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5.4 Feature Analysis
While the predictive performance of models is important, particularly if these models are intended to be deployed as “early
warning systems,” interpretability of such models is equally valuable. A clear understanding of the most predictive features in
each model not only stands to inform us about the relationships between various features and student academic performance.
Feature analysis also provides another perspective on understanding the complex structure of the co-enrollment network, and
how student attributes and the network structure are related to student performance. In this section, we present an initial feature
analysis of four different models: The full model (which uses all OA and LA features), the flat model (which uses only LA
features), the network model from the temporal binary-link model, and the multi-view ensemble.

The 20 highest-importance features for each model are shown in Figure 6; importance for the network model (which is a
multinomial logistic regression) is measured using the absolute value of the Wald z-score of each coefficient in the model as
recommended in (Hilbe, 2009); all other importances are measured by the average improvement in Gini impurity across all
trees in the model. Note that high importance does not imply any specific direction of association between a given feature
and student performance (high importance implies only that a feature is useful in discriminating between the various outcome
classes, given the other variables in the model). Indeed, due to the flexible and complex models models used in this experiment,
each feature likely has a nonlinear and complex relationship with the outcome of interest.

Several potentially interesting insights are demonstrated by the feature analysis above; we encourage the interested reader
to conduct a detailed inspection, but provide some initial analysis here. First, the prior cumulative GPA, when available, is
generally the strongest predictor of students’ future performance. Second, network features, when available, are generally
preferred over features besides cumulative GPA in the “full” model, which uses both flat and network features; many different
network features (including student and temporal network builders, and mean-, proportion-, and count-link aggregators) show
higher importance than the second-most important link attribute (high school GPA). Third, we see that the ensemble largely
relies on the predictions of the “flat” model, assigning low, relatively well-dispersed importance to the predictions of the
remaining models. This shows that while these structural models add useful information that improve the performance over a
simple flat model, the yield is low and is generated by combining information across many models.

In interpreting the feature analysis results shown in Figure 6, we note that the reader should keep in mind that many of
the student-level demographic attributes (e.g., gender, ethnicity, birth year) are based only on self-reports of these attributes,
most often collected at the time of a student’s application for admission to the university. Encodings of these attributes are also
limited to only a single value from a predetermined list, determined by the institution. As such, these attributes can only be
considered proxies for students’ true identities along these various dimensions, which may be different, fluid, and more complex
than the available data indicate. There are, of course, important ethical considerations that need to be taken into account when
such features are used in practice or used for decision making. In particular, we note the need to ensure that models based on
demographic attributes are fair, transparent, and beneficial to students.

6. Conclusions and Future Research
This investigation makes several contributions to the literature regarding network analysis in higher education, including
providing both descriptive and predictive analyses of co-enrollment networks, at scale, over 10 years of university records and
over 1 million individual records. Our analysis demonstrates that university co-enrollment networks display the power-law
degree distributions common to many networks, including the citation networks used as the basis for previous link-based
predictive models. We also demonstrate strong, consistent assortativity within this network, which reveals an association
between student performance and the likelihood of having a connection in the co-enrollment graph. Additionally, we demonstrate
that network-based features explain a statistically significant additional proportion of the variation in student performance over
GPA-only models, contributing around 3% for every semester evaluated.

We make the novel contribution of developing an extension of link-based classification models used for document
classification, modifying these models to predict on future semesters. These structural models outperform traditional “flat”
grade prediction models, but only with co-enrollment networks constructed with student-level links. Structural models with
student- and course-level links, which follow the original implementation (Getoor, 2005), perform worse than flat models,
likely due to their additional assumptions of independence between the student- and course-level structural models. We build
a multi-view blended ensemble of the full set of structural and flat models, which achieves further performance gains, and
demonstrates how ensembling can utilize the different “views” in each structural model to achieve further improvements in
generalization performance. These performance gains are at least partially due to the ensembles’ ability to account for the non-
independence between different model predictions, instead of assuming independence, as the most complex structural models
do. We also show several relevant results related to the feature importance within various models, including demonstrating that
this ensemble largely relies on the “flat” model predictions.

These results suggest that network-based features can improve predictive models of student grades, but that structural models
that make strong assumptions about independence between object and link attributes may not realize these performance gains.
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Figure 6. Feature importance metrics for various models evaluated. The network model shown is a model constructed using
the binary-link network builder and a proportion-link feature aggregator. Note that the x-axis for the network model is trimmed
at 38.82; the z-scores for the top three features exceeded 107.
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Additionally, the results demonstrate how diverse models with different feature sets and functional forms can be combined in a
multi-view ensemble to improve predictive performance by exploiting the ways in which the models err differently. They also
demonstrate a first application of model blending to predictive models in education, which can simplify the common challenge
of ensembling models across different “views” of students and their performance.

The different predictive performance of the link types considered suggests that different types of student relationships
(same-course vs. across-course) might vary in their relevance to grade prediction; we leave a more exhaustive comparison of
different link types (as well as second-degree, same-major, and various other types of links that could be constructed from the
available data) to a future work.

Our future research includes both a more detailed inspection of the results of this and other co-enrollment-based predictive
models, as well as broader exploration of other modelling techniques. Modelling techniques of interest for future work include
other discriminative classifiers (e.g., SVM) for creating the base student and co-enrollment models, and other ensembling
techniques (e.g., blend optimization (Töscher et al., 2009)). Additionally, further research into the feature space used to
build the co-enrollment/network model is required, and should explore different and novel methods for building link features:
considering various sizes of neighbourhood with different link types; more or less granular bucketing for the count- and
binary-link features; using different proxy labelling techniques; building temporal feature sets that extend back over multiple
semesters or co-enrollment periods; considering prerequisite restrictions from a course graph (as not all students could be
co-enrolled with other students); using the predicted grades of neighbours as “bootstrap” estimates and building a more
traditional within-network model; and generating more “views” by further partitioning the original input data. These are some
of the many ways in which the current method, adapted from hypertext document classification, might be better modified to fit
the context of student grade prediction.

Other data sources may also be useful in future analyses. For example, more robust and granular data on student networks
and communication could be collected from course discussion fora, or activity-based measurements from learning management
systems, and used to augment the current feature set. This experiment should be applied to other institutional datasets, where
the network structure might be quite different. Similarly, attendance data, group project data, and even seating data within
courses could be valuable in building network models of learners, though the scale of collecting this data is somewhat daunting.

This experiment points to the need for further research about the effect of social networks on learning, particularly co-
enrollment networks. Further investigation into the potential mechanisms through which co-enrollment influences student
performance – if such an effect indeed exists – and how different types of co-enrollment relationships (course- and student-link)
differentially impact performance will provide a stronger theoretical foundation for future predictive modelling efforts.

Further research evaluating similar models using other datasets, such as data collected from other universities with different
student populations and compositions, would also assist in evaluating the generalizability of both the overall student modelling
techniques proposed here, as well as the specific findings of our modelling and feature analysis evaluations.

Finally, future research should investigate and demonstrate the actionable insights supported by such models, and how they
can support real-time decision making for instructors, students, and advisors both during course selection and in the early stages
of the course itself.
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