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Evaluating Predictive Models of Student Success:
Closing the Methodological Gap
Josh Gardner 1, Christopher Brooks 2

Abstract
Model evaluation — the process of making inferences about the performance of predictive models — is a critical
component of predictive modelling research in learning analytics. We survey the state of the practice with respect
to model evaluation in learning analytics, which overwhelmingly uses only naı̈ve methods for model evaluation
or statistical tests that are not appropriate for predictive model evaluation. We conduct a critical comparison of
both null hypothesis significance testing (NHST) and a preferred Bayesian method for model evaluation. Finally,
we apply three methods — the naı̈ve average commonly used in learning analytics, NHST, and Bayesian — to a
predictive modelling experiment on a large set of MOOC data. We compare 96 different predictive models, including
different feature sets, statistical modelling algorithms, and tuning hyperparameters for each, using this case study to
demonstrate the different experimental conclusions these evaluation techniques provide.

Notes for Practice

• Use statistical testing for model evaluation. Use tests for use with the prediction architecture in an
experiment.

• Do not use an uncorrected paired t-test for model evaluation when cross-validation is used.

• We recommend Bayesian hierarchical methods for model evaluation. Existing open-source software toolkits
and consumer-grade hardware are adequate for even large-scale learning analytics experiments.

• Clearly describe or document methods for statistical algorithm and hyperparameter selection, prediction
architectures, and model evaluation in published work.

• In the MOOC dropout prediction experiment presented here, hyperparameter tuning had little effect relative
to both feature and algorithm selection. Simple activity-based features derived from the clickstream
outperformed even sophisticated features derived from discussion forums and assignments. Nonparametric
tree-based algorithms (CART, Adaboost) achieved strong performance.
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1. Introduction
The past decade has seen an explosion in the use of data science methods in general, and predictive modelling in particular.
Predictive modelling of student success has become a central task in learning analytics research. The increased use of digital
learning tools such as massive open online courses (MOOCs) has made it easier than ever to store, replicate, transfer, and
analyze learner data, and improvements in open-source statistical software for data science have generated an “embarrassment
of riches” with seemingly limitless numbers of modelling techniques available for use.

A critical scientific component of predictive modelling research is the process of model evaluation, where inferences are
drawn about the performance of a set of predictive models. In an optional step known as model selection, a single preferred
model is selected according to some objective function.

In this paper, we argue that there is a significant methodological gap in current practice in the learning analytics and
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Figure 1. Prediction architecture in works surveyed; this is the method by which estimates of model performance on
unseen data are obtained (for further analysis, i.e., by applying statistical tests to the data).

educational data mining communities with respect to model evaluation and selection, and we present a survey of techniques
to close this gap. We present data from a review of prior predictive modelling work in MOOCs to establish the “state of the
practice” in the field in Section 2. In Section 3, we present a brief survey of methods for model evaluation, drawing from several
fields outside of learning analytics in order to identify methods that are most effective, and which techniques currently used by
the field are ineffective, for predictive model evaluation. In Section 4, we conduct a predictive modelling experiment on a large
sample of MOOCs, applying three techniques to demonstrate the different conclusions of three evaluation methods in practice.
Our results also demonstrate specific empirical findings relevant to future modelling research in MOOCs, described in Section
5. We provide conclusions with an eye to practice within the learning analytics field in Section 8.

2. State of the Practice: Model Evaluation in Learning Analytics
The current work is concerned with experiments that construct multiple predictive models and attempt to compare their
performance. In this section, we survey a large sample of 87 such experiments in MOOCs. Having passed the peer review
process in several of the field’s flagship journals and conferences (Computers and Human Behavior, Journal of Educational
Data Mining, International Conference on Learning Analytics and Knowledge, The International Conference on Educational
Data Mining, Learning at Scale, etc.), these results also reflect the consensus of reviewers — and the field as a whole– on
techniques for predictive model evaluation in MOOCs.1 This consensus is surprisingly strong, considering the breadth of
approaches taken to other aspects of predictive modelling (e.g., feature extraction, statistical algorithms). The existing consensus
is also on a set of techniques that are often statistically problematic, as we will discuss in Section 3.

2.1 Model Evaluation in MOOCs
2.1.1 Prediction Architecture
In order to obtain the model and its predictions for evaluation, an experiment must choose a prediction architecture — the
procedure by which training and testing datasets are partitioned and model predictions are obtained. The prediction architectures
used in the works included in our survey are shown in Figure 1.

These results demonstrate the prevalence of various forms of cross-validation in evaluating models (typically 2-, 5-, or
10-fold cross-validation; only two experiments surveyed use leave-one-out cross-validation). We found no cases where fold-level
data was reported or evaluated (for example, to produce estimates of the variance of model performance across each fold).
Model performance data was only evaluated and reported as an average for all works surveyed. The use of cross-validation is
particularly relevant in light of concerns about statistical testing applied to cross-validated model performance data discussed in
Section 3. In nine experiments (nearly 10% of the experiments surveyed), the prediction architecture was not even reported,
despite the presentation of predictive results in the work.

2.1.2 Model Evaluation
Model evaluation is the procedure by which observed differences in predictive performance are formally evaluated in order
to draw inferences from the results of an experiment. We present data on model evaluation methods for any experiments

1 The survey methodology is described in detail in Gardner and Brooks (2018); complete results of the literature review, including citation and categorization
information for each study evaluated, is provided in the appendix of that work. Due to considerations of length we omit a thorough description here.
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Table 1. Testing procedures for model evaluation in works surveyed.
Procedure N
Student’s t-test 5
Other NHST (Chi-Square, etc.) 5
No model comparison or explanatory 25
Model comparison with no statistical test 52
Total 87

where multiple predictive models were evaluated and compared, and where the authors reported inferences about which model
was a “better” predictor of the outcome of interest, in Table 1. Note that strictly explanatory modelling experiments, where
inspection of the model itself is the stated primary goal, are under the “No model comparison or explanatory” label. While our
categorization cannot be perfect based only on the published descriptions of work, the results in Table 1 make clear the lack of
use of statistical methods for model evaluation in current learning analytics research — a practice we believe to be scientifically
problematic. Below, we will also demonstrate that the most prevalent methods for model evaluation shown in Table 1 are
known to be ineffective for the contexts in which they are being used (e.g., with experimental data from a cross-validation
architecture; for large numbers of comparisons).

This consensus on techniques for predictive model evaluation in the field of learning analytics is as surprising as it is
strong. Cross-validation with no statistical testing is overwhelmingly adopted in the learning analytics and educational data
mining predictive modelling research, to the point where the results of this procedure are considered sufficiently acceptable by
authorities in the field to be published widely, despite known inferential flaws with such a procedure (discussed in Section 3).

Furthermore, the impact of these methods is compounded by large numbers of hypotheses being tested: Fewer than 20% of
the works surveyed compare one or two models; the remainder compared more than two models — with the total number of
comparisons unreported in an additional 20% of cases. For example, Whitehill et al. (2017) compares at least 1400 models
with various architectures and window formulations; Taylor et al. (2014) evaluates over 10,000 candidate models; neither
correct or even acknowledge the large number of multiple comparisons in the context of their analysis. None of the works
surveyed applied corrections for multiple testing, despite the fact that uncorrected multiple testing leads to elevated error rates,
and existing methods were developed in the 1960s with “between 2 and perhaps 20” tests in mind and are not appropriate or
effective for testing thousands of hypotheses (Efron & Hastie, 2016, pp. 273).

2.1.3 Hyperparameter Tuning
There is no broad consensus in practice regarding which feature extraction methods or algorithms should be used to construct
models for student success prediction in MOOCs (Gardner Brooks, 2018). However, almost all algorithms require selecting
and, optionally, tuning hyperparameters that control elements of model fit and therefore the model parameters selected when the
algorithm is applied to a specific dataset. These hyperparameters control convergence of parameter estimates, feature selection
or regularization, and the model loss or “cost” function. Little attention has been paid to hyperparameter tuning in prior work,
despite the fact that tuning each additional hyperparameter setting adds an additional hypothesis test or pairwise comparison to
an experiment.

Our survey finds that in practice, hyperparameter tuning is frequently not described in published research: in 20 out of
87 (23%) of the works surveyed, methods for hyperparameter tuning or selection were not reported or even mentioned, and
in a remaining 9 (10%), hyperparameter tuning was reported as being performed manually, with no reproducible procedure
offered. In cases where hyperparameter tuning is not reported, either the hyperparameter tuning is (a) simply not performed,
and default settings are used; (b) performed by the experimenter, but not reported, or (c) performed automatically by a machine
learning software toolkit. As we will describe in detail below, (b) and (c) require model evaluation methods that are robust
to multiple comparisons even without knowing or reporting how many comparisons are conducted in an experiment. In (a),
we might question whether an experiment sufficiently explored the performance of a given modelling approach; however, our
case study in Section 4 showed little impact of hyperparameter tuning relative to the effects of different features or statistical
algorithms, particularly when considering that tuning increases the number of models considered in a multiplicative fashion
(because an experiment typically tests each algorithm/hyperparameter pairing with each set of features).

2.2 Why is Model Evaluation Rare in Learning Analytics?
While it is difficult to determine with certainty, the previous analysis raises the question of why learning analytics has arrived
at the status quo of inadequate model evaluation, several factors have likely contributed to the current state of the practice,
including:

Inadequate Tooling. Software for model evaluation is rare, and is currently not included in (or even integrated with) many
of the most common statistical software tools for machine learning research. Tracking the entire process of model exploration
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in an experiment therefore requires extensive manual effort or the use of additional specialized tools (e.g., Vartak et al., 2016).
Furthermore, many machine learning toolkits ignore statistical model evaluation by design, and conduct intensive searches of
the model and hyperparameter space without regard to statistical inference procedures (e.g., AutoWEKA, SuperLearner
and caret in R, auto-sklearn in Python).

Evolution of Data Science. Many of the issues addressed in the current work were simply not concerns even a decade
ago. Open-source data science methods, multicore computing, and statistical software have exploded in the time that learning
analytics (and particularly MOOCs) have also come of age. As such, methods that addressed the research challenges of previous
eras have become overwhelmed by these “computer age statistical inference” problems, including the challenge of “large scale
hypothesis testing” when the number of comparisons is massive (Efron & Hastie, 2016).

Lack of Training and Theory. Many researchers who utilize predictive modelling simply were not trained in appropriate
research methods for large-scale machine learning experiments; indeed, the theory guiding these methods is still the subject of
active research (Efron & Hastie, 2016).

Lack of Incentive. As the prior review demonstrates, there is currently little incentive to perform rigorous model evaluation
in published work: reviewers do not expect it. Predictive modelling experiments can be published without the rigorous statistical
evaluation that is expected of many other types of experimental work (e.g., randomized trials). Such evaluation may be
perceived as even reducing the chances of publication by revealing “insignificant” results.

The above factors reflect the advancement of statistical and modelling capabilities that have not yet been matched by an
advancement in methods or accepted practices. We hope that, through works such as the current experiment, we can contribute
to gradual progress on each; of course, future work is needed to address each of these more deeply.

3. Predictive Model Evaluation and Selection
Our focus in this section is to survey prior work on statistical model evaluation techniques that are widely used in the field
of learning analytics, or particularly effective for tasks commonly faced in this field (e.g., evaluating multiple models across
multiple datasets). We mention additional methods for model evaluation only where relevant; an exhaustive survey is beyond
the scope of the current work. We conclude by presenting a series of criteria for an acceptable model evaluation procedure in
Section 3.4, which lead us to prefer the Bayesian procedure for predictive model evaluation in learning analytics.

3.1 Naı̈ve Average Method
The most common technique for comparing the performance of predictive models in MOOC research is what we term the
“naı̈ve average” method. In this approach, models are evaluated by comparing their average performance (often, averaged
across cross-validation folds) with no statistical test. As shown in Table 1, 52 out of the 87 studies surveyed (60%) use
the naı̈ve average method to draw inferences about a comparison between multiple predictive models (either implicitly, by
presenting the predictive results from several models, or explicitly, by referring to models as “more accurate” or having the
“best performance”). Drawing inferences about which model may be “best” based on a simple sample average or the observed
rankings is inappropriate for machine learned models for the same reasons it is inappropriate for drawing inferences from any
other data: it provides no robustness against spurious results, no measure of confidence in the conclusion given the observed
data, and little basis for comparison across studies. We call this method the “naı̈ve average” method because, by simply
choosing the “best” average performance, this approach naı̈vely assumes that any differences observed must be due to genuine
differences in model performance (and not, for instance, random variation), and that these differences must be both practically
significant (large or important enough to be useful) and (in frequentist terms) statistically significant.

Statistical testing was developed to draw principled, reliable inductive inferences from data under uncertainty. This is
particularly important when evaluating the complex performance data from predictive models of student success, which itself
reflects underlying samples of student populations, randomized resamples of subpopulations (for instance, via cross-validation),
and other stochastic procedures inherent to many modelling algorithms (such as random feature selection or parameter
initialization methods). Failing to utilize any testing in the presence of intentional randomization makes the observation of
spurious results more likely, and in the worst cases, could allow for exploitation of randomization to produce desired results
(this behaviour has been observed in other fields, such as reinforcement learning, where random seed “optimization” has been
cited as a threat to reproducibility in the field (Islam et al., 2017)).

Furthermore, averaging itself may be particularly uninformative or misleading for model evaluation. The naı̈ve average
method must assume commensurability across datasets in order to justify the use of averaging. In the case of predictive models
of student success, this assumption may not be justified: some courses might be easier or more difficult to predict on for a
variety of reasons, including variability in student subpopulations, level of difficulty, quality of instruction, course durations
and requirements, etc. Demšar (2006) notes that “[i]f the results on different data sets are not comparable, their averages are
meaningless”. Averages are also susceptible to outliers, which particularly distort experimental results when relatively small
populations are used (as is the case in our review, where nearly 50% of studies evaluated only a single course). Furthermore,
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average cross-validated performance can generate “optimistically” biased model performance estimates (J. Friedman et al.,
2001), because models are repeatedly trained and tested on overlapping subsets of the same dataset, not a disjointed, truly
unseen dataset as in a prediction architecture using an independent test set.

3.2 Null Hypothesis Significance Testing (NHST)
In this section, we discuss model evaluation procedures based on null hypothesis significance testing (NHST). As Table 1
demonstrates, this is the second most common model evaluation method in learning analytics.

A great deal of early work on model evaluation and selection in the field of machine learning focused on selecting from two
models evaluated on a single dataset (e.g., Dietterich, 1998). While the field of learning analytics often addresses tasks that are
more complex (multiple models and datasets), this early work highlighted several issues that any model evaluation procedure
must address. These include having an acceptable error rate (Bouckaert, 2003; Dietterich, 1998), using methods that provide
inferential replicability (Bouckaert, 2004; Bouckaert & Frank, 2004), and accurate estimation of statistical parameters in the
presence of correlated data (such as the data generated by cross-validation) including the standard error (e.g., Nadeau & Bengio,
2003) and degrees of freedom (Wang et al., 2016).

One two-model test is worth discussion here, due to its wide use in learning analytics research, as shown in Table 1: the
Student’s t-test. The t-test has been analyzed at length for predictive model evaluation, and many variants of the t-test have
been roundly rejected as inappropriate and misleading for evaluating cross-validated model performance data, to which it
is often applied in learning analytics. An important analysis was presented two decades ago in Dietterich (1998), where a
series of experiments demonstrated that several variants of the t-test (difference in proportions, paired t-test using repeated
random subsampling, and t-test with 10-fold cross-validation) display an elevated Type I error rate and are therefore ineffective
for model evaluation. Other empirical work has shown similar results with t-tests with a variety of other resampling and
cross-validation architectures (e.g., Bouckaert & Frank, 2004). While various corrections have been proposed to this test (e.g.,
Nadeau & Bengio, 2003) and other alternatives exist (e.g., the sorted runs scheme explored in Bouckaert, 2003), they are rarely
used in practice and were not used in any of the works surveyed, and are therefore not considered in detail here.

In practice, comparison of only two models on a single dataset account for only 10 (11%) of the works surveyed, and it
would be preferable to use model evaluation methods that can be easily extended to experiments with more than a single dataset.
One method to adapt a t-test or other significance tests (e.g., Chi-square) to the multiple-comparisons case involves making an
adjustment for multiple testing (which were not applied in any of the works surveyed that utilized these NHST procedures),
such as that proposed in Benjamini and Hochberg (1995). However, such procedures are not considered appropriate for cases
where k >> 20 (Efron & Hastie, 2016), and additional procedures for the multiple-model–multiple-dataset task exist which
both address the multiple testing concerns and issues with parameter estimation mentioned above, as well as broader concerns
with the suitability of NHST procedures such as the t-test.

The assumptions of traditional statistical tests used for data analysis, such as the paired t-test, are often strongly violated
by predictive model performance data, which makes them particularly ineffective for evaluating hypotheses about predictive
models. For example, the classical statistical procedure to determine whether there is a difference between several experimental
subsamples is analysis of variance (ANOVA; Fisher, 1925), perhaps with a post-hoc test if groupwise differences were
detected. This procedure is unfit for predictive model evaluation, however, because its assumptions of normality, sphericity,
and independence (or non-correlation) are not guaranteed — and frequently violated — by the data from predictive modelling
experiments (Demšar, 2006). We do not discuss the fitness of ANOVA for model evaluation further because it was not used in
any of the work surveyed, but refer the reader to Demšar (2006) and Japkowicz and Shah (2011) for further discussion.

Nonparametric procedures are often more appropriate when the assumptions of parametric procedures (such as the t-test)
are likely to be violated. The Friedman test, in particular, has gained increasing adoption across the field of machine learning
for model evaluation (Demšar, 2006; Japkowicz & Shah, 2011). The Friedman test is a nonparametric version of the ANOVA
test, and compares the average rankings of the k algorithms across each of N datasets, calculating a test statistic measuring the
probability of the observed rankings under the null hypothesis of all algorithms having equivalent performance (and therefore
equal expected average rankings). The observed value of the Friedman statistic

χ
2
F =

12N
k(k+1)

[
∑

j
R2

j −
k(k+1)2

4

]
(1)

where R j is the rank of the jth of k algorithms on N datasets and the statistic is distributed according to a chi-square
distribution with k−1 degrees of freedom, is compared to a critical value for the given values of N and k (M. Friedman, 1940).

If the null hypothesis is rejected at the selected significance level, the post-hoc Nemenyi test is used to compare all classifiers
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Figure 2. A critical difference (CD) diagram visualizing the results of the Friedman + Nemenyi testing procedure.

to each other. The Nemenyi test is similar to a nonparametric version of the Tukey test for ANOVA, and uses a critical difference

CD = qα

√
k(k+1)

6N
(2)

as a threshold to determine whether the performance between any two classifiers is significantly different, where the critical
value qα is based on the Studentized range statistic divided by

√
2.

The results of the Friedman and Nemenyi tests are often visualized using a CD diagram, originally proposed in Demšar
(2006). An example is shown in Figure 2. Models are plotted on a number line according to their average rank across all
datasets, and bold CD lines are used to link models that are statistically indistinguishable at α .

One advantage of this method is that because the Friedman test uses only the rankings of the algorithms on each dataset,
it does not require estimates of the variance of model performance — recall that inaccurate estimates of variance were one
of the primary confounding issues with t-tests applied to cross-validated model performance data. Instead, it only requires
that the estimates of model performance and the measured rankings they produce are reliable and “...that enough experiments
were done on each data set and, preferably, that all the algorithms were evaluated using the same random samples” (Demšar,
2006, pp. 2) and that the datasets, and therefore the rankings of the algorithms across each dataset, are independent. In contrast
to many other statistical approaches to comparing model performance, such as ANOVA, the Friedman test makes no further
assumptions about the sampling scheme.

This procedure also accounts for multiple comparisons. The number of models compared, k, is accounted for in both
the Friedman statistic (Equation 1) and the post-hoc Nemenyi test (Equation 2). The number of comparisons conducted in
the course of a model evaluation experiment can grow quite large even with modest numbers of feature sets, algorithms,
and hyperparameter settings (for example, in the case study in Section 4, k = 96 and the number of pairwise comparisons is
96×95

2 = 4560); adequate controls to moderate the error rate and inferential replicability are necessary for any test suited for
model evaluation. For an example of the use of this method in another domain, see Madjarov et al. (2012).

3.3 Bayesian Model Evaluation
The application of Bayesian statistical methods to model evaluation has increased over the past two decades as scientific
consensus around the concerns outlined above has grown, and as Bayesian modelling techniques and the computational
infrastructure necessary to conduct them have become more widely accessible to researchers. There are several approaches to
model evaluation that use Bayesian techniques, and we refer the reader to Benavoli et al. (2017) for a review. In this work, we
focus on an approach that Benavoli et al. (2017) refer to as Bayesian parameter estimation or simply Bayesian analysis. We
will refer to this approach as Bayesian model evaluation, but occasionally use Benavoli et al.’s nomenclature when the meaning
is clear.

Bayesian hierarchical models are used to address statistical applications that involve multiple parameters that can be
regarded as related or connected. The hierarchical model encodes the dependence between these parameters such that certain
aspects of the model depend on other parameters, which are referred to as hyperparameters. The distributions of these
hyperparameters are referred to as prior distributions in this section to avoid confusion with the hyperparameters of machine
learning models discussed in other sections. In a hierarchical model, the data are used to estimate the distribution of all
parameters by either direct evaluation (which is rare) or by Markov Chain Monte Carlo (MCMC) sampling. As with any
Bayesian model, a hierarchical model treats the parameters as random; we therefore estimate and explore their distribution
instead of testing hypotheses about the “true” value of the parameter.2

2 While a detailed introduction of Bayesian hierarchical modelling is beyond the scope of this paper, we refer the reader to Gelman et al. (2014, Ch. 5) or
Kruschke (2014, Ch. 9) for a thorough introduction.
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In the current work, we consider the Bayesian hierarchical correlated t-test of Corani et al. (2017). This test compares the
results of multiple classifiers over multiple datasets when cross-validation is used. This test uses the following hierarchical
model to account for the mean, variance, and correlation of the results of fold-level model performance data (an example of the
data used for such a model is shown in Table 5):

µ1, . . . ,µk ∼ t(µ0,σ0,ν) (3)
σ1, . . . ,σk ∼Uni f orm(0, σ̄) (4)

xi ∼MV N(1µi,Σi) (5)

Equation (5), where xi is the vector of differences between models, captures the correlation between cross-validation
measures on the ith dataset by modelling these as draws from a multivariate normal distribution with mean µi, and correlation
ρ . 1 is a vector of ones, and the covariance matrix Σ has diagonal elements σ2

i and off-diagonal elements ρσ2
i where ρ = nt e

nt r
,

following Nadeau and Bengio (Corani et al., 2017; Nadeau & Bengio, 2003). Equation (4) allows each dataset to have its own
estimation uncertainty, standard deviation σi, drawn from a common uniform distribution where σ̄ = 1000 ·∑q

i=1
σ̂i
k . We refer

the reader to Benavoli et al. (2017) and Corani et al. (2017) for further details.
Equation (3) models the differences between two classifiers on each dataset, and thus allows that some classifiers might

perform better or worse on certain datasets, leading to variability in the difference µi on each dataset i. Equation (3) also models
the fact that each observed mean difference on a single dataset, µi, depends on the average difference of accuracy between the
two classifiers on the population of data sets, µ0. This parameter, µ0, is typically the quantity of interest, and is modelled with a
t-distribution with variance σ2

0 and degrees of freedom ν . The use of a t-distribution here makes the model more robust to
outliers (Kruschke, 2013), and slightly more conservative than its frequentist counterpart (Corani et al., 2017).

Prior distributions for the model are given by:

σ0 ∼Uni f orm(0, s̄0), (6)
µ0 ∼Uni f orm(−1,1), (7)
ν ∼ Gamma(α,β ) (8)
α ∼Uni f orm(

¯
α = 0.5, ᾱ = 5) (9)

β ∼Uni f orm(
¯
β = 0.05, β̄ = 0.15) (10)

A detailed discussion of these priors is beyond the scope of this work, but we note that these are considered appropriate
for most measures of predictive model performance when used with this procedure, including AUC, the measure used in the
experiment below. The reader is referred to Corani et al. (2017) for a detailed discussion.

This Bayesian hierarchical model is used to make inferences about average differences in model performance for each pair of
candidate models X and Y . From the fitted model, MCMC is used to generate samples of θ = (P(X >Y ),P(ROPE),P(X <Y )),
where θi represents the posterior probability that model X is better, the models are equivalent, and model Y is better, respectively.
These samples represent the hypothetical differences in performance on a future unseen dataset (Corani et al., 2017) generating
N = 50,000 samples on a typical laptop computer takes only a few seconds, and conducting this comparison for all 4560
pairwise comparisons in the experiment below takes less than 10 minutes using the BayesianTestsML Python library.3

The MCMC samples are used to estimate θ by simply counting the proportion of samples for which θi has the highest
posterior probability. The results of this sampling can be visualized by projecting the (θX>Y ,θROPE ,θX<Y ) triplets onto
barycentric coordinates to produce a posterior plot, shown in Figure 3. Inspection of these plots can be useful for small
comparisons, but for experiments with large models spaces, inspecting all k(k−1)

2 pairwise plots is impractical.
This method is able to account for the different uncertainty that characterizes each dataset by estimating unique parameters

for each dataset, and, because the hierarchical model applies shrinkage to the µi values when estimating them jointly, it estimates
them more accurately than previous approaches using maximum likelihood estimation (Corani et al., 2017).

3.4 The Case for Bayesian Model Evaluation
In the survey presented above and in other work (Gardner & Brooks, 2018), we have described the common practices of
predictive modelling experiments in learning analytics. These include a massive space of potential models due to many data
sources, feature types, and algorithms used, and relatively small collections of datasets; for example, even the largest prior
MOOC studies of which we are aware evaluate around 40 MOOCs (i.e., Whitehill et al., 2017; Evans et al., 2016) and (c) large
individual datasets, which make repeated model-fitting undesirable, if not intractable.

3 https://github.com/BayesianTestsML
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P(Region Of Practical Equivalence)

P(X > Y) P(X < Y)
Figure 3. A Bayesian posterior plot resulting from a Bayesian hierarchical correlated t-test, which visualizes the

results of Markov-Chain Monte Carlo (MCMC) sampling for the comparison of two models X and Y . The estimated
probability of each outcome is the proportion of samples that fall in each section of the plot.

These, along with more general scientific considerations common to model evaluation in any domain, give rise to a series of
desiderata that any ideal model evaluation procedure must meet. We introduce the criteria individually below, and describe how
each of the model evaluation methods discussed above do or do not satisfy these criteria.

Computationally tractable: Statistical testing should require as little computational overhead as possible. It should scale
well with the number of datasets N, the number of models k, and the dimensionality of the data. This consideration does
not particularly count in favour of any of the schemes considered, but also does not rule any out. All are computationally
tractable with consumer-level computing hardware. The MCMC sampling method used by the Bayesian method incurs a higher
computational overhead than NHST, but for the modest N used in most MOOC research (at most N = 44 in the largest known
prior analysis (Evans et al., 2016), the computational cost is negligible. For equally effective schemes, we might decide to
choose the one that can provide the most efficient estimates.

Impose minimal assumptions on the data: An ideal method will make few assumptions about the underlying data, such
as normality, symmetry, commensurability across datasets, sphericity, etc. This alone excludes many common parametric
NHST methods, such the t-test, ANOVA, or the naı̈ve average method, which make strong assumptions that are not met by
model performance data in practice (Demšar, 2006). While this excludes most parametric NHST methods, it does not provide a
clear reason to prefer nonparametric NHST over Bayesianism.

Account for cross-validation: As discussed in section 3.2, the use of cross-validation requires correction for the overlap
between the training data used in each fold. This is particularly important because cross-validation is widely used in learning
analytics. As discussed in Section 3.2, the t-test in particular shows highly elevated inflated Type I error rates and low inferential
replicability with cross-validated model performance data. To avoid this, the method in Section 3.2 ranks models over each
dataset, ignoring important information in the fold-level performance data (such as the variability of model performance across
folds). The Bayesian procedure, in contrast, utilizes the fold-level data directly to compute estimates of the variability of each
pairwise model comparison, as shown in Equation 5.

Robust to multiple comparisons As discussed in Section 2.1.2, more than 80% of the works surveyed compared more
than two models. The practice of comparing many models is also often useful, allowing for the exploration of a diverse model
space, providing many reference points, and allowing for benchmarking relative to other work. Model evaluation should
therefore allow for many comparisons with minimal effect on inferential error rates. When existing NHST procedures are
adjusted for multiple comparisons, these adjustments are often impractically conservative with large k and small to moderate N
to avoid Type I error, as our case study demonstrates in Section 5 (see also Efron & Hastie, 2016). In contrast, the Bayesian
approach does not “accept” or “reject” hypotheses and is generally unconcerned with Type I errors as it only estimates posterior
probabilities. A Bayesian hierarchical model can directly account for the uncertainty from multiple comparisons, and applies
shrinkage to estimators to account for this uncertainty (Gelman et al., 2012).

Test an informative H0: In the case of the NHST in Section 3.2, we are testing a series of hypotheses of pairwise
equivalence between the candidate models. That is, we are evaluating H0: the performance of models X and Y are exactly
equivalent (while the naı̈ve average does not test an H0, here we could think of it as equivalent to an NHST that simply
always rejects). However, as noted previously, an H0 of exactly equivalent performance is almost always false (Benavoli et al.,
2017; Demšar, 2008). This H0 has been called “the nil hypothesis” after the probability that this hypothesis is true (Jensen &
Schmill, 1997, p. 1000). Particularly in the case of machine learning models, it is unlikely that any two algorithms have exactly
equivalent performance. Tests of this hypothesis, even when properly interpreted, are not indicative of any likely true state of
the world, and are potentially misleading.
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Table 2. Summary statistics for courses used in case study.
Metric Value SD
Number of Sessions 48 -
Number of Unique Courses 17 -
Total Number of Active Students 117,028 -
Total Number of Interactions 2,479,900 -
Average Number of Active Students 2490 2391
Average Length in weeks 9.8 2.6
Average Number of Unique Forum Posters 507 447
Average Number of Course Assignments 1.2 0.9
Average Number of Quizzes 18 16.8
Average Number of Human-Graded Quizzes 1.6 1.5

Provide direct evidence about H0: When conducting model evaluation, we are interested in directly drawing inferences
about some H0. NHST cannot prove the null hypothesis or provide direct evidence of it (Demšar, 2008; Wasserstein & Lazar,
2016), although they are commonly misinterpreted as doing so both in the broader scientific literature (Cohen, 1994; Demšar,
2008; Cohen, 1994) and in several of the MOOC experiments surveyed here. The Bayesian procedure, in contrast, allows
for direct inference about the probability of models having similar or equivalent performance, using the estimated posterior
distribution of the difference in performance between two models.

Separate magnitude, uncertainty, and sample size during inference: The effects of the magnitude of observed differ-
ences, the uncertainty of estimates, and the number of data points should be separable in model evaluation. However, both
the naı̈ve average and NHST obscure the influence of each of these factors. The naı̈ve average does so by simply ignoring
all three factors. An NHST only provides a p-value that reflects a mix of effect size and uncertainty (McShane et al., 2017),
even when the observed effects might be too small to be considered practically significant, or might be associated with a high
level of uncertainty. Even if the procedure itself might separate these factors, the reported p-value does not allow the reader to
differentiate between the magnitude of the effect, uncertainty, and sample size (Benavoli et al., 2017; Wasserstein & Lazar,
2016). This leads to the further complication that detecting a “significant” difference under a null hypothesis of equivalence
only requires collecting enough data (or conducting enough runs of cross-validation), under which conditions H0 can always be
rejected (Cohen, 1994; Demšar, 2008; Dietterich, 1998; McShane et al., 2017; Wasserstein & Lazar, 2016; Witten et al., 2016).
By using a region of practical equivalence (ROPE), the Bayesian method separately estimates the magnitude and variability of
each estimated effect (here, differences in AUC between a pair of models).

Together, these criteria collectively mount a strong imperative in favour of Bayesian model evaluation.

4. Case Study: Evaluating MOOC Dropout Models

In this section, we present and evaluate the results of an experiment that constructs and compares several dropout models across
a large sample of MOOCs using the three model evaluation methods discussed (naı̈ve average; NHST; Bayesian). Our goal in
this section is twofold. First, such a side-by-side comparison stands not only to illuminate procedural and inferential differences
between these approaches, but also demonstrate how they can produce different conclusions from the same underlying data
in practice when evaluating many candidate models. Second, we hope to demonstrate interesting and useful results in this
experiment: the data, feature extraction, and statistical modelling methods used here are common in applied predictive modelling
research in learning analytics, but have not been collectively compared in previous work. For additional examples of case
studies utilizing this method for classifier selection across multiple datasets, see Benavoli et al. (2017) and Corani et al. (2017).

4.1 Data
The data used in this experiment are a large and diverse sample of N = 48 sessions of MOOCs offered by the University of
Michigan on Coursera. These courses are from several diverse domains, including science and technology, finance, healthcare,
politics, and literature. A summary of the data for the courses used is shown in Table 2. The data are used to predict a binary
dropout label indicating whether a user showed any activity in the final week of the course.

This dataset represents one of the largest MOOC dropout prediction studies to date in terms of number of courses evaluated.4

This means the current experiment represents a reasonable upper bound for the number of datasets, N, that a MOOC predictive
modelling experiment might utilize (which serves as a limiting factor in the NHST procedure, as our results demonstrate).

4 The largest-scale work on predictive modelling in MOOCs to date are Li et al. (2016) and Liang et al. (2016), which each build predictive models on 39
XuetangX MOOCs, and Whitehill et al. (2017), which builds predictive models on 40 HarvardX MOOCs.
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For 48 MOOC courses, construct each combination of:
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Figure 4. Experiment overview.

4.2 Experimental Setup
The experimental setup, shown in Figure 4, is as follows: For each course session, we extract all four sets of features (clickstream,
forum, assignments, all). We train each of the 96 candidate models on each feature set, using 5 × 2-fold cross-validation, using
the same random cross-validation folds for every model, and recording the Area Under the Receiver Operating Characteristic
curve (AUC) as the evaluation metric for each model. We retain the fold-level results (the model performance on the held-out
model fold), which provides 10 estimates of model performance for every model on each session of the course. A sample of
this data is shown in Table 5). We then apply the three methods for model evaluation to this data.

4.2.1 Feature Extraction/Data Source
This process of transforming raw data into structured information suitable for use as input to a supervised learning algorithm
is considered one of the most important and difficult tasks in predictive modelling in MOOCs (Li et al., 2016; Nagrecha et
al., 2017; Robinson et al., 2016). This experiment is designed to provide insight into which of these data sources within the
Coursera (2013) platform might be most useful for MOOC dropout prediction. We evaluate four sets of features, each extracted
from a single data source, with all individual features based on prior work:

• Clickstream: Counting-based features representing the number of accesses to various course pages, number of forum
views, and number of video views. These features are common in activity-based dropout modelling (e.g., Kloft et al.,
2014; Xing et al., 2016). This is the simplest and smallest feature set.

• Forum Posts: Natural language processing-based metrics which measure sentiment, text complexity, and posting activity
gathered from “Combining Click-stream Data with NLP Tools to Better Understand MOOC Completion”, n.d., Robinson
et al., 2016, and Wen et al., 2014.

• Assignments: Academic performance metrics derived from students’ quizzes, peer-graded assignments, in-video quizzes,
and exams, including both simple features (e.g., average grade) as well as more complex features (e.g., number of
submissions relative to the highest number of submissions by any student that week) (Bote-Lorenzo & Gómez-Sánchez,
2017; Kotsiantis et al., 2010; Veeramachaneni et al., 2014). Where courses used no assignments, models using this
method defaulted to majority-class prediction.

• All: Union of the three features sets above.

All features and their definitions are shown in Table 3.

4.2.2 Algorithms and Hyperparameters
We consider the following models in our experiment: 1) classical decision trees (CART; Breiman et al., 1984); 2) L2 (or
“ridge”) regularized logistic regression (L2LR); 3) gradient boosted tree (Adaboost; Culp et al., 2006), used as a stand-in for the
widely used (Gardner & Brooks, 2018) random forest method5; 4) support vector machine (SVM) with linear kernel; 5) naı̈ve
Bayes (NB). These represent five of the most commonly used modelling algorithms in predictive models of student success in
MOOCs (Gardner & Brooks, 2018). A summary of the models considered, and any special preprocessing, is shown in Table 4.
In addition to constituting a representative sample of the models most often used for dropout modelling tasks, these algorithms
represent a broad spectrum of model types, including relatively simple, high-bias parametric models and complex, flexible,
nonparametric models.

5 The random forest method did not allow us to test consistent values of the mtry parameter, number of variables to consider at each split, because this
value depends on the number of variables in a dataset, and our experiment requires testing feature sets with different numbers of dimensions.
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Table 3. Feature name and definition by category.
Clickstream

Forum Views: Number of pageviews of forum pages.
Active Days: Number of days for which user registered any clickstream activity (maximum of 7).
Quiz Views: Number of pageviews of quiz attempt pages, as measured by clickstream features.
Exam Views: Number of pageviews of exam-type quiz pages, as measured by clickstream features.
Human-Graded Quiz Pageview: Number of pageviews of human-graded quiz pages, as measured by
clickstream features.

Assignments
Pre-Submission Lead Time: Time between a quiz submission and deadline for all submissions; discretized
buckets for t ≥ 7 days, 3≤ t < 7, 1≤ t < 3, 0≤ t < 1, and late.
Total Raw Points: Sum of total raw points earned on quizzes.
Average Raw Score*: Average raw score on all assignments.
Raw Points Per Submission: Total raw points divided by total submissions.
Total quiz submissions: Total count of quiz submissions.
Percent of allowed submissions: Total count of quiz submissions as a percent of the maximum allowed
submissions.
Percent of max student submissions: A student total number of quiz submissions as a percent of the
maximum number of submissions made by any student in the course.
Correct submissions percent*: Percentage of the total submissions that were correct.
Change in weekly average*: Difference between current week average and previous week average quiz
grade.

Forum
Number of Posts: Total number of posts.
Number of Replies: Number of posts by user that were replies to other users (i.e., not to themselves, and not
the first post in the thread).
Average Post Sentiment: Average net sentiment of posts (positive – negative); Hutto & Gilbert 2014.
Average Post Length: Average length of posts, in characters.
Positive Posts: Number of posts with net sentiment ≥ 1 standard deviation above thread average.
Negative Posts: Number of posts with net sentiment ≤−1 standard deviation below thread average.
Neutral Posts: Number of posts with net sentiment within 1 standard deviation of thread average.
Sentiment Relative to Thread: Average of (post sentiment – avg sentiment for thread).
Threads Started: Total number of threads initiated by student.
Unique Words/Bigrams: Count of unique words/bigrams used across all posts.
Flesch Reading Ease: Flesch Reading Ease score, discretized into separate features in increments of 10 from
0 to 100 (Kincaid et al., 1975).
Flesch-Kincaid Grade Level: Flesch-Kincaid grade level, discretized into separate features in increments of
1 from 0 to 20 (Kincaid et al., 1975).
Net Votes Received: Total net upvotes users’ posts received (positive – negative).
Note: each feature is calculated at the student-week level, resulting in p ·n features at week n. Features marked
with a (*) were calculated by quiz type (homework, quiz, and video), resulting in three different features, one
per quiz type.

5. Results Analysis
With four feature sets, 24 candidate models representing all algorithm/hyperparameter settings, and 10 iterations of cross-
validation on 48 course sessions, this resulted in a total of 4×24×10×48 = 46,080 total observations of model performance.
We apply each method (naı̈ve average, NHST, and Bayesian) in order to identify the family of “best” models, which we define
as follows:

Family of best models: a set F of m models, selected from a pool of N candidate models, which have the
best predicted performance on an unseen dataset. All models f ∈F have equivalent (or practically equivalent)
generalization performance to all others in F , but better performance than any model not in F . Models f ∈F
are sorted in descending order of performance, such that F = { f1 > f2 > .. . > fm}.

All three model evaluation methods provide identical recommendations about the highest-performing model in this
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Table 4. Algorithms used and hyperparameters tuned for each.
Algorithm Hyperparameters Tuned Total Models
Classification Tree Cost-complexity parameter (cp) 4
Logistic Regression L2 (ridge) penalty term (λ ) 5
Adaboost Boosting Algorithm (“Real Adaboost,” M1)

Number of iterations
6

SVM ∗, † Cost (γ) 5
Naı̈ve Bayes ∗ Laplacian smoothing ( f L)

Kernel
4

Total 24

Note: Each (algorithm, hyperparameter) set was used with each of the four feature types, yielding a total of 24×4 = 96
models. Preprocessing codes: ∗indicates zero-variance predictors, if any, were dropped for model training (as a requirement of
model-fitting algorithms); †indicates predictors were centered and scaled.

Table 5. A sample of the experimental data generated.
AUC Resample Course Session Model
0.946 Fold1.Rep1 Digital Democracy 1 CART(cp = 0.01, Features = All)
0.937 Fold1.Rep1 Digital Democracy 1 CART(cp = 0.1, Features = All)
0.500 Fold1.Rep1 Digital Democracy 1 CART(cp = 1, Features = All)
0.941 Fold1.Rep2 Digital Democracy 1 CART(cp = 0.001, Features = All)
. . . . . . . . . . . . . . .
0.748 Fold1.Rep1 Digital Democracy 1 L2LR (λ = 0.1, Features = Clickstream)
0.742 Fold1.Rep1 Digital Democracy 1 L2LR (λ = 0.01, Features = Clickstream)
0.743 Fold1.Rep1 Digital Democracy 1 L2LR (λ = 0.001, Features = Clickstream)
0.701 Fold2.Rep1 Digital Democracy 1 L2LR (λ = 1, Features = Clickstream)
. . . . . . . . . . . . . . .
0.523 Fold1.Rep1 Digital Democracy 1 SVM (γ = 10, Features = Forum)
0.529 Fold1.Rep1 Digital Democracy 1 SVM (γ = 1, Features = Forum)
0.517 Fold1.Rep1 Digital Democracy 1 SVM (γ = 0.1, Features = Forum)
0.507 Fold2.Rep1 Digital Democracy 1 SVM (γ = 10, Features = Forum)
0.508 Fold2.Rep1 Digital Democracy 1 SVM (γ = 1, Features = Forum)

Note: Each row represents a specific feature/algorithm/hyperparameter model on a specific cross-validation fold; all models
were evaluated on identical folds.

experiment (e.g., f1,naive = f1,NHST = f1,Bayes): while differences are possible between the Bayesian method, which uses
fold-level data, and the other two methods, which use average performance and rankings, the model performance was consistent
enough that such differences in F were not observed here. However, these methods vary in terms of the statistical inferences
they support; the size of F , and their ability to discriminate between pairwise comparisons across entire space of models,
even those not within F (we explore this because experiments often seek to evaluate results besides the composition of F ).
We demonstrate the NHST method’s limitations with the modest number of comparisons being performed on this dataset,
which results in an inability to discern differences between more than 50% of the models considered and a family of nearly 20
“best” models; that the Bayesian method generates the most robust and reliable inferences about model performance; and that
the Bayesian method supports useful inferences about the relative performance of many features and algorithms for dropout
prediction in MOOCs.

5.1 Naı̈ve Average Method
Recall in the naı̈ve average model evaluation approach, the experimental results are simply averaged by model, sorted according
to performance, and the model with the best average performance is selected (assuming no ties).

Applying the naı̈ve average method, we select Fnaive as the single model with the highest average performance. This is the
decision tree (CART) algorithm, with all features and a cost-complexity parameter of 0.001. The “family” of best models is
thus a family of one (this corresponds to the top row of Table 6). With the naı̈ve average method, every pairwise difference
is considered significant, regardless of the magnitude of any observed difference, the total number of models tested, or the
number of observations collected in the experiment; the observed differences are assumed to be accurate, not spurious, and
large enough to be practically significant.
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Figure 5. Critical difference (CD) diagram for models evaluated in this experiment. The bold CD bars connect models
statistically indistinguishable at α = 0.05; F̃NHST is indicated in orange. This figure illustrates the breakdown of the
CD diagram with large numbers of comparisons: the diagram is difficult to read and interpret, with large groups of

statistically indistinguishable models.

These results make clear how problematic the naı̈ve average method is. The difference in average AUC between f1,naive
and the next-highest performing algorithm is less than 0.003 (see Table 7). This difference is indeed small enough to be
spurious, practically useless, or both. With 96×95

2 pairwise comparisons, we might expect to observe some differences in model
performance due to randomness alone. Thinking in terms of Tukey’s card analogy, the question of how many “deals” we made,
and therefore how surprised we should be by the hand we have been dealt, is not considered by the naı̈ve average method.

Furthermore, the naı̈ve average method provides no principled estimate of the confidence or significance of our results,
which provides no basis for comparison for future work that attempts to replicate these findings on new data. Is our confidence
low, in which case a different result would be surprising? Or is our confidence quite high, in which case we would expect
similarly strong results in replications? The naı̈ve average method provides no answer.

Finally, because Fnaive contains only one model, the naı̈ve average method does not allow us to easily introduce other
considerations, such as model interpretability or training time, into our decision despite the fact that many models seem to
have performance reasonably close to the highest-performing model. If we had a set of practically equivalent “best” models
to choose from (if F contained more than a single element), we might select a final preferred model based on these other
considerations. However, under the naı̈ve average method, we only ever have a single model in Fnaive, leaving no principled
method for model selection even when the observed differences with other models are arbitrarily small.

5.2 NHST Method: Frequentist Nemenyi Test
The NHST procedure recommended in section 3.2 compares models via a two-stage, nonparametric test. Recall that first, the
Friedman test (Equation 1) is applied. If this test indicates a significant difference (as it did in this experiment), a post-hoc
Nemenyi test is conducted on all pairwise comparisons to determine where significant differences between individual models
may exist. Typically, the results of this procedure are reported using a critical difference (CD) diagram, shown in Figure 5.
However, the CD diagram is difficult to interpret with a large number of models, which is one way in which this procedure
breaks down under large numbers of comparisons; we instead present a “windowpane plot” of the results in Figure 6.

The models in F̃NHST are shown in Table 6, and correspond to the set of models in Figure 5 linked by an orange CD bar.
They are also shown in the windowpane plot in Figure 6 as the models having white-coloured cells in the top row (indicating
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Table 6. Family of models F̃NHST which are statistically indistinguishable from the “best” model.
Algorithm Feature Type Hyperparameters Avg. Rank Avg.

AUC
Diff. In Ranks Diff.

In
AUC

CART All cp = 0.001 3.376 0.901 NA NA
Adaboost All NIter = 50, Boosting = M1 3.978 0.899 −0.602 0.002
Adaboost All NIter = 100, Boosting = M1 4.118 0.899 −0.742 0.002
Adaboost All NIter = 500, Boosting = M1 5.198 0.897 −1.822 0.004
Adaboost Clickstream NIter = 50, Boosting = M1 6.725 0.89 −3.349 0.011
Adaboost Clickstream NIter = 100, Boosting = M1 7.344 0.889 −3.968 0.012
Adaboost Clickstream NIter = 500, Boosting = M1 8.704 0.887 −5.328 0.014
Naı̈ve Bayes Clickstream f L = 1, Kernel = True 10.708 0.872 −7.332 0.029
Naı̈ve Bayes Clickstream f L = 0, Kernel = True 10.708 0.872 −7.332 0.029
Naı̈ve Bayes Clickstream f L = 1, Kernel = False 19.288 0.788 −15.911 0.113
Naı̈ve Bayes Clickstream f L = 0, Kernel = False 19.288 0.788 −15.911 0.113
L2LR All λ = 0.01 19.521 0.78 −16.145 0.121
L2LR All λ = 0 20.036 0.779 −16.66 0.121
L2LR All λ = 0.001 20.036 0.779 −16.66 0.121
L2LR All λ = 0.1 20.039 0.778 −16.662 0.123
L2LR All λ = 1 24.258 0.752 −20.882 0.149
L2LR Clickstream λ = 0.001 24.578 0.75 −21.202 0.151
L2LR Clickstream λ = 0 24.578 0.75 −21.202 0.151
L2LR Clickstream λ = 0.01 24.744 0.75 −21.368 0.151

Note: Models with differences in average rank less than the critical difference of CD = 22.5936 relative to the highest-ranked
model f̃1,NHST are shown. All differences are relative to f̃1,NHST , which has average rank 3.376, average AUC 0.901.

that the models are statistically indistinguishable from the top-ranked model).

The large size of F̃NHST , which consists of 19 models, is due to the large CD computed via Equation 2. This is the NHST’s
control for the number of comparisons relative to the number of datasets. The large number of hypotheses in this experiment
drastically reduces the NHST’s ability to discriminate between closely-ranked models. As Figure 5 shows, the orange CD bar
connecting the models in F̃NHST occupies nearly 25% of the length of the number line of possible rankings. The procedure’s
discrimination could be improved if it used fold-level data (which would increase the sample size N), but this would require
applying a correction for the overlapping training samples. Such a correction to this test has not, to the authors’ knowledge,
been theoretically evaluated.

In sections 3.2 and 3.3, we discussed how NHST procedures fail to differentiate between the magnitude and the uncertainty
of the effects under examination during model evaluation. This is reflected in the results shown in Table 6. The NHST
procedure does not discriminate between models with large differences in performance (high magnitude) but high variability
(high uncertainty), and models with small differences in performance (low magnitude) but also low variability (low uncertainty).
This yields an F̃NHST where models may either show large differences in average performance from the best model, but with
large enough variability that this might not constitute a real effect, or models with small average differences but low variability.

As an example, consider the Adaboost models in Table 6 (the six highest-performing models after the decision tree). For
these models, the magnitude is quite small, with the difference in AUC from the highest-performing model never greater than
0.01, and we might agree with the NHST’s decision to include these in F̃NHST . In contrast, each of the logistic regression
models shown in the lower portion of Table 6 has an average AUC more than 0.1 worse than the highest-performing model — a
magnitude large enough to be considered practically important. However, the NHST treats both models as equivalent to f1.
A user simply presented with F̃NHST would have no way of differentiating between the Adaboost models, which achieved
comparable performance to f̃1,NHST with low variability, and the logistic regression models, which achieved inferior average
performance but higher variability.

Figure 6 also shows that the NHST procedure makes decisions in only 44.08% of the pairwise comparisons conducted
(those indicated by nonwhite cells). This provides little information about many pairwise model comparisons; it will make
fewer decisions as the number of comparisons k grows for a fixed number of datasets N. This illustrates how the frequentist
method is only able to make decisions when the observed differences in performance are large (or have low variability) and the
hypothesis space moderate, with significant differences only detected between the highest- and lowest-performing models in

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial
118-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)

118



82 8611 33 419 22 8718 38 726920 554942 62 76612 83 8878605726 734819 52 897 43 59 63 9545 77276 37 71134 858044 58 7031302924 7939 9212 756532 5416 2825 5046 4714 966415 40 91845651 3623 5121 9335 66538 8167 6817 9410 34 74 90

8411 9440 9586836 7710 62 9317 457 6737 50 73 74 9114 26 686032213 43 85 924925 7516 797864442 13 54365 34 895248 8723 8063 6924 30 39 905329 614642 815631 3318151 224 8272652819 3812 41 47 70 767135 66209 595551 8827 57 9658

32 85 946529 421 13 90 91375 6412 874 8050 7838 76392 673317 96818 5540 522510 35 474311 516 9515 936928 6149242316 70 837260 8922 7421 8675 9220 27 57 5836 73 846653463019 31 44 71 825414 18 6826 79 886259569 487 77413 34 45

24 9113 50 835837 614919 695526 895 292 6030 6746 812318 44 622715 33 9087 887 57 8622 36 80 84 934814 9264 8535113 8278 94761 59 7941 70 96474 43 73398 7163 9516 72312821 686 389 20 52 7566 74655651 77543410 4217 25 53453212

17 4612 26 9045 947616 705 53442514 8427 8528 82 886834 9152 55 89 95373119 831310 36 6223 47 74647 7150 5838 75 9618 57 921 2 7354 78 8615 4232 40 8065 723 6733309 77 9322 66 8729 35 41 6120114 6939 598 56 8121 6324 4843 796 51 60

9253 7411 86 95664435 90797023 816131 41 5826 71 80 87524 67 88133 552 695028 76 9312 20 38 9132 5627 4022 8372339 5414 65 8575425 3925 8419 6843 626 4724 371816 17 51341 8 4530 36 4615 7321 965910 49 77 7829 607 8263 94896457

40 69 8026 4318 685045 56 6344 70349 725 31 968617 6664 8838 533 854 15 907310 492916 746 83 896219 877 5128 6025 8122 36 7123 7512 32 8259 8457 9561461 9142 52 542114 398 47 932 11 6720 3313 9230 48 7958 786527 7735 4124 55 9437

644928 3211 31 55 574116 9038 6215 44 7553 8040 825953 65 67 8377 8974349 3510 12 85 92 9676 784221 932319 26 45 46 713984 613629 8824 79 876327 91867348471471 663717 22 5018 9554 69 9433 43 703020 58 60 7256 81686 252 525113

80426 17 4713 64 938910 90723 51 681 8452 7611 18 5030 75329 7978732019 21 334 62 815 855934 54 57127 554615 61 6553 74448 413524 8837 71 87864938 662916 9422 25 706343 82 83562823 95774539 40 9214 26 27 31 5848 966960 916736

27 6444 6639 54 652111 935822 35 918743 74495 7832 37206 1716 593110 26 857347 68292 70551312 5234 759 6224 8448 715642 92 9445 634 83258 86 88 95153 23 96766140 8933 7928 72 8230 907738 6750 5114 8153 80361 41 5718 6919 6046

847 28 75129 5949 7818 825755 7052 906611 20 883113 21 45 92912 275 25 4422 29 3732 541 30 48346 9579 8517 8943 8062 64 673614 9340 8763563835 7147 863319 513 42 5326 6141 58 815024 9477608 7223 73 74 76 9665 68 834615104 16 39

5814 77 94832724 59 64473 22 63 6739 84 89558 7329 3634 745 46 9237 4020 69604932 52 566 383521 483116 45 71 8743 6525 75 8650 53 79 88 938019 42 68 722612 15 44 81 969570 85549 62 82 9033174 7 11 9110 23 7618 786661511 13 302 5728

33 52 832013 26 37 826512 34 43 72 7329 89 906045 7618 68 956761 966 47 50 642 10 8827 39 91757 5611 7140 8136 939 5724 7958 6235 78773219 92413 441615 801 3814 48 665 868 254 852823 7442 7055 9430 31 87595351 8417 6954492221 63

12 563910 30 32 8219 7427 664440 5516 77 917337 62 65 96504933 34 7159 9047 81 846964515 7548 93632215 41 9453 8988 925735 367 29 6158 7942 862 95144 186 25 703 24 6760 80 857221 52 871 178 20 54 834623 26 38 7811 2813 689 7631 43

13 29102 2321 5517 7556 6222 273 24 54 874443 9536 8331 45 8176 92888520 917237 69 9026 6833251 77 867874715351 648 6358114 8949 7042 7938 805946 48 9630 5014 93 94675212 8415 16 576 7 6540 41352818 8219 32 665 473934 609 61

63 333111 687 664323 30 3520 95866514 9310 9215 51 58 8326 7238 55 6039 492 8861 96719 16 4618 63483613 62 9153 671 40 7722 9428 747019 642421 4425 50 7334 7657298 89824 52 5632 47 8554 75 87375 8412 7927 8159 694542 78 9017 41

30 4337 712318 28 4915 5640 5520166 7927 67 7719 46 5311 4113 956133 5738323 36 44 7852 6612 73 839 9239 75 7642 54481 91 9372 847050 58452221 47 94241410 34 82317 8 5917 6825 7469 8626 8860 8562 80 90 96512 81 87645 893529 6563

88372916 603 352819 817 862515 42 55 8769508 68 9576 804123 30 9318 673317 49 6348 57 65 75 85773220 54 7258 9021 9614 91847952 62106 13 8345 926664 8246 564311 39 73512 27 71 745 7022 404 24 6134 47 5344 8931 3612 9478381 5926

6113 63 8717 8511 954625 38 39 4227164 5 6 55 81544120 57 7131 6515 4814 772 88498 74 906929 66129 51 9436 4321 7053 62 9618 64 827319 7528 89 924030 477 868452 9345371 3222 44 50 8310 33 917267 7834 6056262423 35 7959 803 7668

674518 737255 631312 16 89613628 41 80663 19 9252 586 8543 71 77543520 81 8423 654 74 9324 9625 6421 50 90 955911 44 69 911 53 62 8727 40 7938 56 863726 88149 9431 60497 22 39 767010 51 8229 6832 75465 7834 482 1715 47 57 838 30 33

31 6646 67498 694 8441 4725 37 59 75 9236 631711 9438 393530 401 44 4515 5742 64225 68 7061 816 8727 797658 71 93621810 23 8960142 8648 9043 885651503 8019 33 785513 77 9132 34 72 8526 2897 21 9512 24 96837429 73 82655420 5316

6321 8515 66654 9 3118 8745 69 8644 82776234 5337 6112 3273 35 836 4813 573010 238 5020 6058 7925 493833 7136 804126 68 7322 747227 29 43 8821 471411 24 935 17 59 90 947652 70 81 8984 964028 75673916 46 6455 78 9156 9519 42 9251

52 764628 63 83118 96432 4 23 59 9086 87443733251710 5812 55 884830 62 71 7429 8218 731 47 51 6845 7516 9134 926420 50 53 56145 40 943976 133 67 706554 9372 803221 42 956024 4122 6926 81 8538 57 784919 36 8961 66279 843515 7931

11 85 92329 815441 714033 55 60 67613 52 7022 44 4518 7764 842 80 954839 51461613 17 38 43 73591 78 9128 876662 9436 494220 75683735 47 822723 7415 57348 868325 72 796926 566 245 31 76 8921 657 30 5012 901914 29 58 63 934 9610 53

9086195 30 6644 4521 37 4117148 10 838069 8475516 25 765248 62 71 777418 24 95492912 68 737 23 67 8742 5443 88814 9226 463 57 795336 40 941 13 35 8259 918947 786439 6332 5811 6034 722215 9328 65 8520 5038 969 31 612 7027 565533

26 6546 51432 74 86819 76531 77 79585 6941 89 9028 4232 44 48 50 943833 4031 73 78 8510 7011 8827 95835237 39 64 72208 6817 67 801813 84756155356 54 9615 71 9130 36 604 14 22 63 8723 29 3419 926224163 59 8212 56494525 477 6657 93

9610 39 76 786913 9131 32 33 565 856336 956 6824 54 61 847515 53 73 9349417 9 28 514819 7926 742 211 11 5916 37 82 906244 64 66 883 2322 2917 58 8127 72553834 8971304 7718 70 83 92148 4212 86 8750 605725 46 5220 43 47 804035 9445 65

885226 69 72715 27 9050 959331 82 839 177 7354 765321 6240 5825 843718 8664 9416 48 7544 4736 59103 3812 964311 6057 8739194 33 65 775623 815134 61426 15 665528 45 9270 913220 7974 8067 85 8922 63292 41 7824 684913 14 4681 35

856916 61 72 9258532721 30 832310 654519 967660 9322 6820 3818 36 6355 77 813524 46 803997 314 475 6215 756649343 26 8225 957864574329 441311 8437 796 947052 5428 90332 8951 74 88 9156 67 71 7332 8748 8640 411 595042128 14

3811 146 21 43 65 956445 60423213 7544 56 73 83 8946 61 7868 69 8051477 3725 8750 58262 30 7124 52 5329 77 908 36 66 8517 72 9635 8419124 28 823 943331 749 8834 4010 93705749 81235 59 796348 7641 6216 39 671 15 27 55 9254 9118 22 86

2914 449 18 782 3319 45 95735 8870 8525 6356 801 7446 59 6836 9632 574920 524342 918147 69 71136 9021 8623 723412 76 9438 40 51 7517 537 93874815 3937 55 796758 8216 22 652411103 624 6460 8327 4126 31 77618 3530 50 895428 84 92

22 7820 31143 10 7447 693324 4934 45 96911512 8416 64 6860 8556 8274 58 906226 614811 6643 8651 75 958341 928018 19 25 32 6537 5335 63 89796 39 721 8 5421 44 7130 40 70 9350 77 875 67 7617 948113 27 8828 55 599 36 7323 52422 5738 46

908280 834 36 58 8532 6119 37 956010 87543 5 13 30 9662477 53 72 771 286 17 33 63 8943 64 70 7150 52 758 35 76 7931 9116 46 8424 25 41292111 672 88 94512614 5622 66 9245 8165579 49483918 34 5527 4440 8668 937820 4223 6912 735938 74

898517 6621 48 7160 79329 59161 13 4718 54 6214 524063 26 33 58463834 64 8824 63 7225 8180678 9223 614539 78 969310 28 6915 762712 44 5749 8611 82687 9137 95435 354 77 9470 73 8475555320 362 31 746541 835142 50 5619 30 8729 90

8918 45 79375 53 5819 7433 958232 62 965616 9249 715520 76 8535 8051 9136 9312 5043 7514 4126 4428 39 4742 8638 57 61 6373 8323 25 6748 60592 401 31 70 81 84 8721 78136 4617 906927154 10 22 5429 949 8824 308 653411 777352 726664

82 91323 57 69172 8524 72626138 48 73 83764929104 74 7943 86 88525133 59 70148 542726 415 2519 37 786820 45 6539 81 958930 3613 42 9423 631 21 876 31 84471512 50 677 7540 5634 44 55 777118 469 8058 6635 53 64 9611 92 939016 22 60

9266 80 82 832 14 42 8864 9131 54361 44 53 812912 9652 8456 94204 59393016 27 32 413 72 785545 73 8621 2386 706951 57 9525 4738 75619 9022 3433 6228 87265 24 8910 7911 48 49 8550 6043 7613 467 6717 9368 71 773735 746319 5815 6540

6420 8748 85404 15 3914 938312 9221 7246286 7858 71 9550 9457 8017 2210 9116 903126 38 8825 42 49 6111 608 37 5624 29 533634 7513 54 79459 30 43 867652 84327 27 66 70 8144 513 7418 33 9663 67 7368352 77 8219 551 415 5947 6965 8962

1 47 53373219 49 52 6731 75 8663 702 27235 10 38 916839 5715 698 79 9617 21 713 2813 51 622211 48206 35 7876 80 9254 814516 88 9434 44 8729 60144 24 26 5036 6530 954633 7342 9359 8518 55 836125 43 56 72 899 66 9058 847740 74 8241127

573810 9285775016 4540 8669 845835 722 5417 735324 56288 29 624818 8747 63 66155 9174 8226 2721 61 6732 764111 49 609 65 80 904 42 5237 7046 643622 8913 23 396 20 6831 81 9451 88 9543 93337 55 96714434 7819 5925 75 8312 793014

753 11 61 927 29 65383312 48236 41 674715 9131 63 8610 8942 5127 46171 28 6945 96908553 84 957214 6421 40 7857345 6852228 35 6630 39 5426 5525 71 776259 60 874 3718 80 8816 32 362 43 7320 7924 7470 815649 50 839 5844 827613 9493

2482 918618 29 898877702519 736049 723 3022 3528 43 55536 5612 4841 42 78 8216 317 37 835710 45 81444 38 59 65 853314 34 6661 6358 64 8451 69 935 9 921311 62 95807420 50 8752 94 9646 9027 75 7947 7167401715 21 39 5423 36 76321 68

3 7844 5211 54 6827 8624 82135 778 26 6728 9610 3414 31 533921 4338 62 917 95321 30 3729 8841 70516 662 17 554820 56 897149 8169 908345 743323 7564 8012 73 9242 933618 7225 60 63 9440 61 85795846 504 9 35 76 878422 6516 47 5915 19

60 6924 6515 7151 79 9330 8261 771 4333 44 8726228 27 453 57 95 9670 904825 7631 646 18 5035 56 78754 13 47 6255 816314 8542212 7439 86 8917 52 6712 83685 7 41 58 84 9438 66 9216 36 7320 5911109 72 8019 29 5323 37 5434 918828 40 46 49

50 67472 17 9119 4218 20 73 8541 518 147 5924 36 664810 8664325 39 93786249 807965 7622 4311 909 13 8453 69 7521 5427 443 633430 897145 70 837416 3823 35 814 96875612 33 68 9215 2926 55 6025 77286 571 58 61 959472524637 884031

15 74434 4636 9438 701716 2212 76 9230 588 49 7739 52 7113 19 5131 8124 85827264 84 8710 21 29 9147 9057 63 8360 8956507 8068 8637 4218 6595 754834323 9528 33 5323 6741 5527 79615444 78 886611 35 732 20 59 62 96696 401 45 932625

34 35 96116 47 6749 652 8217 25 39 6430 68 76 806662 793 907237 757313 27 4844 958 10 24 9126 36 6914 81 831912 8445 9485604120 8840 575042 52 58 7453 897 31 873828 59 615646 925 16 231 15 18 3322 329 43 514 9371 7721 706354 7829 55

9487805 6633242 79582216 434225 7523 55191514 6813 17 9647 77 8320 61 8446 883 9264 9135 49 56 893926 679 10 44 6021 85 86 9030 521 74714529 34 486 11 785128 50 5418 828 72 7659377 6562 7040 81 9327 5336 57 6963 954112 324 7331

959339363 33 61525 51 54 6741 7668451715 19 4838 59 63 8577738 3229 64 72553023 89181 4420 8221 40 96909 43 914734 4914 3125 53 888316 7969 78 801362 35 56 8437 50 746627 28 8746 8112 58 70224 75656042 86 949210 57 62 717 2611

34 928618 28 68 75 8424 9416 7747 782011 48 5649 747010 21 5125 44 8254 5727 29 62 83 916 39 906591 67665946331413 193 41 58 85 9369 8771152 608 9626 8961 6336 5235 534022 8123 45 95314 767 30 43 50 804232 79 8864 723837 55175 73

4743 75 85636051 927420 45 785 6118 8436 8058 866 6723 73 9634 6827 5228 8315 553221 50298 42 65 7656 7933 8887407 82 8914 194 9454 729 5716 301 41 6964 9511 49 6644373 916246 812517 3922 7726 90 937024 31 53352 483813 591210

2824 34 847 43 74 903711 9418 493 63 8875 79 876 33 761 14 73 815546154 1310 9327 676640 7256 6453 574121 9178 8938 8661473619 8031 682 9 17 6016 42 92 9550 8582453526 71705222 29 837725 32 96625 58 6951 548 3920 65302312 5948

856731 922818 396 4240 462 443 8 29 693410 302621 7816 60 9554 80 8927 50 58 71555 907 4325 49 94872419 654533 35 665117 9359 62 72644837 38 7368 884732 8370 962315 767413 14 53224 868456 61 6341 52 5712 9136119 75 79201 8277

9087 9119 4745 703721 6714 8842 6918 33 6431 3227 532924 846523 80391510 8940 60 796 35 5546 9563 7325 59 864 6211 30 5043 665451 26 61 82442 8120 573617 857 75 785622 583 52518 28 93 9677714838 7674 83 9249 9412 16 419 7234 68

7643 6519 8448462 6734 37 66216 86 8928 5917 18 755 23 38137 826414 4112 77 88613 63 907460 72 9131 56 9450 704932 9224 5545 73694 80151 9327 54 9520 409 5810 44 572916 3011 7139 8168523533 875147 788 22 42 7953 6226 36 8325 96

41 69 767 31 6150 5629 8219 5411 42 71 9210 44 4523 25 62 728 968515 9570 9121 7460 8658 8339 55 75 77 949357 847820 8140 59 7930 6352 90351 344 96 435 66493314 8732 64482412 27 68 882826 5318 894713 163 17 222 38 6751 804636 7365

7528 52 74 8982307 61 84 85171 5847 808 9240 916813 18 76 9565 87 9454 5723 66 786236 67 7110 8149 90129 33 834321 72 7319 4539 414 14 4432 6042 51 7024 7734163 5 15 59 6320 5048 693826 35 46 64 9622 5531 86 932 6 37 887911 53 5627 29

726017 8321 5835 49 703226 713 2928 55 782416 9015107 628 85372 33 8473685014 672018 61 8865 873930 316 34 5722 5313 5948 9627 4612 19 42 8643 80 9123 5636 6438 5244 6345 9569 7625 79 92746640 811 41 51 894 47 77 938254 75 945 9

8235 6434 37 8959 7651 7357 6660 62 926 5846 84 961 7568654233 74 9054493225 40 53 8818 7756 63 694 22 38 41288 14 851513 27 472117 50313024 7845 803 91815539 9426 6152112 165 20 9536 70 7112 4410 439 4823 677 79 932919 86 8783

651 723 9054 59 737 47 78744112 27 683329 665531 70 9688 8982106 81 8423 51 917524 30 48 6720 49 9440 853825 83 866242 6119 69528 77 9216 502818 359 26 71463617 5622 44 64453914 15 3713 7953 57 76 935 34 602 11 8063 9521 32 874 58

4827 886834 9014 71 9657 8431 9337 40 8626 41 7929 8217 725118 24 25 92139 6652 5512 6349 67 778 756122 782 466 6433 473 597 38 4216 54 8570 801915 53 9456443932 655028 43 8945 837460 875 23 694 21 7335 76 9562 8110 5836 912011 30

946028 8371 7221 90473413 5633 84 8546 49 5412 6665 79 8116 8214 15 45 7335 7830172 807543 58 69 8883 4810 55209 6725 9518 19 964422 26 38 57 87766461 9159402723 3724 704239321 636 8677 8929 936236 6853 9241 745150 52314 7 11

6613 398 67 8942 92834 11 7926 31 3414 71 8657 8141 43 736 35277 64475 885137169 504410 69 9515 5538 91753 22 85524923 452 53 5946 62 7860 9336 48 56 777617 90 9620 82722518 84747058 6321 6519121 28 5430 6829 80613224 33 9440

19 69278 12 7110 4847 62 7342 7536 504 26 2917 8833 38 576 7 31 81 8530 8749 63 7674 79 90 962113 725 11 442332 925845 68 833528 5552 93259 3724151 7032 671814 7754 6643 53 564139 8916 7846 51 8434 9120 40 59 61 9565 8280 8664 9422

927629 7537 5621 3523 33 52 6941 64 87 9012 14 47 48 5913 827818 70173 279 6258282011 83665 93545015 22 72 80 91491 7 7734 7453 7939 6140 57 6345 84 8919 6532 813016 554231 6044 464 3836 9424 68 962 88857367 9551 864325 268 7110

44 89126 872 42419 5445 517 9414 5924 72 916335178 7015 64 783616 31 928218 958537 6934 746839 7321 67575 96614 22 55 7776 79715828 62 7511 23 25 32 5229 33 5343 86 90 935647 8427 4019 26 6546301 836049 80483813 88503 20 66 81

7664 91371413 7529 31305 8842 5241 494 685948 956 81738 39 722 21 8723 931918 44 926016 61 84671 6946 6697 8034 715610 35 7963403317 2722 8215 5511 969051 62363 8657 74 856526 5312 24 7832 4728 835838 70 77 9425 45 5020 43 54

694138 39 5716 42 75532115 59 655244 553512 918819 3023 50 60 9022 68 8633 8179471 8 17 2510 958020 494636 48 58 77 8540 7627 733229 83 934337 6334 8228 71243 546 45 78642 31 6714139 61 9611 89727 26 7456 62511854 66 8770 84 92

19 5958 673820 8122 9553 916227 807754 83465 10 33 9421 36 6455 5729 85284 56 619 86 906 4326 7917 7652 69653418 75 937115 323 737241 48 7882 88744224 63 871 23 49 847 92684745391614 35 4412 31 50 8911 40 9613 70 8237 60 6625 30

35 533733 93765626 45 59 9411 625748342 66 7136 73 9047 65633230 5213 19 9550 7522 7944427 6461 676 383 8514 24 928 25 7215 49 51 845818 21 919 16 17 31 6854 6012 8727 78235 69 88 9680 8240 77101 4629 814 8343 867028 3920 41 74 89

30 96867 31 40 7855 9348 51 6127 6936 4241 79 944518 6534 46 524910 13 156 14 74 8863 83 89268 57 684 4716 39 443532 95915322 8054 561 76 8559 6025 8743 9011 70 72 8253 28 71 8417 29 736623 24 67 7721 6438 50 58129 37 6220 812 7519 33

7729 58 694939 8936 683 7921 6459 728 6244 91 9218 888615 1917 8711 13 5624 66262 7132 73 75 785237 4210 826325 8522 434 47 5754339 28 60516 908412 237 3530 5316 76483414 8145 65 93 9655 611 6738 8031 50 704640 94835 7427 4120

55 7137 7625 56 786741 6920 61355 85 9682 8824 42 6232 44 8157 6036 5418 309 298 10 504 52 65 8415 21 90807 196 16 27 482 17 8711 51 86 9166 7547 7443 6814 9445 9226 581 7012 8334 64 9563383331 532823 49 59 7773133 8922 39 7240 7946

40 45 4923 31 524 20 26 70 7234 7446 603 946233 37 825010 6358252 15 75 81 921811 79595543 8812 6714 6427 477 6630 935724 776 969513 21 2816 69 8441 65 78445 801 19 36 54 7153 76 8673563832 48 839 4229 9122 518 3917 896135 85 8768

51 8557 733935 38 94637 5830 777429 926114 836843275 8144 65 8419 48 7859569 95552415 4628 37 41 42 70 89 9632 69 8626 7923 60 8713 888234 93522 71 8010 501 5440 454 49 724731 9053 6217 333 12 6436 7675188 21 66 6711 252220166

15 34119 81578 886 4816 18 42 8726 6928 537 83683 43 90702217 2410 5932 61 6436 662 7560 7251 914 84 9563 7631 8646 65 8047 553312 45442913 8938 931 25 7321 5241 7827 5654 67 745037 79 9439 713514 9277584920 30 62 82 854019 235

2423 786348 83724 50 857042 917 8938 57532 19 41 8776 94648 9 4030 54 9229 5837 8128 55 685215 39 8631 43 826134 4712 455 17 663 844925 3310 4616 731 8851 602713 623635 8079 936 44 965932 672621 957420 71 7718 65 9022 6914 7511

7525 364 52 54 88764539 7419 865337 8962159 664332 5 2918 572721 44 5933 6538 5522 31 64 9412 56 9116 8428 7035 46 834926 726148 68 93853010 9532 4011 69 7861 80794234 71 7723 60 9213 87825020 907 968 7367 815841 6314 512417

7249371714 26 55 8212 201 313 1815 59 6227 40 56 8016 9277742 24 33 71459 3019 42 866152324 53 895 11 29 81 8535 75 9644 6641 6043 9422 34 8458 79 9339 7869387 10 67 76 87 908 36 46 70575023 47 886 51 64 6521 73544828 9163 6813 25 95

43 8844 765752 7329 933520 67 78 9147 83 953725 714219 409 5828 46 7451 683 134 8024 39 5434 62 9432 61 907 4938 92635 6 5017 6455 7722 8915 72 8127 48 70 8466 755326 6911 60362 8614 2321 41 87458 3110 56 59 791 963016 853318 8212

8057 81 85 88339 17 39 59 947034 9247 7963 82716020 84 937627 5136 8729 7838 6141 565 16 5244 64 726245 834810 69 9118 1912 7328 5835 7425 897750433215 30 4621 9526 40 553 4224 908631 498 7567146 377 661 9668542 22 234 6511 13

13 28 736733 64 8542 49 72 885 44 927873 63 7450 61 8077564811 20 602412 681 46 6217 7910 945445 7151 5334 38 7569354 8429 5737 478 8322 26 55 964019 52 906 65 952 27 3231 827658 9343 87169 1814 25 70 812315 86 8921 36 41 59 6630 91

8756 6819 7736 4634 4441 48 85 933 3123 42 696 16 38 4729 43 80 83575 12 26 5814 728 744 21 22 913911 8473 9432 53 965552 896724 33 7137 407 8876 90639 7875 81 8210 6050 64 9227 542818 6630 652 51 6159 9515 45 6213 17 20 861 35 4925 70

68 7131 38 645810 162 625011 8742 8221 6930 4027 85784 9424 6734 5317 41 564326 8157 61 7570 766665 8818 51 847 55 60 7714 723 39 495 48 9386 9520 29 3513 28 46 90 9145 7325 52 74 8037 5436 831 32 923322 63199 15 4744 79 89236 128 96

3452 16 21 25 40 8515 3026 323 4 55 73 82 924933 38 686456 9590 91847 939 353122 61 6614 5428 724610 67 785712 39 48 7917 70 71694329 36 868374191 8820 654441 767551 52 81 89774711 423724 59 87272313 586 8 18 45 6253 9660 948063

793 59 8863 73 745 898550 8042 4631 5430 47 9270622 278 37 6758 9134 56111 4924 6416 8613 816 29 41 61 8333 43 60 66 755522 94575223 8410 7776359 6520177 14 39 40 907169 72 82 954 322612 4418 7815 4525 5348 513819 21 9628 9368 87

1 5723 5528 723831 4412 35 713610 6347 76 9518 9182 8583 962515 27 43373 5448 73 775614 22 89 93493411 693932 5841 51 94797 339 644216 29 84665 61 887021 5340 45192 6720 65 87818 6017 52 756 24 68 90625013 26 74 92804630 86594

5310 968 20 25 908556 70277 933 37 915549 81575245 59 691 727148 50 8876 8326 4641 9486634731 542 6519 8928 29 64 80673418 23 4421 2417 7515 30 955 16 364 12 32 33 35 38 58 84396 7711 7913 6260 9214 78424022 5143 8266 879 68 7473

10 75 8349 736 65157 72563 32 807745 89 9348 9618 9222 36 39 4025 958729 352616 689 678 42 64 69 9027 85 883812 61 812420 76664 8274463728 30 94442 41 57 9117 5921 5452 78315 19 60 797014 5853 866233 5550 6313 23 8411 5143 711 47

473821 5226 275 7815 56 9025 7161 76 86 898360 6429 779 41 853122 82 887 936754 72 7516 693211 37 705812 17 9663 66 80 9536 57 73652 19 43 81 875544308 42 9214 3933 746 20 794 8451 911 18 493 5913 48 535028 9434 40 686210 24 4523 46

74 49 542824 917938 555043 897531 7632 785 5333 625244 7758352717 84 868359 7118 20 48 60 8026 30 3411 362110 232 37 6819166 72 8113 41 5629 42 8747 96151 25 85518 9014 4612 70 9563 82 929 39 5745 67 6940 6461 9365 8822 943 66 73

10 74 805 891563 20112 9328 874939 94885231 8664577 7818 69368 13 7675374 63 7061 7214 56 8168 83 855024 26 737143 5853 793534 954412 5423 6745 9033 42 47 59 77382217 8427 91 92655146 9666 82321 30 4016 41 4829259 6019 5521

17 373528 332 7298 8416 4534 6919 9455 593938 40 8274 9580 89736346 5242 7923 5730 5818 50 6215 64 68564726 93785 10 201 9270 8341 9087816113 6748 756624 77 91604422 25 296 14 65 8551364 31 767 21 32 863 5449 7112 53 8811 43 96

64 6735 733010 8165 66 7870 79 86 88 9612 9113 48 6129 47 5914 40 532520 7137 851 6352 698 27 90282619 24 9355 7721 607 11 43 5442 5744 87174 22 46185 7262 9531 82 9223 743 50 842 16 9468563915 45 584132 36 8049 89835138 76346 9 75

684740 89889 71 77 80 8311 18 543 78 9250 5144 65617 17 20 8669142 36 37 4821 4665 7315 5722 791 32 9038 74 765853 7255 8229 3933 7026 42 62528 9423 8525 49 8113 24 67 954316 30 5645 635934 8460 87 9310 19 66354 12 3127 28 9141 64 96

26 555437 8650 7330 48 74 76 8561 77 8013 7210 64 924 719 56 6022 36 82 88 906552 7925 29 3917 532 21 46 6919 40 4428 818 78 831 84493 685 2720 7523 47 62 9545 51 9657 6715 18 34 43 9416 9311 426 24 31 35 8714 4112 6658 91337 38 5932 8963

rpart_1_quiz (96)
rpart_0.1_quiz (95)

rpart_0.01_quiz (94)
rpart_1_all (93)

rpart_0.1_forum (92)
rpart_1_forum (91)

rpart_1_clickstream (90)
rpart_0.01_forum (89)

adaboost_500_Real adaboost_quiz (88)
rpart_0.001_forum (87)

nb_0_FALSE_1_forum (86)
nb_1_FALSE_1_forum (85)

adaboost_100_Real adaboost_quiz (84)
svmLinear2_0.001_forum (83)

nb_0_FALSE_1_all (82)
nb_1_FALSE_1_all (81)

adaboost_50_Real adaboost_quiz (80)
svmLinear2_0.01_forum (79)
svmLinear2_0.1_forum (78)

adaboost_500_Real adaboost_forum (77)
adaboost_100_Real adaboost_forum (76)

svmLinear2_10_forum (75)
svmLinear2_1_forum (74)

adaboost_50_Real adaboost_forum (73)
nb_1_TRUE_1_forum (72)
nb_0_TRUE_1_forum (71)
svmLinear2_10_quiz (70)

adaboost_50_Adaboost.M1_forum (69)
glmnet_0_0.01_forum (68)

glmnet_0_0_forum (67)
glmnet_0_0.001_forum (66)

svmLinear2_0.001_quiz (65)
glmnet_0_0.1_forum (64)

adaboost_100_Adaboost.M1_forum (63)
svmLinear2_1_quiz (62)

svmLinear2_0.1_quiz (61)
rpart_0.001_quiz (60)

svmLinear2_0.01_quiz (59)
adaboost_500_Adaboost.M1_forum (58)

glmnet_0_1_forum (57)
svmLinear2_0.001_all (56)
rpart_0.1_clickstream (55)

adaboost_500_Real adaboost_clickstream (54)
svmLinear2_0.01_all (53)

adaboost_500_Real adaboost_all (52)
rpart_0.1_all (51)

svmLinear2_0.1_all (50)
adaboost_100_Real adaboost_all (49)

adaboost_100_Real adaboost_clickstream (48)
svmLinear2_0.001_clickstream (47)

adaboost_50_Real adaboost_all (46)
adaboost_50_Real adaboost_clickstream (45)

nb_0_TRUE_1_quiz (44)
nb_1_TRUE_1_quiz (43)

adaboost_500_Adaboost.M1_quiz (42)
adaboost_50_Adaboost.M1_quiz (41)

adaboost_100_Adaboost.M1_quiz (40)
svmLinear2_0.01_clickstream (39)

nb_0_FALSE_1_quiz (38)
nb_1_FALSE_1_quiz (37)

svmLinear2_0.1_clickstream (36)
svmLinear2_1_clickstream (35)

svmLinear2_1_all (34)
svmLinear2_10_clickstream (33)

glmnet_0_1_quiz (32)
glmnet_0_0.1_quiz (31)

glmnet_0_0_quiz (30)
glmnet_0_0.001_quiz (29)

glmnet_0_0.01_quiz (28)
svmLinear2_10_all (27)

glmnet_0_1_clickstream (26)
nb_1_TRUE_1_all (25)
nb_0_TRUE_1_all (24)

glmnet_0_0.1_clickstream (23)
glmnet_0_0.01_clickstream (22)

glmnet_0_0_clickstream (21)
glmnet_0_0.001_clickstream (20)

glmnet_0_1_all (19)
glmnet_0_0.1_all (18)

glmnet_0_0.001_all (17)
glmnet_0_0_all (16)

glmnet_0_0.01_all (15)
nb_0_FALSE_1_clickstream (14)
nb_1_FALSE_1_clickstream (13)
nb_0_TRUE_1_clickstream (12)
nb_1_TRUE_1_clickstream (11)

rpart_0.01_clickstream (10)
adaboost_500_Adaboost.M1_clickstream (9)
adaboost_100_Adaboost.M1_clickstream (8)
adaboost_50_Adaboost.M1_clickstream (7)

rpart_0.01_all (6)
rpart_0.001_clickstream (5)

adaboost_500_Adaboost.M1_all (4)
adaboost_100_Adaboost.M1_all (3)
adaboost_50_Adaboost.M1_all (2)

rpart_0.001_all (1)

Frequentist Decision

Y > X

Y < X

No Decision

Frequentist Model Decisions

Figure 6. A “windowpane” plot showing decisions for frequentist method (adapted from Mullis, 1993, via Gelman et
al., 2012). All models are shown along each axis in identical order of decreasing performance. Cells are labelled with

the rank of the model along the x axis.

the sample. This leaves little room for interpretation of the relative difference between, for example, models using quiz vs.
forum features (and leads us to conclude that, in most cases, all we can do is draw no conclusion based on the observed data).

Finally, we must correct an abuse of our notation of F . While we would like to conclude that the models shown in Table 6
are the “best” models, and while this is often implied in the analysis of NHST procedures, to do so would be incorrect. Instead,
we are not able to draw any conclusions regarding the differences in performance between these models using the NHST
procedure. For these models, “the experimental data is not sufficient to reach any conclusion” (Demšar, 2006, pp. 14). This
is the inferential equivalent of not being able to reject the null hypothesis, and is why we use the notation of F̃NHST instead
of FNHST . A frequentist approach can never prove the the null hypothesis of equivalent performance (Corani et al., 2017;
Kruschke, 2013), and instead only produces inconclusive results. NHST can therefore never positively identify FNHST as
defined.

This is a scientifically unsatisfying result, and it is crucial to the argument of this work: the NHST does not tell us about
what we want to know about our experiment. In fact, it allows us only to draw conclusions conditional on a nil hypothesis that
is almost certainly false: that all of the 96 models evaluated above have exactly equivalent performance to all other models.
Estimating the probability of observing our results conditional on this hypothesis yields little useful information about the
observed data and no information about F , or about pairwise comparisons between more than half of the models in our
experiment.
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Table 7. Family of models FBayes.
Algorithm Feature Type Hyperparameters Avg.

Rank
Avg.
AUC

Diff.
In
Ranks

Diff.
In
AUC

CART All cp = 0.001 3.376 0.901 NA NA
Adaboost All NIter = 50, Boosting = M1 3.978 0.899 -0.602 0.002
Adaboost All NIter = 100, Boosting = M1 4.118 0.899 -0.742 0.002
Adaboost All NIter = 500, Boosting = M1 5.198 0.897 -1.822 0.004

5.3 Bayesian Model Evaluation Method
Recall that the Bayesian method, described in Section 3.3, uses the differences in AUC for each pair of models on each
cross-validation fold to estimate θ = (P(X > Y ),P(ROPE),P(X < Y )). ROPE is the “region of practical equivalence,” and
denotes that the difference between X and Y is smaller than some pre-specified threshold. This can be thought of as creating a
posterior plot, as in Figure 3, for each pair of models, and using this posterior distribution to compute each probability in θ . For
this experiment, as in previous work using this procedure (Benavoli et al., 2017), we use ROPE = 0.01; that is, models are
considered practically equivalent if the difference in their AUC is smaller than 0.01.

The Bayesian procedure thus allows us to differentiate between cases where the magnitude of the difference is small (the
difference |X−Y | ≤ ROPE, and therefore the models are “practically equivalent”), and cases where this magnitude is large
(|X −Y |> ROPE, the model performance is meaningfully different). This is useful because we tend only to care about the
latter: if the difference in performance of two models is small, we might consider other aspects of the model, such as training
time or interpretability, in order to select which to use.

We present FBayes in Table 7 and Figure 7. The Bayesian procedure returns a more precise family of “best” models than
NHST: FBayes contains only four models. All models in FBayes have a P(ROPE) greater than the decision threshold of 0.95.
This threshold value is selected to replicate Benavoli et al. (2017); adjustments of the threshold even to 0.999 had minimal
effects on the decision in most cases (the model has high confidence, given the data).

Additionally, there is an important epistemic distinction between FBayes and its frequentist counterpart F̃NHST . Using
NHST, recall that we were not able to conclude anything about the models in F̃NHST : we cannot reject the null hypothesis
of equivalence, but we do not prove or provide evidence that these models are equivalent. However, the Bayesian procedure
directly estimates the probability of two models being equal: this is P(ROPE), the probability that models X and Y are
practically equivalent. Being able to model practical equivalence is quite beneficial for a large hypothesis space: there are many
comparisons for which the model performance is reliably within the region of practical equivalence (ROPE), and the Bayesian
approach can assign high probability to ROPE in such cases. In contrast, the frequentist paradigm can never conclude that no
difference exists; indeed, given infinite data, as noted above, the frequentist paradigm will always conclude that a significant
different exists (even when this difference is very small).

FBayes is smaller than F̃NHST , in part because FBayes is sensitive to the magnitude of the difference between models. Only
those models with small differences in performance relative to the best model f1 are in FBayes; those with large, but highly
variable, differences from f1 are not). The Bayesian method allows us to make substantive conclusions about those models.
These conclusions are not conditional on the assumption of a null hypothesis of equivalent performance (which is almost
certainly incorrect in most cases), and is instead only conditional on the data we observe.

While the naı̈ve average approach may be favoured for its ability to yield a small, precise F consisting of only a single
model, the Bayesian approach nearly matches the precision of using a naı̈ve average approach in this case. However, the
Bayesian method does so without making unwarranted assumptions about the significance of observed differences — recall
that the naı̈ve average method simply assumes that all differences are significant. Instead, the Bayesian approach uses
hierarchical modelling to directly estimate the probability that each pair of models is practically equivalent, given their observed
performance.

Above, we demonstrated how the NHST method is especially sensitive to the number of comparisons, for a fixed number of
datasets, in order to control the size of the cricial difference. Additionally, this requires researchers to track, report, and account
for the full scope of comparisons performed in the course of an experiment — despite the fact that increasing the number of
comparisons will reduce their ability to detect a statistically significant effect (by increasing the size of the CD). For Bayesian
model evaluation, large numbers of comparisons are generally not considered to be a concern (Gelman et al., 2012), because
the concept of a Type I error does not exist under a Bayesian framework. Additionally, the hierarchical model accounts for the
variability within and across models, reducing the estimated effect sizes (in this case, differences in observed performance) as
necessary (Gelman et al., 2012).
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Figure 7. Windowpane plot showing FBayes. The Bayesian method estimates the posterior probability that two models
are within the “region of practical equivalence” (ROPE), which is not estimable via NHST.

5.4 Implications for Predictive Modelling in MOOCs
In previous sections, we focused on the methodological implications of our case study. In this section, we evaluate the practical
conclusions from the case study. We intended this experiment to be useful, interesting, and realistic, and we present the main
findings with respect to predictive modelling in MOOCs here (using the results of the Bayesian analysis).

Table 7 and Figure 7 both show that all models in FBayes use all features — clickstream, forum, and assignments: models
that used these combined features made better predictions than those with only one of the feature sets. Additionally, Figure
7 provides further information on which individual feature sets (and data sources) demonstrated the best performance: by
inspecting the model rankings, and the large “blocks” of practically equivalent models, we see that models using clickstream
features consistently outperformed models using forum or assignment features, and in many cases clickstream-only models
were competitive with, or practically equivalent to, models using all features. In most cases, models with forum or assignment
features produced practically equivalent performance, regardless of algorithm and hyperparameters used, as indicated by the
large “ROPE” block in the lower right-hand section of Figure 7. This suggests that no model was able to extract substantially
more information than any other from the forum and assignment features; we hypothesize that this is because these features are
highly sparse and are only available for a small subset of students who choose to complete those optional activities.

In terms of particular algorithms, FBayes shows that nonparametric tree-based models show the best performance across the
large and diverse sample of MOOCs used here. This comports with current practice in learning analytics, where tree-based
methods are already widely used (Gardner & Brooks, 2018).

Additionally, Figure 7 demonstrates that, for many algorithms, hyperparameter tuning appears to have had little effect,
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especially relative to the obvious effects of feature type: many different tunings of otherwise-identical models are practically
equivalent, or even adjacent in the average model rankings. This suggests that future modelling efforts might achieve the most
substantial performance improvements from feature engineering using a rich data source, such as the clickstream, and not from
extensively tuning sophisticated algorithms on sparse or uninformative feature sets. Using a reasonable default hyperparameter
setting might, in most cases, be sufficient to realize most of the models’ performance benefits if the feature set is of high quality,
as our experiment included the default hyperparameters for each model.

Often, predictive models in learning analytics require interpretability in order to communicate the findings to stakeholders or
inspect the model itself. This case study demonstrates several findings of interest here. First, it shows that a highly interpretable
model (CART) can achieve excellent performance. Other interpretable models, such as the L2LR model (models 15–23 in
Figure 7) also achieved relatively strong performance. Second, the procedure demonstrated here could be implemented with any
class of candidate models; if a researcher wished only to use a certain type of highly interpretable algorothm (such as the logistic
regression models considered), these could be used as the candidate model space instead. Third, in a case where interpretability
is perhaps secondary to predictive performance but still important, the most interpretable model could be selected from F ; in
the case of FBayes, this would likely be the CART model.

6. Conclusion
In this work, we are concerned with advancing the state of the learning analytics field with respect to the evaluation of predictive
models. We presented the results of a comprehensive literature review to assess the state of the practice in the field, and
presented an overview of several techniques for model evaluation. By applying these results to a realistic and comprehensive
case study using a large set of MOOC data, we demonstrated the differences in substantive conclusions supported by each
method. In particular, we demonstrated the power of Bayesian model evaluation to draw highly precise, informative conclusions
about the performance of feature-algorithm-hyperparameter combinations, even across a large space of candidate models.
Under the Bayesian model evaluation method, our case study specifically demonstrated the importance of feature extraction
to model performance, and in particular demonstrated the predictive performance of clickstream-based features for dropout
prediction (and the relatively poor performance achieved by using only forum- or assignment-based features, regardless of the
statistical model used).

We hope that this work contributes to a growing movement in the field toward addressing several of the existing barriers to
rigorous model evaluation in learning analytics and across domains, including those described in Section 2.2.

While the fields of learning analytics and educational data mining are only a decade old, 6 the techniques we have presented
here borrow from the work of others done over the last 15 years in the broader machine learning community, and largely reflect
the evolution of the field of machine learning as a whole as it develops methods to address new challenges brought by the
expansion of data science and computing.

With the growth in the size of datasets available (e.g., MOOCs), and the ability to run thousands of permutations of analyses
on desktop hardware, we are concerned with the lack of rigour when selecting and reporting on the “best” predictive model. This
is especially important as there are a number of pragmatic elements when operationalizing predictive models — computational
speed, robustness in the face of missing data, and interpretability — all of which might influence adoption ability. In this
work, we have shed light on techniques that can help inform these choices, and we look forward to the growth of rigour in the
community as a result.
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