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Abstract

The large-scale and granular interaction data collected in online learning platforms such as massive open online
courses (MOQOCs) provide unique opportunities to better understand individuals’ learning processes and could
facilitate the design of personalized and more effective support mechanisms for learners. In this paper, we present
two different methods of extracting study patterns from activity sequences. Unlike most of the previous works, with
post hoc analysis of activity patterns, our proposed methods could be deployed during the course and enable the
learners to receive real-time support and feedback. In the first method, following a hypothesis-driven approach,
we extract predefined patterns from learners’ interactions with the course materials. We then identify and analyze
different longitudinal profiles among learners by clustering their study pattern sequences during the course. Our
second method is a data-driven approach to discover latent study patterns and track them over time in a completely
unsupervised manner. We propose a clustering pipeline to model and cluster activity sequences at each time step
and then search for matching clusters in previous steps to enable tracking over time. The proposed pipeline is
general and allows for analysis at different levels of action granularity and time resolution in various online learning
environments. Experiments with synthetic data show that our proposed method can accurately detect latent study
patterns and track changes in learning behaviours. We demonstrate the application of both methods on a MOOC
dataset and study the temporal dynamics of learners’ behaviour in this context.
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1. Introduction

A large number of learners with different motivation and background knowledge participate in courses offered by online
learning environments, such as massive open online courses (MOOCSs) and intelligent tutoring systems (ITS). Online learners
often have different preferences, constraints, and learning styles. Such individual differences combined with the flexibility of
online learning platforms for navigating through the learning materials could result in various engagement patterns. Educational
data-mining and learning analytics communities have become more interested in mining sequential interaction logs to identify
behavioural patterns of learners in recent years. Using computational methods to discover patterns in students’ activity traces
could provide insight into their learning strategies and make learning environments more adaptable and more personalized.
Different aspects of educational data and interaction logs could be analyzed to shed light on learners’ engagement patterns in
the online course. In our previous work, we investigate online participation patterns across time (Shirvani Boroujeni, Kidzinski,
& Dillenbourg, 2016; Shirvani Boroujeni, Sharma, et al., 2016) and social (Shirvani Boroujeni et al., 2017) dimensions. In
Shirvani Boroujeni, Sharma, et al. (2016), we study patterns in the timing of learners’ study sessions and introduce methods of
quantifying the level of temporal regularity in terms of following a certain time schedule. Our analysis shows that MOOC
learners with a repeating weekly study pattern get better grades in the course. In Shirvani Boroujeni et al. (2017), we study
the evolution of social interactions among learners and analyze how learners’ roles in MOOC discussion forums change
over time. In this work, we focus on a third dimension of educational data, activity, and consider the types and sequence of
actions performed by learners. This paper is an extended version of our previous work on mining MOOC activity sequences
(Shirvani Boroujeni & Dillenbourg, 2018).

Our objective in this work is to investigate MOOC study patterns and perform temporal analysis of learners’ longitudinal
behaviours over the duration of a course. Previous research on MOOC activity sequence mining often focuses on characterizing
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relatively short interaction episodes as a composition of learners’ interaction with different course materials (Faucon et al., 2016;
Geigle & Zhai, 2017). In this work, however, we aim to identify and track learners’ study patterns during MOOC assessment
periods, that is, their learning sequence from the opening time of an assignment (when it is assigned) until the submission
deadline. Most of the previous works in this domain are only applicable once the course is finished because they analyze the
full activity sequence. In this work, on the other hand, we provide methods that can be applied during the course to detect
changes in behavioural patterns while the course is running. This in turn could enable timely intervention and real-time support
to target learners who might require further attention. Moreover, many of the previous studies, such as Faucon et al. (2016),
citethansen2017sequence, and citetshih2010unsupervised, overlook the temporal dynamics of students’ behaviour because they
assume that learners have a fixed study approach. However, this assumption is not necessarily true. Learners might change their
study approach during the course depending on the context of the new assignment or, for instance, on whether they find their
previous approach ineffective or inefficient. We consider this aspect in our work and perform temporal analysis of interaction
patterns to explore the evolution of learning approaches over time. The research questions we aim to answer in this work could
be summarized as follows:

o What are the different study patterns of learners during MOOC assessment periods, and how do they evolve over time?

One potential approach to addressing this problem is to define the set of possible study patterns and look for their instances
in learners’ activity sequences. This approach is referred to as the hypothesis-driven method in the literature and is suitable for
examining theoretically grounded learning strategies. However, it relies on human expert knowledge to define all the possible
learning approaches, which is not always an easy or even a feasible task. Another possibility is to directly derive the latent
study patterns from the data without any prior assumption on how they should look. Such a data-driven approach could possibly
enable learning patterns undetected by the first hypothesis-driven approach to be identified.

In this work, we present two methods of answering our research questions. First, in a hypothesis-driven approach, we
label students’ activity sequences according to predefined patterns and perform clustering to identify prototypical participation
trajectories over the duration of the course. Second, we propose a data-driven approach to automatically capture undefined
study patterns from interaction sequences. We introduce a complete processing pipeline, which starts by modelling learners’
activity sequences, applies clustering to identify common study patterns based on the modelled sequences, and performs cluster
matching to enable learning approaches to be tracked over time. We present detailed descriptions of both methods and their
results.

The rest of this paper is organized as follows. Section 2 reviews related work, and section 3 presents the dataset. Sections 4
and 5 present our hypothesis-driven and data-driven approaches for analyzing learners’ study patterns and the obtained results.
Section 6 provides a discussion of the results and concludes the paper.

2. Related Work

Existing methods for extracting learners’ study patterns could be classified into two overall categories: hypothesis-driven and
data-driven methods. Hypothesis-driven methods aim to detect predefined learning styles from interaction sequences and
rely on human expert knowledge to define the set of possible learning approaches. For instance, a hypothesis-driven approach
is used in Kizilcec et al. (2013) to classify interaction sequences of MOOC learners into four categories: on track (on-time
submissions), behind (late assignment submissions), auditing (watching the videos, without submitting the assignment), and out
(no participation in the course at all). The hypothesis-driven approach could be used to mine theoretically grounded learning
styles. However, due to the complexity of students’ behaviour, it is not often feasible to accurately define, a priori, the set of
possible learning patterns. Data-driven methods could be used to overcome this limitation and enable unsupervised discovery
of concrete behavioural patterns from learners’ interaction data. In this approach, human intervention in the process is reduced
to assessing the validity and utility of the system findings.

Clustering methods and in particular clustering of sequential data have received growing attention in this domain because
they allow semi-automatic or open-ended behavioural style detection. In some studies, learners’ activity sequences are compared
in their original format using sequence similarity measures (Bergner et al., 2014; Desmarais & Lemieux, 2013; Patel et al.,
2017; Shen & Chi, 2017), whereas other works use a summarized form or an aggregated representation of the fine-grained
activity sequences (Geigle & Zhai, 2017; Klingler et al., 2016; Shih et al., 2010). In this work, we also use summarized forms
and provide methods of modelling activity sequences. As opposed to the original sequences, activity models could provide an
aggregated view of learners’ actions in the course platform and enable comparison of sequences with different lengths. The
challenge, however, is to create models that can capture important information from the original sequences and are also easy to
interpret. Common techniques for modelling and analyzing activity sequences include sequential pattern mining (Kinnebrew et
al., 2013), Markov chain (Faucon et al., 2016; Hansen et al., 2017), hidden Markov models (HMMs) (Geigle & Zhai, 2017;
Jeong & Biswas, 2008), and process mining (Trcka et al., 2010). In the following, we provide examples of these techniques
applied to educational research.
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Sequential pattern-mining methods (Agrawal & Srikant, 1995) seek the most frequent patterns across a set of action
sequences. Nesbit et al. (2007) applied this method to study self-regulation behaviours in a multimedia learning environment,
and Maldonado et al. (2011) used it to identify frequent interaction sequences that differentiate high- and low-achieving groups
in a collaborative tabletop activity. Similarly, Kinnebrew et al. (2013) used sequence-mining techniques in combination with
time-series segmentation to identify and compare segments of productive and unproductive learning behaviours. In this work,
we use sequence mining to identify and extract different learning behaviours among MOOC learners.

Markov chain representation aggregates sequences of learners’ actions into memory-free state transition models, which
encode the probability of performing one action type after the other. This common approach is used in educational data-mining
research to model activity sequences. Markov transition models partially encode temporal information about the order of
the actions in the original sequences and provide visualizations that are often easy to interpret. In Faucon et al. (2016),
Markov chains are used to model learners’ interaction logs as transition probabilities between different learning activities,
and the expectation-maximization (EM) algorithm is used to identify behaviour profiles that characterize groups of similar
students. Similarly, students’ activities are modelled and clustered based on different similarity measures such as Euclidean
distance (Kock & Paramythis, 2011) and Jensen—Shannon divergence (JSD) (Klingler et al., 2016), defined on the transitional
probabilities in the Markov chain models. In this work, we also model transition probabilities between different action types,
and, through clustering of these transition models, we identify common study patterns among learners (see Section 5.1 for
details on our modelling and clustering approach).

HMMs have also been broadly applied to model learning processes in online learning environments. The use of HMM-based
clustering techniques for automatic discovery of students’ learning strategies in a tutoring system is investigated in Shih et al.
(2010). In Li & Biswas (2000), HMMs are used to extract stable groups from temporal data by joint optimization of the model
parameters and the cluster count. In Geigle & Zhai (2017), a two-layer HMM is proposed to discover students’ behavioural
patterns and the transition between them over time. Following this approach, the authors identify four behavioural patterns
(states) for MOOC students: low activity, active, forum browsing, and passive. By contrasting the state transition of high- and
low-performing students, the authors show that high-performing students concentrate for longer on quizzes and participate for
longer in forums.

Process mining (Van der Aalst et al., 2004) is another technique that has been applied on educational data to analyze
learning processes (Mukala et al., 2015; Bannert et al., 2014). This technique, which originates from the business community,
could be adopted to compare students’ interaction patterns with predefined models (conformance checking) or to discover the
underlying process model from the activity sequences (process discovery). As an example, the compliance between students’
video-watching behaviours in a MOOC course and the predefined sequential video-viewing model are assessed in Mukala et
al. (2015), revealing that successful students are more likely than unsuccessful students to study sequentially. However, for
large-scale unstructured data, such as interaction logs from thousands of students in online courses, the discovered process
models are often “spaghetti-like,” showing all details and failing to distinguish the important trends (Giinther & van der Aalst,
2007). This makes process-discovery methods in their original format inefficient for identifying study patterns in the MOOC
context.

3. Dataset

The dataset used for this study consists of the interaction logs of participants in “Functional Programming Principles in Scala”,
an undergraduate engineering MOOC produced by EPFL university. The course was composed of seven sets of video lectures
and six graded assignments. Course materials were released on a weekly basis. Submissions to each assignment were accepted
before the (hard) deadline, and the assessment periods (assignment release to hard deadline) varied between 11 and 18 days.
The final grade was computed as the average of the assignment grades, with a passing threshold of 60 out of 100. The dataset
includes three categories of events, describing learners’ interaction with video lectures (play, pause, download, seek, change
speed), assignments (submit), and discussion forums (read, write, vote a message).

3.1 Data Preprocessing

To analyze learners’ study patterns during the assessment periods, we split the full sequence of interaction logs into subsequences
corresponding to each assessment period. As the assessment periods of assignments might overlap, we refine the resulting
subsequences to contain learners’ interactions with only the materials of the corresponding week. This process is illustrated
in Figure 1. In our analysis, we consider learners who were active in at least three assessment periods. Following these
data-preprocessing steps, the final dataset used in this study contains interaction subsequences of 7527 learners during six
assessment periods.
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Figure 1. Data preprocessing: split and refine action sequences into subsequences corresponding to each assessment period.

4. Hypothesis-Driven Approach

4.1 Method

In many of the MOOC courses, the learning material, including video lectures and assignments, is made available on a weekly
basis. Learners can freely navigate through these materials and may have different approaches to following the course. For
instance, some learners might prefer to watch the videos to learn about the new topics, read previous messages in the discussion
forum, ask questions about the difficult concepts, and then try to solve the assignments. Other learners, on the other hand, might
prefer go right to the assignments and follow a trial-and-error approach until they succeed. Others might decide to skip the
videos because they are already familiar with the topic, or they may prefer to get an idea of what the assignment is about first
and then selectively watch the relevant sections of the videos. Learners might also skip doing the assignment or even watching
the videos in some periods. To identify these different approaches from learners’ interaction traces, we examine their activity
subsequences for each assessment period according to the following criteria:

e Does the learner start their learning sequence by watching a video?
e Does the learner submit the assignment before the deadline?
e Does the learner make multiple attempts to solve the assignment?

e For multiple submissions, does the learner review video lectures (instructor’s help) or access the discussion forum (social
help) after their first attempt?

Based on these criteria and following the structure represented by the decision tree in Figure 2, we label learners’ activity
subsequence with one of the following study patterns:

e V_start one_attempt: watching the video(s) before submitting the assignment, with only one attempt to solve the
assignment.

e V_start_resubmit_no_help: watching the video(s) before submitting the assignment, submitting multiple times without
accessing videos or forums between the submissions.

e V_start_resubmit_with_help: watching the video(s) before submitting the assignment, submitting multiple times with
access to the videos or forums after the first attempt.

e A _start_one_attempt: starting with the assignment and making only one attempt to solve it.

e A _start_resubmit_no_help: starting with the assignment and making multiple submissions without accessing the videos
or forums after the first attempt.

e A _start_resubmit_with_help: starting with the assignment and making multiple submissions with access to the videos
or forums after the first attempt.

e Audit: watching the videos but skipping the assignment.
e Inactive: skipping both videos and assignments.

Based on the labels that a learner is assigned for each assessment period, we construct a study pattern sequence to describe
the learner’s engagement over the duration of the course. Once we have the study pattern sequences for all learners in the
course, we apply hierarchical agglomerative clustering on the sequences to extract categories of learners with similar study
profiles and identify prototypical study pattern sequences over the duration of the course. To determine the optimum number of
clusters, we use the Calinski-Harabasz (CH) index (Caliniski & Harabasz, 1974), which is a well-known method for cluster
count estimation. To assess the pairwise distance between study pattern sequences, we use optimal matching (OM), a distance
measure for sequence alignment. Following this approach, we determine the degree of dissimilarity between two sequences as
the smallest number of edit operations (substitutions) required to turn one sequence into the other.
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Figure 2. Decision tree for determining study patterns in the hypothesis-driven method. Activity subsequences are examined
according to the criteria shown in the tree nodes (blue), and the tree leaves (green) show the study pattern labels.

4.2 Results

4.2.1 Study patterns distribution

Following the described approach, the study patterns of 7527 learners during each of the six assessment periods (total of 45,162
study sessions) were identified. The overall frequency of the resulting patterns and the average grade obtained by learners in
each category are represented in Figure 3. As seen in this figure, in the most common case (68% of all study sessions), learners
watch videos before submitting an assignment (V_start). In nearly half of such sessions, learners make only one attempt to solve
the assignment and obtain a high grade (average 9.6 out of 10). Similarly, single submission is the most common approach in
A_start sessions and is associated with high average grade (9.6). For multiple submissions (35% of all sessions), learners mostly
resubmit without any further access to the videos or the discussion forum. In this case, the average grade obtained in the first
attempt is lower than with the single-submission patterns.

A more detailed comparison of different study patterns shows that learners who start by watching videos start their learning
sequence earlier than those who start with the assignment. This is reflected by a significantly longer time between the activity
sequence start time and the assignment deadline in the V_start and Audit approaches compared to the A_start approach (8 vs. 4.2
days,F[1,41575] = 3031, p < .001). Considering the assignment resubmission behaviours in V_szart and A_start sessions, the
% test shows a significant relation between the number of submissions and the study approach (y* = 254,df = 1,p < 0.001).
According to the test residuals, learners in A _start sessions are less likely than those in the V_start group to make multiple
attempts to solve an assignment. However, learners using both approaches perform equally well and get an average score of 8.8
out of 10 (sd = 2) in their first attempt. Moreover, as shown in Figure 3, only in a very small proportion of sessions (1%) do
learners with the A_start approach access the lectures or discussion forum after their first submission of the assignment. These
results suggest that learners using the A _start approach are likely to have some prior knowledge about the assignment topic,
since they achieve a high grade in their first (and often only) attempt, without viewing the course lectures.

4.2.2 Study patterns over time

In this section, we study the evolution of the overall study patterns (A_start, V _start, Audit) over time to understand whether
and how the learners change their approach during the course. As shown by Figure 4, in all assessment periods, around 10% of
the learners skip the video lectures and directly submit the assignments (A _start). The proportion of learners who watch the
videos but do not submit the assignments (Audit) gradually increases toward the end of the course (8% vs. 18% in the first
and last assignments, respectively). The proportion of Inactive students also considerably increases in the last two assessment
periods (4% vs. 20%, respectively, in the first and last assignments).

4.2.3 Fixed study pattern
Analysis of individuals’ study pattern sequences shows that 47% of the learners change their study approach at least once
during the course, whereas the other 53% of learners continue with their initial approach. These learners can be clustered into
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Figure 4. Hypothesis-driven study patterns: distribution over different assessment periods

three categories, represented as Clusters 1 to 3 in Table 1. Learners who follow the V_start approach in all the assessment tasks
form the largest cluster, Cluster 1, making up 44% of participants. This group represents typical MOOC learners who rely
on lectures to attain the knowledge required to solve the assignments. On the other hand, 2% of participants, represented by
Cluster 2, do not spend time watching the videos before submitting any of the assignments. Their high performance level
(average grade of 90 out of 100) reflects their proficiency in the course topics. Earning the completion certificate could therefore
be one of the main participation motivations for these learners. On the contrary, 7% of learners, Cluster 3, do not submit any of
the assignments, but they follow most of the video lectures during the course. This group of learners watches the videos as a
source of knowledge without intending to receive a certificate. This group can be referred to as auditing students, similar to
Kizilcec et al. (2013).

4.2.4 Changing study pattern

Unlike the described groups with fixed approaches, 47% of the learners change their study approach at least once during the
course. Transition probabilities among study pattern types for this group of learners are represented in Figure 5. Several
interesting observations can be made from this diagram. In general, the high probabilities associated with the self-loops suggest
that in each assessment period, learners are likely to continue with their previous study approach, especially for the V_start and
Inactive states, which have a stay probability of 0.69. Learners who start by watching videos have a low probability of skipping
videos in the next period (transition probability from V_start to A_start = 0.14), whereas learners with the A _start approach
show a relatively high probability (0.39) of watching the videos before submitting the next assignment. Students who audit the
course in one assessment period will most likely continue auditing (probability = 0.44) or go inactive (probability= 0.41) in the
next period. Once they enter the inactive state, participants are not very likely to get engaged in solving the next assignments,
but they might continue watching the videos in the next period (transition probability from inactive to audit = 0.18).
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Figure 5. Study pattern transition probabilities for learners who change their approach over time. Node size is proportional to
pattern frequency.

4.2.5 Clusters of study pattern sequences

To identify the common study pattern trajectories for learners with a change of approach during the course, we apply clustering
to study pattern sequences (hierarchical clustering with OM as the distance measure) and obtain eight clusters, represented as
Clusters 4 to 11 in Table 1. We describe the resulting clusters and their attributes, including cluster size, average final grade,
and ratio of passed students, and we provide the visualizations of study pattern sequences in each cluster, in the same table.

Learners in Clusters 4, 5, and 6, despite having different study pattern profiles, complete the course by submitting
almost all of the assignments, and more than 94% of them pass the course with high average grades (above 84). Learners in
Cluster 4 mainly follow the A_start approach, but in few assignments, mostly the first or last, do they watch the videos before
submitting. Cluster 5, on the contrary, comprises learners whose main approach is V_start, but they skip the videos in one
or two assignments during the course. The start time of the learning sequence for these learners is closer to the assignment
deadline in the A_start sessions, in comparison with the previous assessment period (4.2 vs. 8.4 days left for the deadline,
respectively, in the A_start session and the preceding V_start session, 7[1,977] = —14.5, p < 0.001). One possible explanation
is that during such periods the learners procrastinate, so the impending deadline makes them temporarily change their study
approach and submit the assignments without watching the videos. Learners in Cluster 6 also mainly prefer to watch the
videos first. But in the last two periods, they submit the assignments without watching the videos. These learners achieve
nearly a complete grade in the first four assignments (average grade 9.7 out of 10, sd = 0.8). Considering that the final grade is
calculated based on the assignment grades, such learners are likely to have a high final grade even without receiving a complete
score in the remaining assignments. This might be one factor that influences their decision to skip videos in the last periods
and directly submit the assignments. However, more information about the learners’ experience and conditions is required to
precisely determine the factors triggering changes in their study approaches.

The last five clusters (Clusters 7 to 11) show learners who start the course with an active approach as they get engaged both
in watching the videos and in submitting the assignments (V_start), but their engagement level decreases over the duration of the
course. Learners in Clusters 7 and 8 remain engaged until the end of the course. However, over time they lose motivation for
doing the assignments and continue watching the course lectures without making any submissions. Learners in Cluster 7 submit
nearly half of the assignments, whereas those in Cluster 8 only submit the first one or two, before switching to the auditing
state. Clusters 9, 10, and 11 demonstrate profiles of disengaging learners or dropouts. The dominant pattern in the learners’
study profiles in these clusters is to start with the V_start approach, change to the Audit state (stop submitting the assignments),
and finally stop watching the videos and drop out. The three clusters differ in the point at which learners’ engagement level
decreases. Participants in Cluster 9 submit the first four assignments, and 66% of them acquire enough points to pass the course,
whereas those in Clusters 10 and 11 stop doing assignments after one to three weeks and eventually drop out about a week later.

The identified engagement profiles could inform the design of intervention mechanisms to support learners who might
be facing problems in completing the assignments (e.g., learners in Clusters 7 to 11). An example could be suggesting
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Table 1. Clusters of study pattern sequences extracted using hierarchical clustering. Clusters 1 to 3 represent learners with a
fixed study approach during the course. Clusters 4 to 11 represent categories of role sequences for learners who change their
approach over time. The vertical axis in the pattern sequence charts represents students in each cluster, and the horizontal axis
represents assignments. Note that the chart height is not proportional to the cluster size. Other columns represent cluster size,
average final grade of cluster members, ratio of passed students in each cluster, and description of the study pattern profiles.
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supplementary learning materials to such learners or connecting them to the well-performing learners through the discussion
forums.
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Figure 6. Data-driven method pipeline

5. Data-Driven Approach

5.1 Method

In this section, we introduce an unsupervised processing pipeline to discover and track latent study patterns from students’
interaction sequences. The proposed pipeline, as illustrated in Figure 6, consists of four steps: (1) activity sequence modelling,
(2) distance computation, (3) clustering, and (4) cluster matching. The method receives as input the action sequences extracted
from learners’ log data; transforms them into probability distributions, which model transitions between different action types;
computes pairwise dissimilarities between the modelled sequences; estimates the optimal number of clusters; and performs
clustering to identify groups of learners with similar study patterns in each time period. At each time step ¢, matching clusters
with those at times f — 1 and earlier are identified. This enables us to track learners’ study patterns over time and capture
changes in their study approaches, which is an advantage of our proposed method over a recent clustering method proposed in
Klingler et al. (2016). Because the only input to our method is the sequence of learners’ activities, it can be used to model and
track learners’ interaction patterns at different levels of action granularity or time resolution. Moreover, our clustering pipeline
can automatically capture changes in the number and size of clusters and can be used to detect cluster evolution events such as
cluster form, dissolve, split, and merge.

5.1.1 Activity sequence modelling

Let A = {ay,ay,...,a;} be the set of possible actions in a platform and S = (sy,s2, ...,5,), 5 € A be the sequence of actions
performed by a learner during time period ¢. We model the learner’s action sequence as a matrix Fix, where f;; represents
the frequency of observing action g; right before a; in §’. We then transform F into a normalized vector P by normalizing
frequencies to represent proportions. Since the entries in P sum to one, we can consider P as a probability distribution. P
provides an aggregated view of the original sequence, encoding probabilities of transitions between different action types.
Unlike Markov chain models (as used in Klingler et al. (2016) and Kock & Paramythis (2011)), our representation can directly
reflect the frequent transitions in learners’ action sequences. Hereafter, we refer to P as the learner’s activity model.

5.1.2 Distance computation

To perform clustering on the modelled sequences, a dissimilarity measure needs to be defined to compare learners’ activity
models. Since the introduced models are in the form of probability vectors, we can use the JSD (Lin, 1991), a distance metric
designed to compare probability distributions. The JSD for two probability distributions is bounded in [0, 1], and the value of
zero denotes identical distributions.
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5.1.3 Clustering

Learners’ activity models can then be clustered in order to identify individuals with similar study patterns. For this purpose, we
apply hierarchical agglomerative clustering method on the extracted pairwise dissimilarity matrix between learners’ activity
models. In cluster analysis, determining the optimal number of clusters is a major challenge. Several methods have been
proposed in the literature to automatically estimate the number of clusters based on the information intrinsic to the data. The
Calinski—Harabasz index (Califiski & Harabasz, 1974) and the silhouette coefficient (Rousseeuw, 1987) are among the most
well known methods for this purpose. Such methods in general measure compactness of clusters (similarity between points in
the same cluster) and separateness between different clusters (how far apart points in different clusters are). In our pipeline,
we use the Calinski-Harabasz index to estimate the number of clusters based on the distance matrix between activity models.
Since learners might change their behaviour, some clusters might disappear or new clusters might emerge over time. Therefore,
we separately compute the number of clusters in every time period.

5.1.4 Cluster matching

After extracting clusters of activity models in each time period, cluster matching is required to identify the correspondence
between clusters in the most recent time step and those of previous steps. In social network analysis, cluster matching is often
employed for group evolution discovery (Brédka et al., 2013) or tracking dynamic communities over time (Greene et al., 2010).
In this context, the overlap between cluster members is a criterion considered to compute cluster similarity. However, in our
processing pipeline, this step aims to identify corresponding study patterns in the clustering results of different time periods.
Therefore, the similarity of activity pattern models should be taken into account for assessing cluster similarity. We apply a
method, similar to the Ward method (Murtagh & Legendre, 2014), for computing the similarity of activity pattern clusters. The
Ward method is used in hierarchical agglomerative clustering to select the clusters to be merged in each step. According to this
method, the most similar clusters are the ones that minimize the increase in the sum of squared errors (Euclidean distance) after
the merge. Inspired by this approach, we define the distance, d, between two clusters, C; and C;, as the amount of increment in
the sum of errors (JSD distances in our case) when they are combined:

d(C,',Cj) :SEC,_/ — (SECi -i-SECj)7 (1)
where C;; is the union of the two clusters, C; and C;, and SEc is the sum of errors for cluster C defined as

SEc =Y JSD(x;,mc), (2)

x;ieC

where m¢ represents the centroid of cluster C, defined as the mean vector, and JSD refers to the Jensen—Shannon divergence.

Based on the defined cluster distance measure, for each cluster C; at each time step, we identify the closest one to it, Cj;,
from the set of clusters obtained in previous time steps. For multiple candidates for the closest cluster, we choose the most
recent one. If the distance between C; and C; is smaller than a threshold (95% quantile of the set of distances between candidate
matching clusters), we consider the two clusters to be matching and assign the same labels to them. Otherwise, we consider C;
as a new cluster and associate a new label with it.

5.2 Results

Given the unsupervised nature of our data-driven approach, it is important to validate the method before applying it to our
MOOC dataset. A synthetic dataset could be used for this purpose. To assess all of the different components of our proposed
pipeline, we require a dataset that simulates different learning behaviours, including changes in individuals’ behaviour over
time and also in the number of existing categories (clusters). The synthetic dataset presented in Klingler et al. (2016) matches
all of these requirements and provides a perfect way to evaluate our data-driven pipeline. This dataset simulates students’ action
sequences in an ITS and consists of different scenarios that involve changes in learners’ activity patterns. It therefore enables us
to evaluate the ability of our proposed pipeline in modelling learners’ activity sequences and tracking their behaviour over time.
In this section, we first demonstrate the application of our proposed pipeline on the mentioned dataset. This experiment could
also provide evidences of the applicability of our method in different educational contexts and platforms other than MOOC:s.
Then we employ the proposed method to capture and analyze learners’ study patterns during the assessment periods in our
MOOC dataset (described in Section 3).

5.2.1 Simulated study

The synthetic data in Klingler et al. (2016) simulate action sequences of 80 learners over 50 training sessions in a tutoring
system. In each session, students needed to complete 20 tasks. Each task was composed of eight steps, and students had to
correctly solve all the steps in order to finish the task. Learners’ abilities 8 were sampled from a normal distribution with
mean (L = 0 and variance o = 1, and task difficulties d were sampled uniformly from the [—3,3] range. The probability of
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Figure 7. The average activity models for the four resulting clusters in the first simulated scenario (cluster merge). In the
transition diagrams, node colour intensity is proportional to the action probability and edge thickness is proportional to the
transition probability. The resulting clusters correctly capture the four simulated behaviours.

correctly solving a task for each student was given as p(y) = (14 ¢~ (®=9))~1_ Students could ask for help at any point during
the training session, with a probability of py. Six types of actions were considered for the learners: S = {new task, correct,
incorrect, correction, help, and finish}. In the simulated data, high-performing students were modelled by setting 8 = 1 and
low-performing learners were simulated by setting 8 = —1. Moreover, normal help-seeking behaviour was modelled by a
small probability-of-help request py = 0.05, whereas frequent help-seeking behaviour (help abuse) was simulated by a large
probability of asking for help py = 0.2. Following this approach, four groups of learners with different behaviours were
simulated:

e Group A: low-performing learners with rare help requests

e Group B: low-performing learners with frequent help requests

e Group C: high-performing learners with rare help requests

e Group D: high-performing learners with frequent help requests
In the synthetic dataset in Klingler et al. (2016), four artificial scenarios are considered, simulating different cluster evolution
events, including cluster merge, split, dissolve, and form. The first scenario simulates merging clusters. In this scenario, after

about 20 sessions, low-performing learners with rare help requests (group A) start abusing the help, and eventually group A
completely merges into group B. The simulation in the second scenario starts with three groups, B, C, and D. Over time, some
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Figure 8. Sequences of the learners’ interaction patterns over 50 sessions in the 4 simulated scenarios. In the sequence charts,
each horizontal line represent the interaction pattern sequence of one learner. Our proposed pipeline correctly captures the
changes in cluster count and size and detects cluster merge, split, dissolve, and form.

of the low-performing students with frequent help calls (group B) stop abusing the help and consequently group B splits into
groups A and B. In the third scenario, which simulates a dissolving cluster, learners in group B switch to the other approaches
and eventually group B completely dissolves into the other three groups. Finally, the cluster-forming event is simulated in
the fourth scenario. In this case, the simulation starts with three groups, A, C, and D. Over time a fourth group, B, is formed,
which gradually absorbs students from the other groups until all four groups have equal size.

For all the described scenarios, we used our processing pipeline to model and cluster learners’ action sequences in each
session and identified corresponding clusters in different sessions using the cluster matching step. Using this approach, four
clusters of interaction patterns were identified in all of the scenarios. Figure 7 represents the average activity models for
the resulting clusters in the first scenario (similar results were obtained for the other scenarios). According to the transition
probabilities between different action types, the resulting clusters clearly correspond to the four simulated learner groups. The
two clusters in Figures 7a and 7b depict low-performing learners as reflected by the relatively high transition probabilities
between incorrect and correct actions. Such learners therefore make more mistakes than the high-performing learners in Figures
7c and 7d. Regarding the help-seeking patterns, the help-abusing behaviour is reflected by the frequent transitions between
help and correct actions in Figures 7b and 7d, whereas such transitions are quite rare for learners with normal help-seeking
behaviour in Figures 7a and 7c.

Based on the clusters that students were assigned to in each session, we build their interaction pattern sequences in the
four simulated scenarios. According to the resulting sequences, illustrated in Figure 8, our method successfully captures the
described cluster evolution events in all of the scenarios. Furthermore, comparison of our clustering results with the truth on the
ground confirms the high accuracy of our method in labelling learners’ study sessions. Our proposed method achieves 95%
accuracy in the first and third scenarios (clusters merging and forming) and 93% accuracy in the second and forth scenarios
(clusters splitting and dissolving).

Opverall, the presented experiments with simulated data demonstrate that our processing pipeline is able to detect different
interaction patterns among learners and provides models that are easy to interpret. The validity of the clustering and cluster-
matching steps is also confirmed by these results, showing that our method correctly captures changes in the number and size of
clusters and is able to detect changes in learners’ behaviours over time.
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5.2.2 MOOC study patterns

As mentioned, our processing pipeline can be used to model learners’ activity patterns at different levels of granularity. To
employ the described data-driven approach to model study patterns in MOOC, we choose daily granularity of actions. We
label each day according to the type of activities (regardless of their order) performed by the learner (Video access, Forum
access, and Assignment submission), with one of the following states: {A, F, V, AF, AV, FV, AFV, inactive}. We then describe
individuals’ daily state sequences as the list of daily states between their first and last activity day during each assessment
period. As an example, if a learner starts the learning sequence by watching the videos on two successive days, does not
perform any action on the next three days, and accesses the forum (read/write) and submits the assignment the day after, their
daily state sequence would be {V, V, Inactive, Inactive, Inactive, AF }.

Following this data preparation procedure, we construct the daily state sequences for all six assessment periods for a
randomly selected sample of 2000 learners. Sampling was done due to high memory requirement for pairwise distance
computation on the full dataset. The set of state sequences is then provided as input to the described clustering pipeline. For
each assessment period, learners’ activity models, which in this case represent transition probabilities between different daily
states, are constructed and clustered according to the estimated number of clusters. Cluster labels are then refined based on the
cluster-matching results. The centre of each cluster (average vector) is considered as the representative study pattern for the
learners in each cluster.

Following this approach, we identified 13 different study patterns (clusters) from learners’ interaction logs. Table 3
summarizes the results, including visualization of the study patterns and the most frequent daily state sequences in each cluster.
Table 3 also describes the study patterns and their attributes (size and average cluster errors). The low average cluster errors (0
to 0.1) reflect the accuracy of the clustering results.

The resulting clusters capture meaningful patterns in learners’ study sequences. According to the state transition diagrams
and their descriptions in Table 3, the extracted study patterns differ in the duration of study sequences and also in the daily
activity types. In most cases, learners work on the materials for a week during one or multiple consecutive days. For instance,
learners with patterns 8, 10, and 12 have a single activity day. In pattern 10, learners directly submit the assignments without
accessing any other course materials, whereas in pattern 8, they watch the videos and submit the assignment, and in pattern 12,
they also access the discussion forum. Learners in patterns 4, 5, 6, and 9 study during two or more successive days, whereas, in
patterns 3, 7, and 13, learners have multiple inactive days during their learning sequences.

Table 2 provides an overview of the estimated number of clusters and the list of detected study patterns at each assessment
period. As reflected by the cluster counts, a higher variability is observed in learners’ study approaches at the beginning of the
course. Most of the detected patterns remain present in learners’ interaction sequences over the duration of the course (patterns
1,2,4,7,8, 10, and 11), whereas some other patterns, such as patterns 5 and 9, disappear over time. During the second and
fourth assessment periods, two new study patterns are formed (patterns 12 and 13), both of which dissolve into other patterns
after only one or two periods.

Table 2. Estimated number of clusters and list of detected study patterns (see Table 3) in each assessment period. New patterns
in each period are highlighted.

Assignment # clusters Cluster list (study patterns)
1 11 Pattern 1,2,3,4,5,6,7, 8,9, 10, 11
2 12 Pattern 1, 2, 3,4,5,6,7,8,9, 10, 11, 12
3 10 Pattern 1,2, 4,5, 7,8,9,10,11, 12
4 10 Pattern 1,2,3,4,5, 7,8, 10,11, 13
5 8 Pattern 1,2, 4, 6,7,8, 10,11,
6 8 Pattern 1,2, 4, 6,7,8, 10,11,

bl s I

Figure 9 depicts the transition probabilities between different study patterns, extracted from learners’ study profiles over the
duration of the course. According to the self-loop probabilities, patterns 10 and 7 are the most stable study patterns in the sense
that learners following these approaches are likely to continue with the same approach in the next assessment period. Pattern 11,
which represents inactive learners during a period, is also associated with high stay probability, suggesting that inactive learners
in one period would remain inactive in the next period, with a probability of 0.6. Pattern 10 represents learners with only one
activity day on which they submit the assignment and do not access any videos or the discussion forum. This pattern could
represent a similar approach as A_start, described in Section 4. Pattern 7, which is the most frequent study pattern, represents
students who watch the lectures, and after few inactive days they either continue watching the videos or submit the assignment.
This pattern receives relatively strong connections from the other nodes (except pattern 10), suggesting that learners with other
approaches might adopt this study pattern for the next assessment period, with probabilities between 0.2 and 0.4.
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Figure 9. Transition probabilities between data-driven study patterns. Node size is proportional to pattern frequency, and edge
thickness is proportional to the transition probability.

6. Discussion

In this work, we investigated learners’ study approaches during MOOC assessment periods. To answer our research question,
we proposed two different methods for detecting and tracking latent study patterns over time. First, we introduced a hypothesis-
driven approach to label learners’ activity sequences based on interactions with lectures and assignments. We found that about
44% of the learners in our MOOC dataset watch lecture videos prior to submitting each assignment. On the other hand, about
2% of learners skip the videos in all assessment periods. Through unsupervised categorization of study pattern sequences, we
identified different longitudinal engagement profiles among learners. We showed that some learners temporally change their
study approach during a few periods and then continue with their initial approach, whereas others permanently switch to a new
approach. Changing the study approach could be an indicator of facing difficulties in the learning process. Detecting such
events could therefore enable instructors to provide personalized support to the learners.

In the second method, we proposed a processing pipeline for unsupervised discovery and temporal analysis of interaction
patterns from sequential activity logs. The proposed method is general and requires only the collection of action sequences as
input. It can therefore be used to model and analyze interaction patterns in various online learning environments, including
MOOC:s and ITSs. The cluster-matching step in our pipeline makes it possible to run the algorithm at different steps during the
course period and identify changes in learning behaviours. This feature could in turn enable the development of an alert system
for providing real-time feedback and support for the instructors and learners. Moreover, the presented pipeline allows for the
analysis of interaction patterns at different levels of granularity and time resolution. Through experiments with simulated data,
we showed that our pipeline enables us to detect learners’ behavioural patterns, provides interpretable models describing them,
and captures temporal dynamics of learning behaviours. We further applied our pipeline to a MOOC dataset to explore learners’
study patterns in this context. Using this approach, we identified 13 different study patterns and investigated transitions among
them.

As mentioned before, a very important feature of the introduced methods in this work is the real-time support and feedback
that they could enable once deployed during the course. Unlike most existing research with post hoc analysis of learners’
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activity traces, our proposed methods could be applied to analyze engagement patterns while the course is running, which
could enable instructors to identify and provide timely support to learners with difficulties in following the course. A possible
extension to our work could be to integrate an overview of the captured behaviours and study pattern sequences in analytics
dashboards. This information could help the teaching team improve the course design, for instance by identifying the factors
that trigger course-wide drifts in learners’ engagement patterns. Moreover, the extracted learning behaviours could be used to
improve personalization of online learning platforms and ITSs. In future work, it would also be interesting to study the relation
between learning strategies and performance and also the influence of participants’ backgrounds, educational contexts, and
demographics on their study approaches.

Table 3. Data-driven study patterns extracted from learners’ interaction logs. For each pattern, transition diagrams (left) show
the average activity model, and grid charts (right) show the 20 most frequent daily state sequences for each study pattern. The
horizontal axes in the sequence charts represent days in the assessment period, and rows represent sample sequences (row
height is proportional to sequence frequency). In the pattern description, N represents the frequency of each pattern and AE is
the average error (average distance between activity models and the cluster mean vector).

Study pattern ‘ Sample state sequences | Study pattern ‘ Sample state sequences
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