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Abstract 

Understanding human judgement and decision making during visual inspection of data is of both practical and 

theoretical interest. While visualizing data is a commonly employed mechanism to support complex cognitive 

processes such as inference, judgement, and decision making, the process of supporting and scaffolding cognition 

through effective design is less well understood. Applying insights from cognitive psychology and visualization 

science, this paper critically discusses the role of human factors — visual attention, perception, judgement, and 

decision making — toward informing methodological choices when visualizing data. The value of visualizing data is 

discussed in two key domains: 1) visualizing data as a means of communication; and 2) visualizing data as research 

methodology. The first applies cognitive science principles and research evidence to inform data visualization design 

for communication. The second applies data- and cognitive-science to deepen our understanding of data, of its 

uncertainty, and of analysis when making inferences. The evidence for human capacity limitations — attention and 

cognition — are discussed in the context of data visualizations to support inference-making in both domains, and 

are followed by recommendations. Finally, how learning analytics can further research on understanding the role 

data visualizations can play in supporting complex cognition is proposed. 

 

Notes for Practice 

• For data visualizations to meet the intended purpose of supporting complex human cognition, design 
choices should be based on human factors research. 

• This paper reviews some of these research insights from cognitive psychology and visualization 
science to inform human-centred design of data visualizations in order to support complex cognitive 
processes. This is achieved by demonstrating that, depending on the approaches to data visualization, 
attention and cognition may be facilitated or impaired. 

• Evidence-informed guidelines are proposed for enhancing design of data visualization to support 
inference, judgment, and decision making for researchers, practitioners, and consumers of learning 
analytics. 
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1. Introduction 

Visualizing data is an imperative component of scientific practice. Understanding real world phenomena such as learning is 

facilitated through scientific practice, as shaped through human perception and interpretation. The aspirational goal of 

scientific practice is for researchers and consumers of research alike to be able to make independent, objective assessments 

and inferences based on the research methods and data, rather than simply consuming the interpretations and inferences made 

by the authors themselves. The downside — human perception and cognition, even in scientific pursuit of objectivity and 

reason, are fallible. The upside — scientific practice is about iterative and incremental improvement. In this paper, the critical 

role of human factors — attention, perception, judgement, and decision making — in understanding and making 

methodological choices of data visualization, is discussed. In illustrating the ways in which human information processing 
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capacities can alter the physical representation of data to create meaning, the fallacy of neutrality or fundamental objectivity 

of data (Gelman & Hennig, 2017; Woodward, 2011) is also addressed. 

Learning analytics research is inherently embedded in educational practice, and thus has a clear role in influencing 

educational practice and policy. The field, therefore, is uniquely positioned to meet the increasing demand for accessible and 

relevant evidence-based approaches to support emerging educational practice. Given that learning analytics research often 

focuses on unobtrusive measures such as log file, or physical traces to complement existing and new educational methods, the 

research ethos accommodates convergent measures for understanding learning in educational complexity. Hence, critical to 

the learning analytics field is not only visualization of potentially large datasets, but also of meaningful connections between 

datasets. Given the complexity of learning data, substantial resources are required to create effective data visualizations for 

comprehension and communication of the research. Navigating decision making for the optimal data visualization strategies 

to facilitate understanding of complex, interrelated datasets can be onerous, but is crucially important in enabling discovery of 

key patterns and connected understanding. The challenge for us is to effectively translate and integrate the existing research 

findings from related fields into learning analytics research. 

As researchers, we tend to be appropriately cautious in the inferences we draw from our research. This caution in drawing 

conclusions is largely due to recognizing the difficulty in controlling for, or accounting for, all of the potentially important 

constructs/variables in a complex phenomenon of interest. How then, do researchers make decisions about ways to represent 

research data as visualization effectively and accessibly, while retaining scientific integrity? The aim of this paper is to provide 

evidence-based suggestions to inform decision making when considering data visualization methods. Drawing from cognitive 

psychology, data science, and the human–computer interaction literature, this paper highlights ways in which design decisions 

for static data visualizations can have downstream implications for judgement and decision making for two main purposes: 1) 

data visualization as a tool for communicating research, and 2) data visualization as a tool for understanding research. The first 

focuses on the evidence and practical recommendations on the basis of human visual perception and cognition in constructing 

data visualizations to communicate data as informed by evidence to support cognitive processes of inference. The second part 

focuses on the importance of data visualization for researchers in gaining a deeper understanding of their research data. 

Collectively, these can inform decisions for visualizing learning analytics for quality inference-making. 

2. Data Visualization as Situated Information 

2.1. A priori methodological decision making: The false dichotomy of objectivity–subjectivity of data in 
scientific reasoning 

Data serves the purpose of enhancing our understanding about phenomena in the world, and is contextualized within research 

methodology. Accordingly, it stands to reason that the objective of “objectivity” in science can be in and of itself 

philosophically and epistemically misleading. Gelman and Hennig (2017) proposed that to move statistical discourse towards 

principles of good science, we ought to replace the false (and potentially misleading) dichotomy of “subjectivity” or 

“objectivity” in statistics discourse with broader collections of attributes. In shifting the discourse within these broader 

attributes such as transparency and consensus instead of “objectivity,” and awareness of multiple perspectives and context 

dependence instead of “subjectivity,” we make explicit and acknowledge the real value of subjectivity in ways that make clear 

the different ways of knowing in making sense of the world. This view is consistent with what cognitive science tells us about 

how humans make meaning from information, and recognizes that data and statistics cannot exist without the situated context 

of research methodology in inference making. A priori methodological decisions including sampling techniques, experimental 

(or non-experimental) design, or methods of dealing with missing data or outliers are similarly subjected to complex human 

cognitive processes. As Woodward (2011, p. 172) argues, “Data to phenomena reasoning, like inductive reasoning generally, 

is ampliative in the sense that the conclusion reached (a claim about phenomena) goes beyond or has additional content besides 

the evidence on which it is based (data).” Hence, for epistemological and methodological reasons, it is important for us to 

recognize in explicit terms that human information processing complexities are the basic conditions of scientific inquiry toward 

improving the transparency of scientific reasoning. 

2.2. Toward human-centred data visualization: Understanding human perception and cognition 

One of the key mechanisms for understanding and communicating scientific findings is through visualization of data. In 

learning analytics, data visualization is a core aspect of understanding and communicating research, and also part of the object 

of research and practice. Data visualizations are central in learning analytics work related to the provision of data to support 

learning and teaching to both learners and teachers (e.g., Clow, 2013; Gašević, Kovanović, & Joksimović, 2017; Verbert et 

al., 2014) in various methods (static, dynamic, table top, multimodal, dashboards). The informative power of data visualization 

in research and practice is as germane in learning analytics as in other domains of complex research phenomena. Hence, 
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understanding the mechanisms by which data visualization can support or hinder cognition is extremely valuable for learning 

analytics researchers and practitioners — there is much for the field to offer in this regard. 

Data visualizations are visual representations of complex information, constructed in ways to enhance understanding 

(Ward, Grinstein, & Keim, 2015). In principle, the purpose and outcome of visual representations is that they can support 

cognition (Hegarty, 2011). There are many convincing arguments why visualization in research is important. Visualizing data 

should be part of the core communication strategy, and is as vital to this goal as are research methodology and statistical 

analyses. Data visualization enables communication of complex patterns that sometimes cannot be, or are cumbersome to 

convey in words (Ward et al., 2015). Visualizing data facilitates identification of patterns otherwise obscured in text or tables 

(Cleveland, 1994; Gelman, Pasarica, & Dodhia, 2002; Kastellec & Leoni, 2007; Tufte, 2001; Ward et al., 2015), particularly 

for multivariate relationships (Meyer, Shamo, & Gopher, 1999; Porat, Oron-Gilad, & Meyer, 2009). However, even with the 

higher order advantage of visualizing data to aid comprehension, there is evidence for interpretative bias (e.g., Braithwaite & 

Goldstone, 2013; Newman & Scholl, 2012; Shah, Mayer, & Hegarty, 1999). This necessitates careful and deliberate design 

and communication when visualizing data. How these external representations of data interact with people’s internal cognitive 

processes for inference-making and knowledge construction is of primary importance in informing strategies for effective data 

visualizations. 

In some ways, we have learnt a lot in the last twenty years or so; in other ways, some of the key challenges of the field — 

developing ways of systematically collaborating across disciplines, or challenging assumptions or misconceptions about what 

is effective design for visual representations (Scaife & Rogers, 1996; Wilkinson & Task Force on Statistical Inference, 1999) 

— are still as pertinent today. In moving forward, there is a substantial body of research that we can leverage to inform our 

decisions when visualizing data for inference-making. While comprehension of these data visualizations may vary across 

individuals (e.g., Conati & Maclaren, 2008; Toker, Conati, Steichen, & Carenini, 2013), the underlying mechanisms 

responsible for human cognition are generalizable. 

3. Data Visualization as Communication 

In this section, insights from cognitive psychology are synthesized to facilitate the bridging of human information processing 

and visualizing data as communication. This research forms the basis of evidence-based guidelines for constructing data 

visualizations to support cognition (see Table 1/Appendix A for a summary). Processing data visualizations, particularly in the 

context of education (specifically learning analytics), is not only cognitive. Emotions, for instance, play a complex, interactive 

role in processing information generally (see Yiend, 2010, and Barrett, 2017, for reviews), notwithstanding data visualization. 

The complex role that emotions play at various levels of engagement with data visualizations is beyond the scope of this paper 

(see Kennedy & Hill, 2017, for emerging research in this area). 

3.1 Attention is limited and selective 

3.1.1. Bottom-up versus top-down attentional mechanisms 

One of the most robust findings in cognitive psychology is that the human capacity for processing information is limited. In 

the case of processing visual information, only a small amount of information available to the retina can be processed at any 

given time. Thus, visual attention and eye movements are often closely coupled, though attention can occur outside of the 

constraints of the visual field (see van Zoest, Van der Stigchel, & Donkl, 2017). Given complex environments of multiple 

possible inputs, the cognitive system selectively prioritizes some items for further processing, while others are effectively 

attenuated. According to the biased competition account of attentional selection (Desimone & Duncan, 1995), the biasing 

system comprises two attentional mechanisms widely believed to determine attentional priority; a bottom-up and a top-down 

attentional mechanism. Bottom-up attentional processing is said to be stimulus-driven. This is often driven exogenously by 

features that are visually salient (e.g., colour, luminance, shape, size, motion), and thought to occur involuntarily. Conversely, 

top-down attentional control is thought to be goal-directed — this is driven endogenously under volitional control, during 

which attention is guided by contextually relevant goals, intentions, and expectations. This simple heuristic of dual processes 

— bottom-up attention as automatic, and top-down attention as more deliberate (Yantis & Johnstone, 1990; Kahneman, 2003; 

Theeuwes, 2010) — is not as simple as is sometimes portrayed. 

People’s expectations, prior experiences, and prior knowledge can direct attention in top-down ways that are deliberate, or 

automatic. Goal-driven and salience-driven attention can be very rapidly modulated by value-driven attention, suggesting that 

previously learned reward associations can automatically bias information processing (Anderson & Yantis, 2013; Anderson, 

2016). Similarly, previously biased prioritization for attentional selection of some features or items in a visual set over others 

can lead to a learning experience that shapes future attentional guidance and persists through bottom-up saliency manipulations 
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or changes in task goals (Kadel, Feldmann-Wüstefeld, & Schubö, 2017). Goal-driven attentional selection has also been shown 

to occur rapidly and automatically, an effect referred to as contingent attentional capture as dependent on task context and 

relational properties of the stimuli (Becker, Folk, & Remington, 2010; Becker, Lewis, & Axtens, 2017; Folk, Remington, & 

Johnston, 1992). While our understanding of the underlying neural mechanisms (and time course) of the interconnection 

between bottom-up and top-down modulation of visual attention is still being explored and debated (Ansorge, Horstmann, & 

Scharlau, 2010; Awh, Belopolsky, & Theeuwes, 2012; Pinto, van der Leij, Sligte, Lamme, & Scholte, 2013; Theeuwes, 2010), 

the view that both stimulus-driven and goal-driven factors ultimately interact to determine visual selection is fundamentally 

agreed upon (Connor, Egeth, & Yantis, 2004; van Zoest, Donk, & Theeuwes, 2004; Wolfe, 1994). That is, fundamentally, 

salience of visual features of data visualization influences attentional capture, and prior experience and knowledge can guide 

visual attention, and these occur in concert. 

Why is this useful to know? Intuitions about good or desirable data visualization design practices may not always be 

consistent with the evidence from the research about human cognition. People (experts or non-experts) sometimes perceive 

certain visualization features to be effective design choices for visual representation of data, when evidence suggest instead 

that these could impair attention and cognition when processing graphs for meaning (Hegarty, Smallman, Stull, & Canham, 

2009; Smallman & St. John, 2005; Zacks, Levy, Tversky, & Schiano, 1998). Prior learned graphical conventions in scientific 

practice can shape the pattern of visual inspection, sometimes referred to “visual routines” (Michal & Franconeri, 2017). 

Generally, viewers consistently orient their visual attention to text elements in visualizations, particularly during early stages 

of viewing (Matzen, Haass, Divis, & Stites, 2017), highlighting the importance of considerations of salience of the text features 

of visualizations in ways that complement and support the understanding of the data. Certain data visualization methods have 

also been shown to activate automatic retrieval of prior learning about graphical conventions and their relation to quantitative 

concepts (e.g., straight line = linear relationship; Shah, 1997). These selective patterns of visual inspection of graphs suggest 

that a general conceptualization of graphical literacy (Okan, Galesic, & Garcia-Retamero, 2016; Shah & Freedman, 2009) — 

the ability to read, construct, and interpret visual displays of data — may be shaped by disciplinary conventions. Graphical 

comprehension therefore appears to be determined by both bottom-up and top-down factors. 

Thus, in informing our decisions about designing data visualizations to support cognition, it is important to note that some 

decisions that may be intuitive for accessibility or attention may actually be counterproductive, or even overshadowed by more 

complex, higher-order cognitive processes, such as goals and knowledge. These cognitive processes are cyclical, in that what 

drives attention early in visual processing is also then influenced by other factors that influence attention later. In order for 

visual stimuli to be acted upon, they must first be attended to, before higher-order cognitive processes such as working memory, 

judgement, and decision making can occur. The visual perception of the features of the visualized information is then 

represented in working memory. These representations are continually updated during graphical comprehension through a 

highly limited visual working memory capacity as the reader explores the visualization, thereby constraining the amount of 

information that gets deeper processing. To meet our purpose of using data visualization as a means to communicate research 

effectively, we need to understand these human information processing capacity limitations in order to inform design decisions 

of data visualization in ways that support cognition. 

One advantage of understanding the human information processing capacity limitations that are relevant for data 

visualization is to inform approaches in managing cognitive load. That is, these strategies are aimed at reducing “information 

overload” (Shneiderman, 1996), or “cognitive load” (Ayres & Sweller, 2014; Sweller, van Merriënboer, & Paas, 1998) such 

that performance is not degraded. As with most research, cognitive-load-theory-based research has its strengths and 

weaknesses (Kirschner, Ayres, & Chandler, 2011), but certain methods of managing cognitive load for information processing 

and learning are supported by robust findings. Managing cognitive load based on capacity limitations means ensuring that the 

cognitive resources for processing data visualizations should best be allocated to essential processing for understanding the 

data and inference-making, rather than for figuring out basic features of the visual display. Critical to cognitive load theory is 

that extraneous cognitive load places the load on scarce working memory resources, thereby interfering with processing of 

essential material for learning and comprehension. When making decisions about reducing extraneous processing, the 

consideration of the interaction between bottom-up and top-down attentional mechanisms becomes practical — this is not a 

trivial task. Oversimplifying data representation would ease cognitive load, but can reduce scientific integrity or be misleading 

in many ways. Over-complexity in data representation could impair attention and cognition due to capacity limitations 

(Kosslyn, 2006; Tversky, 2005). At minimum, there are key identifying features of data visualization that are core to graph 

comprehension, and that could be said to be essential. 

3.1.2. Dealing with visual clutter: Coherence, Chunks, Contiguity, Segmenting, Signalling 

A key barrier to cognitive processing is visual clutter. Visual clutter can be characterized as an excess of information or visual 

properties in a visual display that result in chaotic, or high-density layout, and is a proxy for visual complexity (Rosenholtz, 
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Li, & Nakano, 2007). Generally, visual clutter should be avoided in data visualizations as it can severely impair cognition and 

task performance. Visual clutter has been shown to increase errors in detection and judgement, and additionally, also increases 

the confidence with which people make decisions — both outcomes are detrimental for data visualization (Baldassi, Megna, 

& Burr, 2006). Some properties of design that may contribute to visual clutter are: 1) having too much or excessive information, 

and 2) a lack of organized structure or schema for representation of data. 

To address the first source of visual clutter — excessive information — a design approach is to only include information 

that is necessary for the intended purpose. The rationale for employing this strategy is to weed out irrelevant materials such as 

excessive details, visual embellishments, or dense layout, enabling the reader to allocate more cognitive capacity for essential 

processing. This, the coherence principle, is supported in 23 out of 23 experimental tests, with a healthy median effect size of 

0.86 (Mayer & Fiorella, 2014). These decisions do depend on the type of visualization for comprehension. For example, 

labelling features on axes of line graphs, particularly for time-series visualizations, is essential for providing contextual 

information from which meaning can be constructed (Kubina, Kostewicz, Brennan, & King, 2017). For coherence to occur, 

one has to further consider the goal or task at hand — even a seemingly simple decision of including a comparative line in a 

line graph can hinder essential processing of key information for the task at hand (Alhadad, 2016). Thus, the consideration of 

the intended goal or outcome of a visualization is critical in identifying essential material such that the external representation 

of the visualization is more aligned with the internal representation in cognitive processing. 

 
Figure 1. Illustration with fictitious data. Top panel: Comparing perceptual discriminability by choice of (a) presenting data 

using a stacked bar graph versus (b) a discrete horizontal bar graph to aid perceptual and cognitive discrimination of relative 

differences across and within categories. Bottom panel: Comparing visual features of a (c) dot plot with redundant encoding 

(shape/colour) across within categories, (d) as compared with dotted lines to aid tracking within each scenario, (e) with 

added box as a perceptual chunk and scaffolding to highlight relational differences across discrete scenarios, (f) a bar version 

of the same information for comparison between types of visualization. 

 

Some decisions for visualizing data are simpler. Assessment for information loss is visually observable by sheer 

exploration. For instance, we know that humans are not very good at judging proportions if there are more than three cumulative 
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categories if presented in certain ways (e.g., stacked bars, pie charts; Tufte, 2001). Or if one requires comparison across 

multiple graphical representations, then the scale needs to be consistent for more accurate comparative analysis. Information 

about relative differences are often lost when visualized in ways that occlude perceptual discrimination of magnitude 

differences. As can be seen in Figure 1, perceptual discrimination of relative differences for each discrete category on the y-

axis is really only perceptible when presented discretely (upper right panel), rather than as a continuous cumulative stacked 

bar (upper left panel). These examples highlight some strategies for visual features selection (e.g., colour, layout, type) that 

can improve directing of attention to important information as aligned to the purpose of the visualization (e.g., perceptual 

comparison of differences, trends over time). 

To address the second source of visual clutter — lack of organization to structure, particularly for complex research designs 

and data — one approach is through chunking (Baddeley, 2003; Gobet et al., 2001; Gobet, 2005). Chunking refers to grouping 

elements into larger or broader units based on their meaning, learned associations, or cognitive set. That is, complex data 

visualizations may be segmented into more manageable, meaningful chunks of smaller units of information. This may be done 

perceptually (in this case, visually) or semantically. Perceptual chunking strategies include the use of common visual design 

parameters like colour, shape, or location to facilitate “chunking” of information into groups on the basis of similar cognitive 

sets. For example, applying the Gestalt principle of similarity through use of shared colour or shade allows the reader to 

associate the similarity as shared groupings to aid comprehension. Redundancy in combining these features (such as combining 

colour and shape; e.g., blue circles vs. orange squares) can strengthen the segmentation for more efficient processing 

(Nothelfer, Gleicher, & Franconeri, 2017). The Gestalt principle of connectedness suggests visualizing trends over time with 

lines instead of bars since lines perceptually connect otherwise discrete entities compared to bar graphs (Ali & Peebles, 2013; 

Zacks & Tversky, 1999). Put simply, the visual features are represented in a way that relates to the conceptual relations, which 

can be shaped by top-down goals, purpose, or graphical schema, to boost a reader’s general knowledge about the graph (Pinker, 

1990; Shah & Hoeffner, 2002). Thus, consideration about how the elements of a visual display can be grouped together into 

psychologically meaningful entities can support attention and cognition (Moore & Fitz, 1993; Pinker, 1990). 

Perceptual chunking strategies can be supplemented semantically with text to strengthen retrieval cues for relevant 

knowledge structures to aid comprehension. Chunking in graphical comprehension occurs cyclically, where visual pattern 

recognition encodes a visual chunk, and then translated and related to other visual or cognitive referents before integration 

(Carpenter & Shah, 1998). However, this efficacy of chunking may not be similar across levels of relevant expertise. According 

to a model of chunking for expertise, novices tend to be less equipped to integrate complex visual information into meaningful 

chunks compared to experts (Gobet, 2005). This suggests that in order to ease comprehension of data visualization, chunking 

could be explicitly facilitated through integration with text in order to orient the reader’s attention to important connections 

between visual components and concepts; where needed, chunks can be sequentially scaffolded to support comprehension. 

Indeed, incremental presentations of visualizations have been demonstrated to enhance readers’ speed of exploring and 

comprehending large datasets (Fisher, Popov, Drucker, & Schraefel, 2012). 

3.2 Data visualizations can be integrated with text to support inference-making 

Data visualization in research often requires a figure caption to support understanding of the data. Hence, in accordance with 

the norms of the scientific practice of reporting data, text is inherently integrated with visualization to provide contextual 

information to aid cognition, while inferential text is provided in the body, or sometimes in the figure supporting text. 

Considerations of what to include or exclude in the figure caption are important for three key reasons. The first is a matter of 

pragmatism: simple space constraints in publications. Further, one would not want a figure caption as long as a paragraph as 

the start and end of the figure versus the body text would not be clear. 

Secondly, considering what information should be spatially proximal to the data visualization has implications for attention 

and cognition. This spatial distancing of the essential information from the visualization can elicit the spatial contiguity effect 

(Mayer & Fiorella, 2014). Separation of the visualization and supporting text increases the likelihood of attention split between 

the materials essential for understanding the information across spatially disparate locations (Ayres & Sweller, 2014). This 

increases the cognitive load for information processing and reduces the reader’s ability to understand the data visualization 

effectively. Placement of the key information in spatial proximity to the visualization eliminates the need to rely on working 

memory to integrate spatially disparate information. 

Thirdly, consider the content of the textual information integrated with the visualization. The goal is to optimize coherence 

between the visualization and the supporting text in ways that aid understanding and recognize the interaction of top-down and 

bottom-up mechanisms of information processing. One approach is to signal the important aspects of the visualization. 

Signalling, in the context of managing cognitive load for graphical comprehension, refers to using text to direct attention to 

support cognition (Meyer, 1975; Schneider, Beege, Nebel, & Rey, 2018). This maybe done using headings, axis labels, 
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summaries, or directional language such as “first,… second,… third…” (Mautone & Mayer, 2007). Other semantic scaffolding 

includes understanding and making inferences about any uncertainty in the data (addressed more extensively in the next 

section), relationships across multiple visualization panels, or relationships between theory or important concepts and the 

visualized data. 

 

Table 1. Summary of evidence-informed guidelines for visualizing data, with practical recommendations from cognitive 

and psychological research 

Research evidence  Practical recommendation 

Designing data visualizations for attention: Visual attention is limited and selective 

1. Salience of visual features influences attentional 

capture (Desimone & Duncan, 1995; Theeuwes, 

2010) 

 

• Ensure the visual features are designed in ways that do 

not detract from, but rather support the understanding of 

important information 

2. A person’s prior experience and knowledge can 

guide visual attention (Anderson & Yantis, 2013; 

Becker, Folk, & Remington, 2010; Desimone & 

Duncan, 1995; Theeuwes, 2010) 

 

• Seek to understand the conventions of data 

visualizations in a particular research and practice 

domain; choose visualization design strategies to 

complement familiarity of the knowledge domain (see 

also recommendation 5) 

• Enhance this by scaffolding the narrative to support the 

understanding of the data visualization (see also point 7) 

 

3. Chunking improves processing of complex 

information through minimizing cognitive load and 

working memory capacity limitations (Baddeley, 

2003; Gobet, 2005) 

• Apply visual design principles to group visualization 

features to foster generative processing or promote 

chunking (e.g., using colour or shape to cluster by 

related meaning [see also point 5]; or visualize complex 

relationships in small multiples [see also Table 2]) 

  

4. Avoid visual clutter as it can severely degrade 

attention and impair comprehension (Baldassi, 

Megna, & Burr, 2006; Rosenholtz, Li, & Nakano, 

2007) 

• Exclude irrelevant materials such as excessive details, 

visual embellishments, unnecessary information, or 

cluttered, dense layout; this enables the reader to 

allocate more cognitive capacity for essential processing 

(coherence principle) 

 

Designing data visualizations for cognition: Use text with visualization to support cognition 

5. Prior experience and knowledge can guide visual 

attention (Anderson & Yantis, 2013; Becker, Folk, 

& Remington, 2010; Desimone & Duncan, 1995; 

Theeuwes, 2010) 

 

• Organize information in ways that are aligned to 

conventional mental models to provide retrieval cues for 

knowledge structure to aid inference-making 

6. When text and visualizations are spatially distant, 

attention is divided, and people process these less 

deeply (Mayer & Fiorella, 2014) 

• Keep visualizations and supporting text close together ; 

this helps the reader build important connections 

between corresponding words and visualizations 

(spatial contiguity principle) 

 

7. Signalling with text can shape and direct the 

reader’s attention and thoughts about the 

visualizations (Mautone & Mayer, 2007; Mayer & 

Fiorella, 2014) 

• Use text to help direct the reader’s attention to key 

information in the data visualization to aid 

comprehension (signalling + coherence principle) 

 

 

Signalling can also be done by visually highlighting certain aspects of the graph or text to direct attention. Ultimately, to 

guide the cognitive process of structuring the information into a coherent representation, visual and textual signalling may be 

combined. An example of coherent signalling includes narrative or storytelling aspects as a means to signal important aspects 

of the data to support comprehension and inference (examples in learning analytics: Echeverria et al., 2018; Rau, 2017). Similar 

principles of spatial contiguity, coherence, and signalling are applied in this paper (see captions for Figures 1–4). 

While some decisions for visualizing data are simpler in isolation, holistic considerations are more challenging. Care will 

be needed to communicate research findings appropriately to audience and purpose while retaining scientific and data integrity. 

In some ways these strategies work by minimizing the effect of extraneous processing on cognitive load; in other ways they 
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work towards dealing with germane load (Cierniak, Scheiter, & Gerjets, 2009; Paas & Sweller, 2014), or the working memory 

resources devoted to the internal components of the task. Hence, the collective efficacy of the overall design on cognitive 

processes ultimately will need to be considered in concert. While these suggested ways of managing cognitive load are 

discussed in the context of static data visualizations, the principles are generalizable to dynamic or interactive presentations of 

data. The classic critique of tool versus design strategies à la “death-by-PowerPoint” applies here: while technology may be 

limited in some ways, there are often ways to design optimally for human information processing.1 

4. Data Visualisation as Methodology 

4.1 Visualizations can reveal important insights for research 
Visualizing data in research is arguably one of the most critical steps in understanding the underlying properties of the data. 

Data visualization and statistical analyses are best performed as a unified process, as they complement each other to help us 

develop insight, understanding, and reasoning about the data. Executing one without the other, or if assessing each without 

reference to the context of its research methodology, would be a disservice to the scientific goal of understanding real-world 

phenomena. Indeed, visualizing the data is often recommended to evaluate the assumptions underlying univariate or 

multivariate data (Hair, Black, Babin, & Anderson, 2010; Gelman & Hennig, 2017) to understand the pattern of the data, as 

well as the nature of measurement error. Understanding the nature of variability or uncertainty in data is crucial to informing 

our inference-making in less biased ways. 

In addition to helping one understand data variability, Pastore, Lionetti, and Altoe (2017) further suggest deliberately 

visualizing data in multiple ways as an inferential tool. Through visualizing the data in various methods or representations, one 

is better able to evaluate inferences made on the basis of the various ways in which uncertainty may be concealed — each 

method with its own limitations — and subsequently enables conferring plausibility to each inference and decision. 

Generating a visual representation of the data in certain formats prior to statistical analysis offers a clear means of diagnostic 

examination of issues that may impact the decisions for appropriate statistical analysis or to deepen understanding of the 

statistical outcomes. Visually inspecting the data allows the researcher to identify issues such as violation of assumptions for 

particular a priori statistical techniques, data anomalies, among many other potential issues otherwise invisible through other 

data analytics methods. While it is often recommended that researchers should select methods of statistical analysis a priori 

(Wilkinson et al., 1999), suitability of the statistical techniques may ultimately be informed by the nature and shape of the data. 

Should assessment of data visualization for statistical assumptions reveal violation of any required properties for the statistical 

technique, the researcher will have to reassess the a priori statistical plans in recognition of the true underlying nature of the 

data collected. 

Hence, data visualization can be key to making judgements about data integrity, quality, and uncertainty. Regardless of the 

methodological choice for representing data and its uncertainty — both statistically and visually — the consensus is clear on 

the importance of representing and communicating data through visualization as complementary to statistical analysis. The 

recommendation to do so has been advocated for as critical to understanding and communicating about data for over 20 years, 

possibly more (in psychology; Wilkinson et al., 1999), and still pertinent today. Of note are the following recommendations 

involving the role of visualizing data in research. 

The first recommendation highlights the importance of visualizing data as preliminary inspection prior to statistical 

analysis, as data visualization can offer insights about the nature of the data that statistics are unable to: 

 

As soon as you have collected your data, before you compute any statistics, look at your data … if you assess 

hypotheses without examining your data, you risk publishing nonsense … Graphical inspection of data offers an 

excellent possibility for detecting serious compromises to data integrity. The reason is simple: Graphics 

broadcast; statistics narrowcast. (Wilkinson et al., 1999, p. 599) 

 

The second recommendation highlights the value of adding representations of data uncertainty in visualizations (Wilkinson 

et al., 1999, pp. 606–607), further advocating that “Many of these procedures are found in modern statistical packages. It is 

                                                           
1 One example of a data visualization debate occurred in 2005 when Edward Tufte critiqued NASA’s use of PowerPoint, arguing that visual 

clutter obscured critical information (see https://www.inf.ed.ac.uk/teaching/courses/pi/2016_2017/phil/tufte-powerpoint.pdf). Jean-Luc 

Damont responded to the critique (see http://web.mit.edu/5.95/readings/doumont-responds-to-tufte.pdf). This line of debate continues (see 

critique by Paul Ralph: https://theconversation.com/why-universities-should-get-rid-of-powerpoint-and-why-they-wont-43323; and 

response by Jared Cooney Horvath and Jason Lodge: https://theconversation.com/its-not-powerpoints-fault-youre-just-using-it-wrong-

43783). 

https://www.inf.ed.ac.uk/teaching/courses/pi/2016_2017/phil/tufte-powerpoint.pdf
http://web.mit.edu/5.95/readings/doumont-responds-to-tufte.pdf
https://theconversation.com/why-universities-should-get-rid-of-powerpoint-and-why-they-wont-43323
https://theconversation.com/its-not-powerpoints-fault-youre-just-using-it-wrong-43783
https://theconversation.com/its-not-powerpoints-fault-youre-just-using-it-wrong-43783
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time for authors to take advantage of them and for editors and reviewers to urge authors to do so.” This of course, depends on 

how the data is visualized, hence the need to visualize data in ways that represent both precision and uncertainty. Graphing 

summary statistics only serves to facilitate interpretation that can already be gleaned from statistical summary values. The 

following section discusses some of these related key values of visualizing data for learning analytics research (see Table 

2/Appendix B for a summary of evidence-informed recommendations for visualizing data to support understanding and 

communication of learning analytics research). 

4.1.1 Value of visualizing data to understand underlying data properties 

Recommendations to visualize data before, as well as during statistical tests to support cognition is central to scientific practice 

regardless of disciplinary background. The reason for this is clear — visualizing the data enables one to inspect it in ways that 

statistical tests can never reveal. Anscombe (1973) convincingly argued for the importance of doing so by illustrating that 

datasets with identical statistical properties may produce very different underlying patterns of dispersion and effects when 

visualized. More recently, Matejka and Fitzmaurice (2017a) illustrated this same point compellingly with a more sophisticated 

simulated annealing technique.2 They further demonstrated that depending on the type of visualization, the representation of 

data dispersion and uncertainty may be inherently occluded. As illustrated in Figure 2, visualizations with similar statistical 

properties can look very different when visualizing the underlying data distributions. 

Decisions for data visualization therefore are multifaceted. For instance, Tukey-style box plots may be more effective than 

bar graphs as they convey additional information about interquartile ranges, the median, and potential outliers (Krzywinski & 

Altman, 2014). They are, however limited in their capacity to represent uncertainty. Figure 2 demonstrates this: the depicted 

violin plots illustrate differences in data uncertainty visibly whereas the box plots conceal information about uncertainty. This 

has implications for making decisions about the type of data visualization, and understanding what information or insights 

each type is able to reveal (or occlude). As a consequence, the choice of visualizing the data may help or hinder the 

understanding of data and of subsequent inferences made. Choices that reveal the nature of data dispersion for inferences about 

precision or uncertainty is critical in understanding the data more deeply. 

 
Figure 2. Illustration of the importance of decisions about methods of visualizing data uncertainty. These seven different 

data distributions (A–G) each have the same 1st quartile, median, and 3rd quartile values. Looking top to bottom across the 

two panels: Top panel — where the distributions are relatively similar, the differences between box plots and violin plots are 

minimal. But when data distributions are different (noting similar central tendencies properties), the different distributions of 

the data are visible in the raw data and through violin blots, but not through Tukey’s box plots. Plots are adapted and reused 

with authorial permission (Matejka & Fitzmaurice, 2017b). 

 

                                                           
2 For related open data, R and Python code, animated visualizations, and details on the simulated annealing technique (Matejka & 

Fitzmaurice, 2017a; 2017b), go to https://www.autodeskresearch.com/publications/samestats 

https://www.autodeskresearch.com/publications/samestats
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Decisions about the type of visualization, method of representing uncertainty, and associated statistical and/or 

methodological information can still potentially lead to errors in interpretation and subsequent inference. The nature of 

misinterpretations may be shaped to some extent by graphical literacy (Scown, Bartlett, & McCarley, 2014; Stofer & Che, 

2014; Tak, Toet, & van Erp, 2014), though some misinterpretations appear to occur regardless of prior knowledge (Peebles & 

Ali, 2015; Pentoney & Berger, 2016), or in some cases specific to types of visualization (Lem, Onghena, Verschaffel, & van 

Dooren, 2013; 2014). Visualizations with proportions and probabilities are particularly notorious for skewing interpretations 

and inferences in ways that do not address the true nature of the data (Gottlieb, Weiss, & Chapman, 2007). Some are even 

possibly deceptive (e.g., Gigerenzer & Edwards, 2003; Krämer & Gigerenzer, 2005). Even simple visualization strategies, 

such as ensuring the primary dependent measure axes are constant across graphs for comparison, make a difference. For 

example, presenting percentage change across groups without visualizing the dispersion of data, and the sample size for each 

cell, inhibits making informed interpretations. The percentages or proportions represented become non-meaningful for 

interpretation and thus bias understanding and inference-making (Goldstein & Gigerenzer, 2002; Gottlieb et al., 2007). 

4.1.2 Value of representing data in multiple ways 

Multiple representations of the data can reveal insights that may be obscured with just a single representation. Of course, given 

a single research method and set of data, there may be multiple ways to visualize the data, each choice offering a slightly 

different view, and subsequently, perspective and insights into the underlying data properties and patterns. At minimum, we 

know that visualizing the data closest to representing the raw individual data points collectively (as per Figures 2 and 3) 

ultimately enables visual inspection of uncertainty that summarized visual representations (Figure 5) cannot offer; though 

complementing both types likely deepens the understanding of the phenomenon. Where temporality is critical to understanding 

the phenomena of interest, the data will need to be collected with this in mind, such that temporal visualization of the data is 

possible (Lund, Quignard, Shaffer, 2017; Riel, Lawless, & Brown, 2018; Thompson et al., 2013). Thus, a priori decisions 

about research methodology can influence the depth of insight that can be revealed through multiple representations of the 

data. In an example tutorial of epistemic network analyses, Shaffer, Collier, and Ruis (2016) illustrate clearly this affordance 

an a priori methodological choice can offer (see Figure 3). Based on these data visualization choices, one can see how certain 

aspects of information useful for understanding and making inferences from the data can be obscured or revealed. These 

multiple visual representations of the data may also be hierarchically or sequentially presented. Connecting back to Section 3 

of this paper, these hierarchical methods of representing the data can be a method of managing cognitive load, both in terms 

of static and dynamic representations (see Elmqvist & Fekete [2010] for overview on hierarchical visualization and Victor 

[2011] for a discussion on scientific communication as sequential art). Collectively, the multiple representations reveal a deeper 

picture about the research, and in some ways can also be a strategy to drive storytelling when communicating research. 

The use of bivariate relationships in educational and learning science research is something to be treated with more caution 

in application and interpretation. The immediate risk to the field is threefold: 1) the risk of generating and proliferating spurious 

correlations has potentially serious implications for our understanding of learning; 2) the risk of perpetuating misleading 

inferences such as drawing causal inferences from correlations generates problems for knowledge; 3) last, but certainly not 

least, the risk for educational practice is the extended inferential issues described in 1) and 2) when making decisions in 

educational practice on the premise that the research evidence is “good research.” The third is arguably the worst potential 

unintended consequence of this practice, as it may immediately impact on student learning and well-being. Other than the 

problem of reducing complex (learning) relationships to a single predictor and an outcome, researching with, or visually 

representing data on a bivariate plane is problematic for many other reasons. Reporting of, or representation of potentially 

complex relationships in learning research as oversimplified bivariate relationships is likely to perpetuate myths about learning, 

unless explicitly addressed. Understanding the cognitive processes of judgement and decision making with correlations enables 

us to make informed decisions about designing and understanding representations of bivariate data. 

The capacity of people to understand scatterplots and to infer relationships from them has been shown to be problematic 

in a number of ways. It is common for people to consistently underestimate the magnitude of correlation coefficients, or the 

strength of the relationship between two variables (see e.g., Cleveland, Diaconis, & McGill, 1982; Strahan & Hansen, 1978; 

Sher, Bemis, Liccardi, & Chen, 2017). People sometimes misjudge correlation strength from data cloud density alone, and 

have trouble judging the effect of scatterplot contaminations such as the presence of outliers on the correlation magnitude 

(Cleveland et al., 1982; Meyer et al., 1999). As such, the accompanying information about the population parameters — 

magnitude of the relationship, pattern of dispersion, and error — would serve to aid interpretation of the data. 
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Figure 3. Extracted from Figures 2, 6, and 7 of Shaffer, Collier, & Ruis’ (2016) tutorial. Top panel summarizes three 

student centroids on four dimensions, bottom panels reveals the respective individual patterns of connections for each 

discourse network across the four dimensions. 

 

Another common misinterpretation is the inference of causality from correlation or regression analyses. Neither correlation 

nor regression allows causal inferences, however regression does allow inferences about a predictive relationship that cannot  

be made from simple correlations. While in some research circumstances, bivariate relationships may be logical first steps or 

the only possible analytical method, the reporting of these results could benefit from the understanding of these principles in 

understanding and communicating the research findings in ways that do not make over-claims, and allow appropriate non-

causal inferences that acknowledge the methodological limitations. 

Similarly, it is important to recognize that no matter how well this data is visualized, the methodological limitation of 

assessing bivariate relationships where, more often than not, these relationships are likely to be mediated or moderated by a 

“third factor” or more, drive equally limited interpretations. The human brain will create meanings from these paired, 

sometimes directional relationships, as limited as they are — that one thing drives another, as a superordinate mental model. 

This circularity is likely to occur as a function of the human cognition in meaning making, particularly in a restricted range of 

data and methodology. This highlights the unavoidable, unintended consequence of restricted approaches to restricted 

visualization to that of restricted inference. Thus, if one chooses to analyze or visualize data in restricted ways, this should be 

acknowledged and recognized when making inferences, as misleading inferences may still occur despite the best intentions. 

Particularly in the context of learning analytics, where assemblages of multiple sources and time points of data could be 

leveraged to understand learning processes, choosing to study the effects of a predictor on an outcome in isolation explicitly 

risks ignoring potentially important effects of other predictors on that relationship. Anscombe (1973, p. 21) makes this very 

point in his seminal paper: “The likelihood that we fool ourselves by only carrying out some ordinary regression calculations 

is much greater too. Usually when there are many ‘independent’ variables they are mutually related and we are interested in 

performing regression on subsets of them, possibly by a ‘stepwise’ procedure; so even the standard calculation is not so 

simple.” 
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Figure 4. Illustration of the importance of data visualization in predictive relationships by way of small multiple visual 

representations. The R2 values on the right are insufficient to convey the patterns of relationships, and the three data 

visualization panels — intercept, slope, and intercept + slope — illustrate how analysis of the bivariate relationship of 

interest can be context-, cohort-, and sex-dependent, allowing for a more nuanced understanding of the relationship between 

age and risk-taking propensity. Figure from Josef et al. (2016), adapted and reproduced with authorial permission. 

 

It is clear that visualizing data, either bivariate or multivariate, can reveal insights about the data that numbers and statistics 

alone cannot offer. A quick search of the learning analytics literature across the main sources (Journal of Learning Analytics 

and the Proceedings of the Learning Analytics and Knowledge conferences) reveals that out of the 26 papers that used 

correlational or regression analyses, only nine visualized the data in graphical representation, while 20 others (including the 

nine papers with graphs) reported details in the form of a table (two had neither). This is certainly an avenue to push for 

complementary data visualizations to aid understanding of the research in its communication. Figure 4 illustrates two ways in 

which viewing visualization of relationships beyond two superordinate variables can influence methodological choices about 

measurement in research. First, note how R2 values (far right column in Figure 4) are insufficient to convey the patterns of 

relationships — the values indicate the amount or magnitude of variance attributed in the model, but do not illustrate the pattern 

of variance. Second, note how the visualizations in the top panel illustrate the generalized relationship between age and self-

reported propensity for risk-taking indicate a curvilinear relationship over age groups with a general downward trend with 

increasing age. Third, comparing this general relationship of age and risk propensity to those measured in various domains or 

contexts, the visualizations illustrate the nuanced pattern of change over time and sex, as contextualized in each domain 

(Health, Recreational, and Social). This nuanced understanding would otherwise be occluded from a simple bivariate 

relationship, and from a lack of data visualization. 

4.2 Importance of visualizing data uncertainty 
If the goal of data visualization is to represent and communicate data effectively and accurately, then visualizing data 

uncertainty is essential. All too often, visualization of data uncertainty is omitted; doing so robs the reader of the chance to do 

an independent assessment of the data for inference. In the context of visualizing data uncertainty, the concept of uncertainty 

may be understood as a composition of various sources of uncertainty. Uncertainty in data can reflect imprecision of 

measurement or resolution, degree of subjective influence in the data, artefacts or background noise, or outliers or deviation 
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from a true value, among others. Advancements in visualization software have given researchers better access into the 

underlying nature of data uncertainty — error, variance, and patterns of uncertainty — thereby better enabling them to inspect, 

explore, and evaluate the data — small or large, highly complex — in more sophisticated ways. This advancement is 

particularly advantageous now that data of increasing size and complexity is becoming more common. Data uncertainty can 

arise from many sources, with various meanings and implications as a result. For instance, uncertainty in a dataset may arise 

as a function of sampling, or the way in which data is collected or generated. Data uncertainty may also simply represent the 

variability of the phenomenon investigated. Some data uncertainty may arise as a result of methodological choices related to 

“cleaning” the data, such as some methods of dealing with missing data, as well as considerations of visual representations of 

missing data (Eaton, Plaisant, & Drizd, 2005). An important aspect of understanding uncertainty is being able to identify 

random or systematic error (Loken & Gelman, 2017), which is complex, as it depends on factors beyond the visible data itself. 

The idea of being able to discern signal from noise is really just a useful analogy for reasoning, but does not convey the 

complexity of understanding data, nor the importance of considering research methodology factors in understanding data 

uncertainty. Data sampling methods and their associated sample size per cell of analysis, the measurement instruments, or the 

measurement model itself (see Bergner, 2017, for an in-depth discussion of courses of error in application of measurement 

models), for instance, all contextualize data uncertainty. The possibility of large linked data across systems in learning analytics 

(Thompson et al., 2013; Zouaq, Jovanović, Joksimović, & Gašević, 2017) means that complexity in dealing with and 

understanding data uncertainty is more pronounced, and that considerations of methodological choices, including dealing with 

data uncertainty for inference-making, become even more critical (Lodge, Alhadad, Lewis, & Gašević, 2017). 

The benefits of including estimates of uncertainty when reporting statistical results visually and in text, irrespective of 

Bayesian or frequentist leanings, is undisputed and widely encouraged (Bonneau et al., 2014; Cumming, 2014; Loken & 

Gelman, 2017; Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016). By including visualization of uncertainty when 

visualizing data, we provide a more accurate depiction of the data, and subsequently, potentially enhance judgement and 

decision making. Data uncertainty is part and parcel of research — and the degree of uncertainty depends on many factors, 

including methodological choices, construct and complex relationship investigated, and the alignment of the two. By and large, 

no measure is completely precise. As such, understanding uncertainty is arguably part of constructing epistemic notions of our 

way of knowing about the world. Making decisions about the optimal ways to visualize this when the evidence for impact on 

graph comprehension and inference is less clear will be challenging, but necessary. Our desire for unambiguous conventions 

to guide decisions for graphing uncertainty is, at the current stage, unlikely to be fulfilled. As with the degree of uncertainty 

inherent in any dataset, we require a degree of flexibility in understanding, representing, and communicating data uncertainty 

in ways to support appropriate inference-making. Evaluating uncertainty may also depend on the epistemological stance that 

a researcher adopts; their knowledge about the research and statistical methodology that contextualizes the data will strongly 

influence the cognitive lens with which interpretation occurs. 

Evidence-based strategies for visual representation of these margins of error to support cognition are scant (see Zuk & 

Carpendale, 2007). Anyone who has tried teaching someone about statistical variability and ways of measuring or quantifying 

this knows how sticky the concept of error variance really can be. Indeed, vast amount of research suggest that people tend to 

be probabilistically challenged, whether novice or expert. People have trouble understanding probabilities described in many 

forms, and tend to adopt heuristics maladaptively in making judgements and inferences (Gottlieb et al., 2007; see Gigerenzer 

& Brighton, 2009, and Kahneman, 2003 for discussions of potential underlying mechanisms). This effect occurs even for 

domain-specific types of errors in the field. As in the case of psychology, Belia, Fidler, Williams, and Cumming (2005) show 

that even experts make judgement errors about error bars in relation to statistical significance, and sometimes even 

misunderstand different types of error measurements such as confidence intervals. Further, when compared with student 

novices who had not received any prior education on statistical inference, researchers equally tended to misinterpret confidence 

intervals (Hoekstra, Morey, Rouder, & Wagenmakers, 2014). This problem is more acute when the findings are to be presented 

to disciplines other than their own, with different methodological conventions, and to people with various levels of 

understanding of research, data, and statistics. Further, certain types of graphical representations are less effective in facilitating 

the understanding of data dispersion or uncertainty, even when one has the knowledge and experience to do so. For example, 

statistics students appear to consistently misinterpret histograms and box plots despite demonstrating the required knowledge 

and having the time to interpret them accurately (Lem et al., 2013). 

The depiction of data uncertainty through visual representation features such as error bars are intended to help people 

reason out the distribution of values that the measured variable could take and factor that into their interpretations. While 

adding visualization of uncertainty helps instill some caution in interpreting findings, these benefits do not appear to universally 

transfer to understanding the implications of the patterns of error. Making visible uncertainty in principle, should allow people 

to make judgements about data precision, distribution, quality, or representativeness of the phenomenon investigated.  
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However, there are still gaps in research that could help us make better-informed decisions about methods for visualizing data 

uncertainty to support cognition. 

One, it is unclear that people use uncertainty visualizations to understand the statistical uncertainty as opposed to 

methodological or unmeasured uncertainty (the problem of understanding measured versus extraneous, unmeasured 

uncertainty). Often when dealing with visualizing uncertainty we refer to representations of statistical uncertainty — some of 

which may arise from various methodological parameters, such as method of sampling, sample size, measurement instruments, 

repeated measures, experimental and individual variability, etc. Other sources of uncertainty may arise from limitations of the 

device of measurement or the instrument itself (e.g., Matejka, Glueck, Grossman, & Fitzmaurice, 2016), sometimes called 

bounded uncertainty (Olston & Mackinlay, 2002). Research in understanding how uncertainty is understood and expressed 

will help inform strategies for data visualization design (Skeels, Lee, Smith, & Robertson, 2010). 

Two, there is currently no consensus on how visualizations of uncertainty aid understanding of data in ways that modelling 

uncertainty is understood in statistics. This second issue is particularly important for us to understand and develop expertise to 

reason and make inferences appropriately on the basis of data uncertainty. Novices derive little information from, or ignore 

error estimates in data visualizations (Scown et al., 2014; Tak et al., 2014). When plotted in bar graphs, error bars or confidence 

intervals are often missed or bias the interpretation of the uncertainty estimation (Newman & Scholl, 2012; Pentoney & Berger, 

2016). These perceptual errors have downstream implications for inference making. 

Three, in relation to visualization methods for inference making, we need to better understand the conditions under which 

visualizations of uncertainty are used or disregarded. Despite these gaps in research, evidence suggests that the visibility of 

estimates of uncertainty, particularly with visualizations, tend to improve some aspects of judgement with data compared to 

instances when uncertainty is invisible (Nadav-Greenberg & Joslyn, 2009; Burton, Pomeroy, Radenovic, & McCarley, 2017). 

Arguably, being able to understand uncertainty is critical for reasoning about the ways of knowing and in research for making 

inferences about complex learning phenomena. 

So what does this mean for us in making evidence-informed decisions when constructing data visualizations that are 

effective and accurate representations of the data, and that represent uncertainty in ways that support (and not hinder) 

cognition? According to Cleveland (1994), when making decisions about methods of representing uncertainty, emphasis should 

be placed on the impact on inference making. This recommendation is critical, though difficult to implement and understand. 

Even with the focus away from statistical significance to that of practical significance, in order to make these judgements, one 

still needs to understand the basis of and for error, in the context of the research and its methodology. Behaviourally, in the 

task of assessing visualization of uncertainty, people do not tend to naturally use information about uncertainty in making 

inferences (Kramer, Telfer, & Towler, 2017). This suggests that the design of visualizations should incorporate ways to orient 

attention to important features of uncertainty and why that might be. Some suggest the presentation of key visual and textual 

information to aid understanding of important aspects of reasoning and interpretation of data uncertainty (Louis & Zeger, 2009; 

Morey et al., 2016). Figure 5 is an attempt to illustrate a possible case of visualizing data that prioritizes the consideration of 

factors for inference-making. The top panel shows a common method of visualizing comparison of two groups across multiple 

domains using a bar graph, with the representation of data uncertainty with error bars. Based on the discussion above, evidence 

suggests that this method biases the estimate of uncertainty within-the-bar, and the use of the bars hinders perceptual 

discrimination for comparison across groups, particularly where there are multiple domains of measurement. The lower panel 

is an attempt to minimize the extraneous and germane cognitive load by prioritizing the need to: 1) evaluate differences 

effectively between groups across multiple domains, and 2) judge the practical importance (as opposed to statistical 

significance) of the differences using confidence intervals of the differences. 

All of these considered, it is worth noting that the representation of error margins in between-subject designs for 

understanding and reasoning about data are comparatively more straightforward relative to those in within-subject designs 

(Jarmasz & Hollands, 2009; O’Brien & Cousineau, 2014). Thoughtful discussions and recommendations for representing and 

reporting of data uncertainty in research designs involving repeated measures are covered elsewhere (see Cumming, Fidler, & 

Vaux, 2007; Fuchs, Pölz, & Bathke, 2017; Nicholls, 2016). Taken together, this section provides evidence-informed 

considerations for visualizing data, and its implications for inference-making. Visualizing data, and particularly data 

uncertainty, facilitates deeper and more nuanced understanding of making inferences with data. As a field, this is an imperative 

discipline to apply to learning analytics as we move into increasingly high stakes settings of data- and algorithmic-informed 

decision making. Omission of this could lead to the fallacy of the average (Aguilar, 2017), proliferation of spurious 

correlations, and mislead understanding about the nature of the data and of its representativeness. This may influence any 

inferential inductions about likelihoods of the phenomenon occurring in the population, and critically for educational practice, 

to inferences made at the individual level (“translation to N=1” issue). While representing data and its uncertainty visually are 

not inferential panacea, they, at the very least, allow us the opportunity to test and challenge our inferential assumptions. 
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Figure 5. An example of representing uncertainty (only in the context of providing summary data, in this case, mean scores, 

rather than raw data) in research communication to support cognition. In this fictitious case, the percentage accuracy in 

explaining the graphical or statistical concept is visualized in two ways. The top panel (bar graph) is less effective as an 

assessment of differences between groups and of how the associated data uncertainty is perceptually hindered and biased. 

The bottom panel illustrates an alternative method using a dot plot (bottom left panel), with an indicator of performance 

accuracy at a chance level reference point (indicated by the dotted pink line). This corresponds with (bottom right panel) the 

95% confidence intervals of the differences (as indicated by the thin line) in the same visual field for coherent assessment of 

differences and practice significance. 
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Table 2. Summary of evidence-informed guidelines for visualizing data as methodology to support complex cognition in 

understanding and communicating research 

Research evidence  Practical recommendation 

Visualize data as an inferential tool to reveal important insights about underlying data properties 

1. Visual representations can support cognition 

(Hegarty, 2011) 

 

• Visualize data as a key means of understanding and 

communicating information 

2. Visualizing data facilitates identification of patterns 

that are otherwise obscured in text or tables 

(Gelman, Pasarica, & Dodhia, 2002; Kastellec & 

Leoni, 2007) 

 

• Before computing any statistics, visualize your data to 

evaluate assumptions of underlying univariate or 

multivariate data, and to detect any serious 

compromises to data integrity 

3. Particularly for complex, multivariate relationships, 

people are able to detect statistical effects more 

accurately and more quickly with visualizations 

than with tables (Meyer, Shamo, & Gopher, 1999; 

Porat, Oron-Gilad, & Meyer, 2009) 

 

• For understanding research, visualize the data in 

various/ multiple methods or representations to be able 

to better evaluate the ways in which underlying 

properties may be concealed by a single method 

• For communicating research, consider evidence-

informed principles to make methodological choices 

when constructing data visualizations to support 

attention and cognition (see Table 1)  

  

4. Some types of visualizations inherently obscure the 

representation of the data properties (including 

uncertainty, see points 5–7; Anscombe, 1973; 

Krzywinski & Altman, 2014; Matejka & 

Fitzmaurice, 2017a)  

• Explore multiple ways of visualizing the data to make 

critical judgements about how the visualization 

decisions may support or potentially lead to errors in 

interpretation and subsequent inference 

  

Visualize uncertainty to support inference-making 

5. Visualizing uncertainty is a useful aid for 

researchers to make statistical and inferential 

decisions (Kramer, Telfer, & Towler, 2017; 

Burton, Pomeroy, Radenovic, & McCarley, 2017) 

  

• Visualize data in ways that enable you to see and 

understand the nature of the data dispersion and to test 

assumptions of the data 

6. Visualizing uncertainty appears to aid readers’ 

understanding of the criticality of data uncertainty 

than without its visualization; BUT people do not 

appear to naturally use uncertainty information to 

aid inference-making (Hoekstra et al., 2014; 
Kramer et al., 2017; Newman & Scholl, 2012; 

Morey et al., 2016) 

 

• Use text to orient attention important aspects of 

uncertainty visualized, and why they matter 

7. Understanding data uncertainty is difficult for both 

novices and experts (Newman & Scholl, 2012; 

Pentoney & Berger, 2016; Scown, Bartlett, & 

McCarley, 2014; Tak, Toet, & van Erp, 2014) 

 

• Emphasize the impact of data uncertainty in 

communicating the implications for research to practice 

translation; use language to scaffold data uncertainty to 

support visualization of uncertainty, or use language to 

explain the implication of uncertainty in your dataset on 

inference-making explicitly  

 

5. Next Steps: Towards Human-Centred Learning Analytics Research and Practice 

5.1 Towards a human-centred dashboard (and other data visualizations) design 
The scope of this paper was limited to that of static data visualizations. Nonetheless, some of the empirical research and 

theoretical principles covered here are generalizable to dynamic or interactive visualizations, to an extent. The situatedness of 

processing data visualizations does include the mechanism through which the data is visualized and presented to users or 

consumers. The specific ways in which this research evidence might be applied or translated could be an avenue for future 

work. Further, learning analytics as a field provides the unique opportunity to empirically investigate the human information 

processing mechanisms of data visualizations in the various contexts of educational practice, and of human factors, generally. 
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Provision or presentations of data to various stakeholder groups in learning analytics is a core part of the field’s aim to optimize 

understanding and improvement of wicked educational problems. As such, understanding the effects of design features of 

these data visualizations in the various nuanced educational practice contexts on the intended cognitive (and socioemotional) 

processes would benefit the field as a whole. 

For instance, where learning analytics dashboards are concerned, it has been argued that their design (or any learning 

analytics data visualizations provided to stakeholders in any other forms) should be linked to learning theory and learning 

sciences (e.g., Kelly, Thompson, & Yeoman, 2015; Sedrakyan, Malmberg, Verbert, Järvelä, & Kirschner, 2018). In 

understanding the adoption, use, and integration of learning analytics visualizations in educational practice (whether for 

learners, educators, or policymakers), the questions often missed, but worth asking are whether the data visualizations, at the 

first level, are designed in ways that are 1) supportive (not limiting) of attention and cognitive processes imperative for 

judgement and decision making with the data; 2) aligned to the methodology with which the data is collected; 3) scaffolded 

where necessary with important contextual and complementary information to support meaning-making? There is, of course, 

a lot of good work in the literature in elucidating our understanding of how contextualized data provision may support 

educational practice across various stakeholders (e.g., van Leeuwen, 2015; Jivet, Scheffel, Specht, & Drachsler, 2018). More 

recently, Sedrakyan and colleagues (2018) suggest practical ways that learning analytics can be linked with learning science 

concepts when developing dashboards to support learning regulation. The importance of situating the visualized data as aligned 

to the educational purpose cannot be understated. However, for these efforts to optimize the likelihood of supporting the 

intended cognitive and learning processes, these efforts should also, at minimum, be designed in ways that support basic 

attention and cognitive processes as described in this paper. When designing data visualizations for learning analytics research 

or practice, other practical guidelines in the literature would be worth being synthesized with the present paper in guiding 

practice. See Klerx, Verbet, and Duval (2017) for practical guidelines on how to get started on developing data visualizations 

for this purpose; and Hillaire, Rappolt-Schlichtmann, and Ducharme (2016) for prototyping guidelines. 

The study of designing for representations of data and scenario uncertainty to support cognition is one that would benefit 

from more research, both in terms of understanding the differential features of visualizing uncertainty in supporting or 

hindering attention and cognition, as well as understanding how narration or data storytelling might support this process. 

Specifically, narrative may serve to communicate not only data uncertainty, but also scenario uncertainty, hence providing a 

strategy to support understanding of uncertainty in data visualizations. Understanding whether these strategies in designing 

data visualizations support building tolerance for uncertainty in making meaning, judgements, and inferences would be of 

empirical and theoretical interest. This would build on emerging research (at least in learning analytics; Echeverria et al., 2018; 

and in human–computer interaction, e.g., Hullman & Diakopoulos, 2011) in deepening our understanding of this necessary, 

but inherently complex process. 

Further, this paper did not address the complexity of the social, cultural, and emotional aspects of processing data 

visualizations. These processes are inextricably linked, and are important to consider when attempting to understand human 

factors in processing data visualization for insight. While these processes are critical in the sensemaking process, there is a 

relative dearth in the research focusing on the roles these factors play (Kennedy & Hill, 2017). Further, in learning analytics, 

this may be beyond visualizing just data. These mechanisms are inherent in our capacity to construct visual representations of 

complex phenomena or systems (e.g., learning design representations, or patterns; see Muñoz-Cristóbal and colleagues, 2018; 

and systems dynamics visual representations; see Howard & Thompson, 2016). To support capacity limits of the human mind 

in ways that leverage research evidence on human information processing and complex (higher-order) cognition and emotion, 

these are domains that learning analytics researchers are well placed to gain a deeper understanding in contributing to the wider 

field and bridging across disciplines. 

5.2 Towards holistic understanding of “data literacy” in learning analytics 
Often, data literacy is mentioned as a key component of being able to integrate data into one’s educational practice (e.g., 

Alhadad, Thompson, Knight, Lewis, & Lodge, 2018; Kitto, Buckingham Shum, & Gibson, 2018; Wolff, Gooch, Cavero 

Montaner, Rashid, & Kortuem, 2016). The concept of data literacy is contextual, as is data- or evidence-informed practice. 

While this paper has reviewed some studies that investigated human processing capacity limitations as well as individual 

differences in comprehending data visualizations, this review was not intended to provide a comprehensive view of this related 

research. Nonetheless, it is fair to conclude that the ability to understand various graphical formats has a clear impact on 

meaning making and subsequent inferences. Further research could focus on elucidating the various aspects of data literacy 

that may be necessary in complex cognition (Knauff & Wolf, 2010) that one would expect when integrating learning analytics 

into practice. Gibson and Martinez-Maldonado (2017) developed a nice conceptual model toward understanding embodied 

cognition in the meaning making process — the challenge is to synthesize this with other aspects of complex cognition and 
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emotion when dealing with data in learning analytics practice. Gaining a deeper understanding of how graphical literacy might 

be linked to other aspects of understanding data within the umbrella of data literacy will not only benefit the field in 

understanding this for learning analytics design and implementation, but also for scaffolding, professional learning, and, where 

teams are concerned, understanding the complexity in inter- and transdisciplinary efforts where data visualizations are 

concerned. 

6. Conclusions 

In this paper, human capacity limitations in the context of cognitive processing of data visualization for understanding research 

and making inferences are discussed as supported by research evidence. The bottom-up and top-down factors identified provide 

the basis for making evidence-informed visualization design decisions. The unique importance of decisions about methods of 

visualization (visual features, type of visualizations) in incorporating key information is particularly important for multifaceted, 

multivariate models in learning analytics research. This paper discusses some of the key elements of human cognition to 

support evidence-informed decision making about visualizing data. Of course, other factors that have not been discussed here 

are also critical for understanding the influence of human perception and cognition in making these decisions, and for 

understanding the impact of these decisions on inference-making. As part of the imperative discipline to progress learning 

analytics research and practice in ethical and evidence-informed ways, the next step to enhance our intellectual journey here 

may be to better understand how people apply the research evidence to educational practice, as dependent on methodological 

properties such as visualizing data as information. A vast literature focusing on heuristics and cognitive biases influences how 

people make sense of information, which is an important part of this puzzle. This would constitute a positive change in how 

learning data can be graphically depicted in research and practice (e.g., through learning analytics dashboards), as it helps us 

better inform our designs for less biased, more accurate inference making, and would inform the development of data 

visualization tools to better support human cognition. 

Acknowledgements 

The author is grateful for insightful comments and suggestions from the anonymous reviewers, and for the early abstract 

feedback and support from the Special Section editors during the review process. Special thanks to Alf Lizzio for feedback on 

an earlier draft, and to Mark Wetton, Talei Daly-Olm, and Dale Hansen for their support for this paper. 

Declaration of Conflicting Interest  

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.  

Funding 

The author(s) declared no financial support for the research, authorship, and/or publication of this article. Or please insert 

other relevant information here. 

References 

Aguilar, S. J. (2017). Learning analytics: At the nexus of big data, digital innovation, and social justice in education. 

TechTrends, 62(1), 37–45. http://dx.doi.org/10.1007/s11528-017-0226-9 

Alhadad, S. S. J. (2016). Attentional and cognitive processing of analytics visualizations: Can design features affect 

interpretations and decisions about learning and teaching? In S. Barker, S. Dawson, A. Pardo, & C. Colvin (Eds.), Show 

Me The Learning: Proceedings of the 33rd Annual Conference of the Australasian Society for Computers in Learning in 

Tertiary Education (ASCILITE 2016), 28–30 November 2016, Wellington, New Zealand (pp. 20–32). Adelaide: 

Australasian Society for Computers in Learning in Tertiary Education. http://2016conference.ascilite.org/wp-

content/uploads/ascilite2016_alhadad_full.pdf 

Alhadad, S. S. J., Thompson, K., Knight, S., Lewis, M., & Lodge, J. M. (2018). Analytics-enabled teaching as design: 

Reconceptualisation and call for research. Proceedings of the 8th International Conference on Learning Analytics and 

Knowledge (LAK ’18), 5–9 March 2018, Sydney, NSW, Australia (pp. 427–435). New York: ACM. 

http://dx.doi.org/10.1145/3170358.3170390 

Ali, N., & Peebles, D. (2013). The effect of Gestalt laws of perceptual organization on the comprehension of three-variable 

bar and line graphs. Human Factors, 55(1), 183–203. http://dx.doi.org/10.1177/0018720812452592 

Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of the New York 

Academy of Sciences, 1369, 24–39. http://dx.doi.org/10.1111/nyas.12957 

Anderson, B. A., & Yantis. S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: 

http://dx.doi.org/10.1007/s11528-017-0226-9
http://2016conference.ascilite.org/wp-content/uploads/ascilite2016_alhadad_full.pdf
http://2016conference.ascilite.org/wp-content/uploads/ascilite2016_alhadad_full.pdf
https://doi.org/10.1145/3170358.3170390
http://dx.doi.org/10.1177/0018720812452592
https://doi.org/10.1111/nyas.12957


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

78 

Human Perception & Performance, 39, 6–9. 

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21. 

Ansorge, U., Horstmann, G., & Scharlau, I. (2010). Top-down contingent attentional capture during feed-forward visual 

processing. Acta Psychologica, 135, 123–126. 

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical 

dichotomy. Trends in Cognitive Science, 16(8), 437–443. http://dx.doi.org/10.1016/j.tics.2012.06.010 

Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge 

handbook of multimedia learning (2nd ed., pp. 206–226). New York: Cambridge University Press. 

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839. 

http://dx.doi.org/0.1038/nrn120 

Baldassi, S., Megna, N., & Burr, D. C. (2006). Visual clutter causes high-magnitude errors. PLOS: Biology, 4(3), 387–394. 

http://dx.doi.org/10.1371/journal.pbio.0040056 

Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and 

categorization. Social Cognitive and Affective Neuroscience, 12(1), 1–23. http://dx.doi.org/10.1093/scan/nsw154 

Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of 

Experimental Psychology: Human Perception and Performance, 36(6), 1460–1476. http://dx.doi.org/10.1037/a0020370 

Becker, S. I., Lewis, A. J., & Axtens, J. E. (2017). Top-down knowledge modulates onset capture in a feedforward manner. 

Psychological Bulletin & Review, 24, 436–446. http://dx.doi.org/10.3758/s13423-016-1134-2 

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error 

bars. Psychological Methods, 10(4), 389–396. http://dx.doi.org/10.1037/1082-989X.10.4.389 

Bergner, Y. (2017). Measurement and its uses in learning analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gašević (Eds.), 

The handbook of learning analytics (pp. 34–48). Alberta, Canada: Society for Learning Analytics Research (SoLAR). 

http://dx.doi.org/10.18608/hla17.003 

Bonneau, G. P., Hege, H., Johnson, C. R., Oliveira, M. M., Potter, K., Rhenigans, P., & Schultz, T. (2014). Overview and 

state-of-the-art of uncertainty visualization. In C. Hansen, M. Chen, C. Johnson, A. Kaufman, & H. Hagen (Eds.), 

Scientific visualization: Mathematics and visualization (pp. 3–27). London: Springer. http://dx.doi.org/10.1007/978-1-

4471-6497-5_1 

Braithwaite, D. W., & Goldstone, R. L. (2013). Flexibility in data interpretation: Effects of representational format. Frontiers 

in Psychology, 4, 980. http://dx.doi.org/10.3389/fpsyg.2013.00980 

Burton, O., Pomeroy, D., Radenovic, V., & McCarley, J. S. (2017). Visualization of uncertainty aids spatial judgements but 

fails to improve metacognitive efficiency. Proceedings of the Human Factors & Ergonomics Society Annual Meeting, 

61(1), 1390–1393. http://dx.doi.org/10.1177/1541931213601831 

Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of 

Experimental Psychology: Applied, 4(2), 75–100. http://dx.doi.org/10.1037/1076-898X.4.2.75 

Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive 

load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 225(2), 315–324. 

http://dx.doi.org/10.1016/j.chb.2008.12.020 

Cleveland, W. S. (1994). The Elements of Graphing Data. Murray Hill, NJ: Hobart Press. 

Cleveland, W. S., Diaconis, P., & McGill, R. (1982). Variables on scatterplots look more highly correlated when the scales 

are increased. Science, 216(4550), 1138–1141. http://dx.doi.org/10.1126/science.216.4550.1138 

Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 6, 683–695. 

http://dx.doi.org/10.1080/13562517.2013.827653 

Conati, C., & Maclaren, H. (2008). Exploring the role of individual differences in information visualization. Proceedings of 

the Working Conference on Advanced Visual Interfaces (AVI ’08), 28–30 May 2008, Napoli, Italy (pp. 199–206). New 

York: ACM. http://dx.doi.org/10.1145/1385569.1385602 

Connor, C. E., Egeth, H. E., & Yantis, S. (2004). Visual attention: Bottom-up versus top-down. Current Biology, 14(19), 

R850–R852. http://dx.doi.org/10.1016/j.cub.2004.09.041. 

Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. 

http://dx.doi.org/10.1177/0956797613504966 

Cumming, G., Fidler, F., & Vaux, D. L. (2007). Error bars in experimental biology. The Journal of Cell Biology, 177(1), 7–

11. http://dx.doi.org/10.1083/jcb.200611141 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 

193–222. http://dx.doi.org/10.1146/annurev.ne.18.030195.001205 

Eaton, C., Plaisant, C., & Drizd, T. (2005). Visualizing missing data: Graph interpretation user study. In M. F. Costabile & F. 

Paternò (Eds.), Human–Computer Interaction: INTERACT 2005. Lecture Notes in Computer Science, 3585 (pp. 861–

872). Berlin, Heidelberg: Springer. http://dx.doi.org/10.1007/11555261_68 

https://doi.org/10.1016/j.tics.2012.06.010
https://doi.org/0.1038/nrn120
https://doi.org/10.1371/journal.pbio.0040056
http://doi.org/10.1093/scan/nsw154
https://dx.doi.org/10.1037/a0020370
https://doi.org/10.3758/s13423-016-1134-2
https://doi.org/10.1037/1082-989X.10.4.389
https://doi.org/10.18608/hla17.003
https://doi.org/10.1007/978-1-4471-6497-5_1
https://doi.org/10.1007/978-1-4471-6497-5_1
http://doi.org/10.3389/fpsyg.2013.00980
https://doi.org/10.1177/1541931213601831
http://dx.doi.org/10.1037/1076-898X.4.2.75
https://doi.org/10.1016/j.chb.2008.12.020
https://doi.org/10.1080/13562517.2013.827653
https://doi.org/10.1145/1385569.1385602
https://doi.org/10.1016/j.cub.2004.09.041
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1083/jcb.200611141
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1007/11555261_68


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

79 

Echeverria, V., Martinez-Maldonado, R., Granda, R., Chiluiza, K., Conati, C., & Buckingham Shum, S. (2018). Driving data 

storytelling from learning design. Proceedings of the 8th International Conference on Learning Analytics and 

Knowledge (LAK ’18), 5–9 March 2018, Sydney, NSW, Australia (pp. 131–140). New York: ACM. 

http://dx.doi.org/10.1145/3170358.3170380 

Elmqvist, N., & Fekete, J. (2010). Hierarchical aggregation for information visualization: Overview, techniques, and design 

guidelines. IEEE Transactions on Visualization & Computer Graphics, 16(3), 1077–2626. 

http://dx.doi.org/10.1109/TVCG.2009.84 

Fisher, D., Popov, I., Drucker, S. M., & Schraefel, M. (2012). Trust me, I’m partially right: Incremental visualization lets 

analysts explore large datasets faster. Proceedings of the Conference on Human Factors in Computing Systems (CHI 

ʼ12), 5–10 May 2012, Austin, TX, USA (pp. 1673–1682). New York: ACM. 

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control 

settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030–1044. 

http://dx.doi.org/10.1037/0096-1523.18.4.1030 

Fuchs, N., Pölz, W., & Bathke, A. C. (2017). Confidence intervals for population means of partially paired observations. 

Statistical Papers, 58(1), 35–51. http://dx.doi.org/10.1007/s00362-015-0686-y 

Gašević, D., Kovanović, V., & Joksimović, S. (2017). Piecing the learning analytics puzzle: A consolidated model of a field 

of research and practice. Learning: Research & Practice, 17(1), 63–78. 

http://dx.doi.org/10.1080/23735082.2017.1286142 

Gelman, A., & Hennig, C. (2017). Beyond subjective and objective in statistics. Journal of the Royal Statistical Society: 

Statistics in Society Series A, 180, 1–31. http://dx.doi.org/10.1111/rssa.12276 

Gelman, A., Pasarica, C., & Dodhia, R. (2002). Let’s practice what we preach: Turning tables into graphs. The American 

Statistician, 56(2), 121–130. http://dx.doi.org/10.1198/000313002317572790 

Gibson, A., & Martinez-Maldonado, R. (2017). That dashboard looks nice, but what does it mean? Towards making meaning 

explicit in learning analytics design. Proceedings of the 29th Australian Computer–Human Interaction Conference 

(OzCHI 2017) 28 November–1 December 2017, Brisbane, QLD, Australia (pp. 528–532). 

http://dx.doi.org/10.1145/3152771.3156171 

Gigerenzer, G., & Brighton, H. (2009). Homo Heuristicus: Why biased minds make better inferences. Topics in Cognitive 

Science, 1, 107–143. http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x 

Gigerenzer, G., & Edwards, A. (2003). Simple tools for understanding risks: From innumeracy to insight. British Medical 

Journal, 327(7417), 741–744. http://dx.doi.org/10.1136/bmj.327.7417.741 

Gobet, F. (2005). Chunking models of expertise: Implications for education. Applied Cognitive Psychology. 19, 183–204. 

http://dx.doi.org/10.1002/acp.1110 

Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in 

human learning. Trends in Cognitive Sciences, 5(6), 236–243. http://dx.doi.org/10.1016/S1364-6613(00)01662-4 

Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 

109(1), 75–90. http://dx.doi.org/10.1037/0033-295X.109.1.75 

Gottlieb, D. A., Weiss, T., & Chapman, G. B. (2007). The format in which uncertainty information is presented affects 

decision biases. Psychological Science, 18(3), 240–246. http://dx.doi.org/10.1111/j.1467-9280.2007.01883.x 

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (5th ed.). Upper Saddle River, NJ: 

Pearson Prentice Hall. 

Hegarty, M. (2011). The cognitive science of visual-spatial displays: Implications for design. Topics in Cognitive Science, 3, 

446–474. http://dx.doi.org/10.1111/j.1756-8765.2011.01150.x 

Hegarty, M., Smallman, H. S., Stull, A. T., & Canham, M. (2009). Naïve cartography: How intuitions about display 

configuration can hurt performance. Cartographica, 44, 171–186. http://dx.doi.org/10.3138/carto.44.3.171 

Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E. (2014). Robust misinterpretation of confidence intervals. 

Psychonomic Bulletin, 21(5), 1157–1164. http://dx.doi.org/10.3758/s13423-013-0572-3 

Howard, S. K., & Thompson, K. (2016). Seeing the system: Dynamics and complexity of technology integration in secondary 

schools. Education & Information Technologies, 21(6), 1877–1894. http://dx.doi.org/10.1007/s10639-015-9424-2 

Hillaire, G., Rappolt-Schlichtmann, G., & Ducharme, K. (2016). Prototyping visual learning analytics guided by an 

educational theory informed goal. Journal of Learning Analytics, 3(3), 115–142. 

http://dx.doi.org/10.18608/jla.2016.33.7 

Hullman, J., & Diakopoulos, N. (2011). Visualization rhetoric: Framing effects in narrative visualization. IEEE Transactions 

on Visualization and Computer Graphics, 17(12), 2231–2240. http://dx.doi.org/10.1109/TVCG.2011.255 

Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations 

principle. Canadian Journal of Experimental Psychology, 63(2), 124–138. http://dx.doi.org/10.1037/a0014164 

Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate: Preparing learning analytics dashboards for 

https://doi.org/10.1145/3170358.3170380
https://doi.org/10.1109/TVCG.2009.84
http://dx.doi.org/10.1037/0096-1523.18.4.1030
https://doi.org/10.1007/s00362-015-0686-y
http://dx.doi.org/10.1080/23735082.2017.1286142
http://dx.doi.org/10.1111/rssa.12276
http://dx.doi.org/10.1198/000313002317572790
https://doi.org/10.1145/3152771.3156171
https://doi.org/10.1111/j.1756-8765.2008.01006.x
https://doi.org/10.1136/bmj.327.7417.741
https://doi.org/10.1002/acp.1110
https://doi.org/10.1016/S1364-6613(00)01662-4
http://dx.doi.org/10.1037/0033-295X.109.1.75
https://doi.org/10.1111/j.1467-9280.2007.01883.x
https://doi.org/10.1111/j.1756-8765.2011.01150.x
http://dx.doi.org/10.3138/carto.44.3.171
https://doi.org/10.3758/s13423-013-0572-3
https://doi.org/10.1007/s10639-015-9424-2
http://dx.doi.org/10.18608/jla.2016.33.7
https://doi.org/10.1109/TVCG.2011.255
https://doi.org/10.1037/a0014164


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

80 

educational practice. Proceedings of the 8th International Conference on Learning Analytics and Knowledge (LAK ’18), 

5–9 March 2018, Sydney, NSW, Australia (pp. 32–40). New York: ACM. http://dx.doi.org/10.1145/3170358.3170421 

Josef, A. K., Richter, D., Samanez-Larkin, G. R., Wagner, G. G., Hertwig, R., & Mata, R. (2016). Stability and change in 

risk-taking propensity across the adult life span. Journal of Personality and Social Psychology, 111(3), 430–450. 

http://dx.doi.org/10.1037/pspp0000090 

Kadel, H., Feldmann-Wüstefeld, T., & Schubö, A. (2017). Selection history alters attentional filter settings persistently 

beyond top-down control. Psychophysiology, 54(5), 736–754. http://dx.doi.org/10.1111/psyp.12830 

Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review, 

93(5), 1449–1475. http://dx.doi.org/10.1257/000282803322655392 

Kastellec, J. P., & Leoni, E. L. (2007). Using graphs instead of tables in political science. Perspectives on Politics, 5(4), 755–

771. http://dx.doi.org/10.1017/S1537592707072209 

Kelly, N., Thompson, K., & Yeoman, P. (2015). Theory-led design of instruments and representations in learning analytics: 

Developing a novel tool for orchestration of online collaborative learning. Journal of Learning Analytics, 2(2), 14–43. 

http://dx.doi.org/10.18608/jla.2015.22.3 

Kennedy, H., & Hill, R. L. (2017). The feeling of numbers: Emotions in everyday engagements with data and their 

visualization. Sociology. Advanced online publication. http://dx.doi.org/10.1177/0038038516674675 

Kirschner, P. A., Ayres, P., & Chandler, P. (2011). Contemporary cognitive load theory research: The good, the bad, and the 

ugly. Computers in Human Behavior, 27(1), 99–105. http://dx.doi.org/10.1016/j.chb.2010.06.025 

Kitto, K., Buckingham Shum, S., & Gibson, A. (2018). Embracing imperfection in learning analytics. Proceedings of the 8th 

International Conference on Learning Analytics and Knowledge (LAK ’18), 5–9 March 2018, Sydney, NSW, Australia 

(pp. 451–460). New York: ACM. http://dx.doi.org/10.1145/3170358.3170413 

Klerx, J., Verbert, K., & Duval, E. (2017). Learning analytics dashboards. In C. Lang, G. Siemens, A. F. Wise, & D. Gašević 

(Eds.), The handbook of learning analytics (pp. 143–150). Alberta, Canada: Society for Learning Analytics Research 

(SoLAR). http://dx.doi.org/10.18608/hla17.012 

Knauff, M., & Wolf, A. G. (2010). Complex cognition: The science of human reasoning, problem-solving, and decision-

making. Cognitive Processing, 11(2), 99–102. http://dx.doi.org/10.1007/s10339-010-0362-z 

Kosslyn, S. M. (2006). Graph design for the eye and mind. New York: Oxford University Press. 

Kramer, R. S. S., Telfer, C. G. R., & Towler, A. (2017). Visual comparison of two data sets: Do people use the means and the 

variability? Journal of Numerical Cognition, 3(1), 97–111. http://dx.doi.org/10.5964/jnc.v3i1.100 

Krämer, W., & Gigerenzer, G. (2005). How to confuse with statistics or: The use and misuse of conditional probabilities. 

Statistical Science, 20(3), 223–230. http://dx.doi.org/10.1214/088342305000000296 

Krzywinski, M., & Altman, N. (2014). Points of significance: Visualizing samples with box plots. Nature Methods, 11. 

http://dx.doi.org/119-120. 1038/nmeth.2813 

Kubina, R. M., Jr., Kostewicz, D. E., Brennan, K. M., & King, S. A. (2017). A critical review of line graphs in behavior 

analytics journals. Educational Psychology Review, 29, 583–598. http://dx.doi.org/10.1007/s10648-015-9339-x 

Lem, S., Onghena, P., Verschaffel, L., & Van Dooren, W. (2013). On the misinterpretation of histograms and box plots. 

Educational Psychology, 33(2), 155–174. http://dx.doi.org/10.1080/01443410.2012.674006 

Lem, S., Onghena, P., Verschaffel, L., & Van Dooren, W. (2014). Interpreting histograms. As easy as it seems? European 

Journal of Psychology of Education, 29(4), 557–575. http://dx.doi.org/10.1007/s10212-014-0213-x 

Lodge, J. M., Alhadad, S. S. J., Lewis, M. J., & Gašević, D. (2017). Inferring learning from big data: The importance of a 

transdisciplinary and multidimensional approach. Technology, Knowledge & Learning, 22(3), 385–400. 

http://dx.doi.org/10.1007/s10758-017-9330-3 

Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 355(6325), 584–585. 

http://dx.doi.org/10.1126/science.aal3618 

Louis, T. A., & Zeger, S. L. (2009). Effective communication of standard errors and confidence intervals. Biostatistics, 10(1), 

1–2. http://dx.doi.org/10.1093/biostatistics/kxn014 

Lund, K., Quignard, M., & Shaffer, D. W. (2017). Gaining insight by transforming between temporal representations of 

human interaction. Journal of Learning Analytics, 4(3), 102–122. http://dx.doi.org/10.18608/jla.2017.43.6 

Matejka, J., & Fitzmaurice, G. (2017a). Same stats, different graphs: Generating datasets with varied appearance and identical 

statistics through simulated annealing. Proceedings of the Conference on Human Factors in Computing Systems (CHI 

’17), 6–11 May 2017, Denver, Colorado, USA (pp. 1290–1294). New York: ACM. 

http://dx.doi.org/10.1145/3025453.3025912 

Matejka, J., & Fitzmaurice, G. (2017b). The datasaurus dozen — same stats, different graphs: Generating datasets with varied 

appearance and identical statistics through simulated annealing. 

https://www.autodeskresearch.com/publications/samestats 

Matejka, J., Glueck, M., Grossman, T., & Fitzmaurice, G. (2016). The effect of visual appearance on the performance of 

https://doi.org/10.1145/3170358.3170421
http://psycnet.apa.org/doi/10.1037/pspp0000090
https://doi.org/10.1111/psyp.12830
https://doi.org/10.1257/000282803322655392
https://doi.org/10.1017/S1537592707072209
http://dx.doi.org/10.18608/jla.2015.22.3
https://doi.org/10.1177/0038038516674675
https://doi.org/10.1016/j.chb.2010.06.025
https://doi.org/10.1145/3170358.3170413
https://doi.org/10.18608/hla17.012
https://doi.org/10.1007/s10339-010-0362-z
https://doi.org/10.5964/jnc.v3i1.100
https://doi.org/10.1214/088342305000000296
https://dx.doi.org/119-120.%201038/nmeth.2813
https://doi.org/10.1007/s10648-015-9339-x
http://dx.doi.org/10.1080/01443410.2012.674006
https://doi.org/10.1007/s10212-014-0213-x
https://doi.org/10.1007/s10758-017-9330-3
https://doi.org/10.1126/science.aal3618
https://doi.org/10.1093/biostatistics/kxn014
https://doi.org/10.1145/3025453.3025912
https://www.autodeskresearch.com/publications/samestats


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

81 

continuous sliders and visual analogue scales. Proceedings of the Conference on Human Factors in Computing Systems 

(CHI ʼ16), 7–12 May 2016, San Jose, CA, USA (pp. 5421–5432). New York: ACM. 

http://dx.doi.org/10.1145/2858036.2858063 

Matzen, L. E., Haass, M. J., Divis, K. M., & Stites, M. C. (2017). Patterns of attention: How data visualizations are read. 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 10284, 176–191. http://dx.doi.org/10.1007/978-3-319-58628-1_15 

Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension. Journal of Educational Psychology, 

99(3), 640–652. http://dx.doi.org/10.1037/0022-0663.99.3.640 

Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, 

signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge 

handbook of multimedia learning (2nd ed., pp. 279–315). New York: Cambridge University Press. 

http://dx.doi.org/10.1017/CBO9781139547369.015 

Meyer, B. J. F. (1975). The organization of prose and its effects on memory. New York: Elsevier. 

Meyer, J., Shamo, M. K., & Gopher, D. (1999). Information structure and the relative efficacy of tables and graphs. Human 

Factors: The Journal of the Human Factors and Ergonomics Society, 41, 570–587. 

http://dx.doi.org/10.1518/001872099779656707 

Michal, A. L., & Franconeri, S. L. (2017). Visual routines are associated with specific graph interpretations. Cognitive 

Research: Principles & Implications, 2(20). http://dx.doi.org/10.1186/s41235-017-0059-2 

Moore, P., & Fitz, C. (1993). Gestalt theory and instructional design. Journal of Technical Writing & Communication, 23(2), 

137–157. http://dx.doi.org/10.2190/G748-BY68-L83T-X025 

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. (2016). The fallacy of placing confidence in 

confidence intervals. Psychological Bulletin Review, 23(1), 103–123. http://dx.doi.org/10.3758/s13423-015-0947-8 

Muñoz-Cristóbal, J., Hernández-Leo, D., Carvalho, L., Martinez-Maldonado, R., Thompson, K., Wardak, D., & Goodyear, P. 

(2018). 4fFAD: A framework for mapping the evolution of artefacts in the learning design process. Australasian 

Journal of Educational Technology, 34(2), 16–34. http://dx.doi.org/10.14742/ajet.3706 

Nadav-Greenberg, L., & Joslyn, S. L. (2009). Uncertainty forecasts improve decision making among nonexperts. Journal of 

Cognitive Engineering & Decision Making, 3(3), 209–227. http://dx.doi.org/10.1518/155534309X474460 

Newman, G. E., & Scholl, B. J. (2012). Bar graphs depicting averages are perceptually misinterpreted: The within-the-bar 

bias. Psychonomic Bulletin & Review, 19(4), 601–607. http://dx.doi.org/10.3758/s13423-012-0247-5 

Nicholls, A. (2016). Confidence limits, error bars and method comparison in molecular modeling. Part 2: Comparing 

methods. Journal of Computer-Aided Molecular Design, 30(2), 103–126. http://dx.doi.org/10.1007/s10822-016-9904-5 

Nothelfer, C., Gleicher, M., & Franconeri, S. (2017). Redundant encoding strengthens segmentation and grouping in visual 

displays of data. Journal of Experimental Psychology: Human Perception & Performance, 43(9), 1667–1676. 

http://dx.doi.org/10.1037/xhp0000314 

O’Brien, F., & Cousineau, D. (2014). Representing error bars in within-subjects designs in typical software packages. The 

Quantitative Methods for Psychology, 10(1), 56–67. http://dx.doi.org/10.20982/tqmp.10.1.p056 

Okan, Y., Galesic, M., Garcia-Retamero, R. (2016). How people with low and high graph literacy process health graphs: 

Evidence from eye-tracking. Journal of Behavioral Decision Making, 29, 271–294. http://dx.doi.org/10.1002/bdm.1891 

Olston, C., & Mackinlay, J. D. (2002). Visualizing data with bounded uncertainty. Proceedings of the IEEE Symposium on 

Information Visualization (INFOVIS 2002), 28–29 October 2002, Boston, MA, USA (pp. 37–40). Los Alamitos, CA: 

IEEE Computer Society. http://dx.doi.org/10.1109/INFVIS.2002.1173145 

Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The 

Cambridge handbook of multimedia learning (2nd ed., pp. 27–42). New York: Cambridge University Press. 

Pastore, M., Lionetti, F., & Altoe, G. (2017). When one shape does not fit all: A commentary essay on the use of graphs in 

psychological research. Frontiers in Psychology, 8(1666). http://dx.doi.org/10.3389/fpsyg.2017.01666 

Peebles, D., & Ali, N. (2015). Expert interpretation of bar and line graphs: The role of graphicacy in reducing the effect of 

graph format. Frontiers in Psychology, 6, 1673. http://dx.doi.org/10.3389/fpsyg.2015.01673 

Pentoney, C. S., & Berger, D. E. (2016). Confidence intervals and within-the-bar bias. The American Statistician, 70(2), 215–

220. http://dx.doi.org/10.1080/00031305.2016.1141706 

Pinker, S. (1990). A theory of graph comprehension. I. L. Freedle (Ed.), Artificial intelligence and the future of testing (pp. 

73–126). Hiltdale, NJ: Lawrence Erlbaum Associates. 

Pinto, Y., van der Leij, A. R., Sligte, I. G., Lamme, V. A., & Scholte, S. (2013). Bottom-up and top-down attention are 

independent. Journal of Vision, 13(3), 1–14. http://dx.doi.org/10.1167/13.3.16 

Porat, T., Oron-Gilad, T., & Meyer, J. (2009). Task-dependent processing of tables and graphs. Behaviour & Information 

Technology, 28(3), 293–307. http://dx.doi.org/10.1080/01449290701803516 

Rau, M. A. (2017). How do students learn to see concepts in visualizations? Social learning mechanisms with physical and 

https://doi.org/10.1145/2858036.2858063
https://doi.org/10.1007/978-3-319-58628-1_15
https://doi.org/10.1037/0022-0663.99.3.640
http://dx.doi.org/10.1017/CBO9781139547369.015
http://dx.doi.org/10.1518/001872099779656707
https://doi.org/10.1186/s41235-017-0059-2
https://doi.org/10.2190/G748-BY68-L83T-X025
https://dx.doi.org/10.3758/s13423-015-0947-8
https://doi.org/10.14742/ajet.3706
https://doi.org/10.1518/155534309X474460
https://doi.org/10.3758/s13423-012-0247-5
https://doi.org/10.1007/s10822-016-9904-5
http://dx.doi.org/10.1037/xhp0000314
https://doi.org/10.20982/tqmp.10.1.p056
http://dx.doi.org/10.1002/bdm.1891
https://doi.org/10.1109/INFVIS.2002.1173145
https://doi.org/10.3389/fpsyg.2017.01666
http://doi.org/10.3389/fpsyg.2015.01673
http://dx.doi.org/10.1080/00031305.2016.1141706
https://doi.org/doi:10.1167/13.3.16
http://dx.doi.org/10.1080/01449290701803516


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

82 

virtual representations. Journal of Learning Analytics, 4(2), 240–263. http://dx.doi.org/10.18608/jla.2017.42.16 

Riel, J., Lawless, K. A., & Brown, S. W. (2018). Timing matters: Approaches for measuring and visualizing behaviours of 

timing and spacing of work in self-paced online teacher professional development courses. Journal of Learning 

Analytics, 5(1), 25–40. http://dx.doi.org/10.18608/jla.2018.51.3 

Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 17–22. 

http://dx.doi.org/10.1167/7.2.17 

Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of 

Human–Computer Studies, 45, 185–213. http://dx.doi.org/10.1006/ijhc.1996.0048 

Schneider, S., Beege, M., Nebel, S., & Rey, G. D. (2018). A meta-analysis of how signalling affects learning with media. 

Educational Research Review, 23, 1–24. http://dx.doi.org/10.1016/j.edurev.2017.11.001 

Scown, H., Bartlett, M., & McCarley, J. S. (2014). Statistically lay decision makers ignore error bars in two-point 

comparisons. Proceedings of the Human Factors & Ergonomics Society Annual Meeting, 58(1), 1746–1750. 

http://dx.doi.org/10.1177/1541931214581364 

Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2018). Linking learning behavior analytics and 

learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. 

Computers in Human Behavior. Advance online publication. http://dx.doi.org/10.1016/j.chb.2018.05.004 

Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial on epistemic network analysis: Analyzing the structure of 

connections in cognitive, social, and interaction data. Journal of Learning Analytics, 3(3), 9–45. 

http://dx.doi.org/10.18608/jla.2016.33.3 

Shah, P. (1997). A model of the cognitive and perceptual processes in graphical display comprehension. In M. Anderson 

(Ed.), Reasoning with diagrammatic representations (pp. 94–101). Menlo Park, CA: AAAI Press. 

Shah, P., & Freedman, E. G. (2009). Bar and line graph comprehension: An interaction of top-down and bottom-up processes. 

Topics in Cognitive Science, 3(3), 1–19. http://dx.doi.org/10.1111/j.1756-8765.2009.01066.x 

Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational 

Psychology Review, 14(1), 47–69. http://dx.doi.org/10.1023/A:1013180410169 

Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the 

process of graph comprehension. Journal of Educational Psychology, 91(4), 690–702. http://dx.doi.org/10.1037/0022-

0663.91.4.690 

Sher, V., Bemis, K. G., Liccardi, I., & Chen, M. (2017). An empirical study on the reliability of perceiving correlation indices 

using scatterplots. Computer Graphics Forum, 36, 61–72. http://dx.doi.org/10.1111/cgf.13168 

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. Proceedings 1996 

IEEE Symposium on Visual Languages, 3–6 September 1996, Boulder, CO, USA (pp. 336–343). 

http://dx.doi.org/10.1109/VL.1996.545307 

Skeels, M., Lee, B., Smith, G., & Robertson, G. G. (2010). Revealing uncertainty for information visualization. Information 

Visualization, 9, 70–81. http://dx.doi.org/10.1057/ivs.2009.1 

Smallman, H. S., & St. John, M. (2005). Naïve realism: Misplaced faith in realistic displays. Ergonomics in Design, 13, 14–

19. 

Stofer, K., & Che, X. (2014). Comparing experts and novices on scaffolded data visualizations using eye-tracking. Journal of 

Eye Movement Research, 7(5), 1–15. http://dx.doi.org/10.16910/jemr.7.5.2 

Strahan, R. F., & Hansen, C. J. (1978). Underestimating correlation from scatterplots. Applied Psychological Measurement, 2, 

543–550. http://dx.doi.org/10.1177/106480460501300303 

Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. 

Educational Psychology Review, 10(3), 251–296. http://dx.doi.org/10.1023/A:1022193728205 

Tak, S., Toet, A., & van Erp, J. (2014). The perception of visual uncertainty representation by non-experts. IEEE 

Transactions on Visualization & Computer Graphics, 20. http://dx.doi.org/935-943. 10.1109/TVCG.2013.247 

Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. 

http://dx.doi.org/10.1016/j.actpsy.2010.02.006 

Thompson, K., Ashe, D., Carvalho, L., Goodyear, P., Kelly, N., & Parisio, M. (2013). Processing and visualizing data in 

complex learning environments. American Behavioral Scientist, 57(10), 1401–1420. 

http://dx.doi.org/10.1177/0002764213479368 

Toker, D., Conati, C., Steichen, B., & Carenini, G. (2013). Individual user characteristics and information visualization: 

Connecting the dots through eye tracking. Proceedings of the Conference on Human Factors in Computing Systems 

(CHI ʼ13), 27 April–2 May 2013, Paris, France (pp. 295–304). New York: ACM. 

http://dx.doi.org/10.1145/2470654.2470696 

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press. 

Tversky, B. (2005). Functional significance of visuospatial representations. In P. Shah & A. Miyake (Eds.), Handbook of 

http://dx.doi.org/10.18608/jla.2017.42.16
http://dx.doi.org/10.18608/jla.2018.51.3
http://dx.doi.org/10.1167/7.2.17
https://doi.org/10.1006/ijhc.1996.0048
https://doi.org/10.1016/j.edurev.2017.11.001
https://doi.org/10.1177/1541931214581364
https://doi.org/10.1016/j.chb.2018.05.004
https://dx.doi.org/10.18608/jla.2016.33.3
https://doi.org/10.1111/j.1756-8765.2009.01066.x
https://doi.org/10.1023/A:1013180410169
http://dx.doi.org/10.1037/0022-0663.91.4.690
http://dx.doi.org/10.1037/0022-0663.91.4.690
http://dx.doi.org/10.1111/cgf.13168
http://dx.doi.org/10.1109/VL.1996.545307
https://doi.org/10.1057/ivs.2009.1
https://dx.doi.org/10.16910/jemr.7.5.2
http://dx.doi.org/10.1177/106480460501300303
https://doi.org/10.1023/A:1022193728205
https://doi.org/935-943.%2010.1109/TVCG.2013.247
https://doi.org/10.1016/j.actpsy.2010.02.006
https://dx.doi.org/10.1177/0002764213479368
https://doi.org/10.1145/2470654.2470696


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

83 

higher-level visuospatial thinking (pp. 1–70). Cambridge, UK: Cambridge University Press. 

van Leeuwen, A. (2015). Learning analytics to support teachers during synchronous CSCL: Balancing between overview and 

overload. Journal of Learning Analytics, 2(2), 138–162. http://dx.doi.org/10.18608/jla.2015.22.11 

van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual 

selection. Journal of Experimental Psychology: Human Perception and Performance, 30, 746–759. 

http://dx.doi.org/10.1037/0096-1523.30.4.749 

van Zoest, W., Van der Stigchel, S., & Donk. M. (2017). Conditional control in visual selection. Attention, Perception, & 

Psychophysics, 79, 1555–1572. http://dx.doi.org/10.3758/s13414-017-1352-3 

Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., et al. (2014). Learning dashboards: An 

overview and future research opportunities Personal & Ubiquitous Computing, 18(6), 1499–1514. 

http://dx.doi.org/10.1007/s00779-013-0751-2 

Victor, B. (2011). Scientific communication as sequential art. 

http://worrydream.com/ScientificCommunicationAsSequentialArt/ 

Ward, M. O., Grinstein, G., & Keim, D. (2015). Interactive data visualization: Foundations, techniques, and applications, 

2nd ed. Boca Raton, FL: CRC Press. 

Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and 

explanations. American Psychologist, 54(8), 594–604. http://dx.doi.org/10.1037/0003-066X.54.8.594 

Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. 

http://dx.doi.org/10.3758/BF03200774 

Wolff, A., Gooch, D., Cavero Montaner, J. J., Rashid, U., & Kortuem, G. (2016). Creating an understanding of data literacy 

for a data-driven society. Journal of Community Informatics, 12(3), 9–26. http://ci-

journal.org/index.php/ciej/article/view/1286 

Woodward, J. F. (2011). Data and phenomena: A restatement and defense. Synthese, 182(1), 165–179. 

http://dx.doi.org/10.1007/s11229-009-9618-5 

Yantis, S., & Johnston, J. C. (1990). On the locus of visual selection: Evidence from focused attention tasks. Journal of 

Experimental Psychology: Human, Perception, & Performance, 16(1), 135–149. http://dx.doi.org/10.1037/0096-

1523.16.1.135 

Yiend, J. (2010). The effects of emotion on attention: A review of attentional processing of emotional information. Cognition 

& Emotion, 24(1), 3–47. http://dx.doi.org/10.1080/02699930903205698 

Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory & Cognition, 27(6), 1073–1079. 

http://dx.doi.org/10.3758/BF0320123 

Zacks, J., Levy, E., Tversky, B., & Schiano, D. J.  (1998). Reading bar graphs: Effects of extraneous depth cues and graphical 

context. Journal of Experimental Psychology: Applied, 4(2), 119–138. http://dx.doi.org/10.1037/1076-898X.4.2.119 

Zouaq, A., Jovanović, J., Joksimović, S., & Gašević, D. (2017). Linked data for learning analytics: Potentials and challenges. 

In C. Lang, G. Siemens, A. F. Wise, & D. Gašević (Eds.), The handbook of learning analytics (pp. 347–355). Alberta, 

Canada: Society for Learning Analytics Research (SoLAR). http://dx.doi.org/10.18608/hla17.030 

Zuk, T., & Carpendale, S. (2007). Visualization of uncertainty and reasoning. In A. Butz, B. Fisher, A. Krüger, P. Olivier, & 

S. Owada (Eds.), Smart Graphics: Lecture Notes in Computer Science, 4569 (pp. 164–177). Berlin, Heidelberg: 

Springer. http://dx.doi.org/10.1007/978-3-540-73214-3_15 

  

http://dx.doi.org/10.18608/jla.2015.22.11
http://dx.doi.org/10.1037/0096-1523.30.4.749
https://doi.org/10.3758/s13414-017-1352-3
https://doi.org/10.1007/s00779-013-0751-2
http://worrydream.com/ScientificCommunicationAsSequentialArt/
https://dx.doi.org/10.1037/0003-066X.54.8.594
https://doi.org/10.3758/BF03200774
http://ci-journal.org/index.php/ciej/article/view/1286
http://ci-journal.org/index.php/ciej/article/view/1286
https://doi.org/10.1007/s11229-009-9618-5
https://dx.doi.org/10.1037/0096-1523.16.1.135
https://dx.doi.org/10.1037/0096-1523.16.1.135
https://doi.org/10.1080/02699930903205698
https://doi.org/10.3758/BF0320123
http://dx.doi.org/10.1037/1076-898X.4.2.119
https://doi.org/10.18608/hla17.030
https://doi.org/10.1007/978-3-540-73214-3_15


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

84 

Appendix A 

GUIDELINES FOR VISUALIZING DATA 

 
 

Author: Sakinah S. J. Alhadad 

Visual Layout: Dale Hansen 

Icons: 

Icons 1, 3, 4, 5, 6, and 7 made by Freepik from 

www.flaticon.com 

Icon 2 made by Those Icons from www.flaticon.com 

References: 

1. Anderson & Yantis, 2013 

2. Baddeley, 2003 

3. Baldassi, Megna, & Burr, 2006 

4. Becker, Folk, & Remington, 2010 

5. Desimone & Duncan, 1995 

6. Gobet, 2005 

7. Mautone & Mayer, 2007 

8. Mayer & Fiorella, 2014 

9. Rosenholtz, Li, & Nakano, 2007 

10. Theeuwes, 2010 

  

https://doi.org/10.1038/nrn1201
https://doi.org/10.1371/journal.pbio.0040056
https://dx.doi.org/10.1037/a0020370
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1002/acp.1110
https://doi.org/10.1037/0022-0663.99.3.640
http://dx.doi.org/10.1167/7.2.17
https://doi.org/10.1016/j.actpsy.2010.02.006


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 
3.0 Unported (CC BY-NC-ND 3.0) 

85 
 

Appendix B 

VISUALIZING DATA AS AN INFERENTIAL TOOL  
V

is
u

a
li

ze
 d

a
ta

 a
s 

a
n

 i
n

fe
re

n
ti

a
l 

to
o
l 

to
 r

ev
ea

l 
im

p
o
rt

a
n

t 
 

in
si

g
h

ts
 a

b
o
u

t 
u

n
d

er
ly

in
g
 d

a
ta

 p
ro

p
er

ti
es

 

1. Visual representations can support cognition4 

Visualize data as a key means of understanding and communicating 

information. 

2. Visualizing data facilitates identification of patterns that are 

otherwise obscured in text or tables3,6 

Before computing any statistics, visualize your data to evaluate 

assumptions of underlying univariate or multivariate data, and to detect 

any serious compromises to data integrity. 
 

3. Particularly for complex, multivariate relationships, people are 

able to detect statistical effects with more speed and accuracy with 

visualizations than with tables10,14 

For understanding research, visualize the data in various/multiple 

methods or representations to be able to better evaluate the ways in which 

underlying properties may be concealed by a single method. 
 

For communicating research, consider evidence-informed principles to make methodological choices when constructing data 

visualizations to support attention and cognition. 
 

4. Some types of visualizations inherently obscure the representation of data properties1,8,9 (including uncertainty, see 
points 5–7) 

Explore multiple ways of visualizing the data to make critical judgements about how visualization decisions may support or 

potentially lead to errors in interpretation and subsequent inference. 
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5. Visualizing uncertainty is a useful aid for researchers to make statistical and 

inferential decisions2,7 

Visualize data in ways that enable you to see and understand the nature of the data 

dispersion and to test assumptions of the data. 

6. Visualizing uncertainty appears to aid readers’ understanding of criticality of data 

uncertainty than without its visualization; BUT people do not appear to naturally use 

uncertainty information to aid inference-making5,7,11,12 

Emphasize the impact of data uncertainty in communicating the implications for research 

to practice translation. Use language to scaffold data uncertainty to support visualization of 
uncertainty, or use language to explain the implication of uncertainty in your dataset on 

inference-making explicitly. 
 

7. Understanding data uncertainty is difficult for novices and experts12,13,15,16 

Use text to orient attention to important aspects of uncertainty visualized, and why they matter. 
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