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ABSTRACT 

With the advent of computers in education, and the ample availability of online learning and practice environments, 

enormous amounts of data on learning become available. The purpose of this paper is to present a decade of 

experience with analyzing and improving an online practice environment for math, which has thus far recorded 

over a billion responses. We present the methods we use to both steer and analyze this system in real-time, using 

scoring rules on accuracy and response times, a tailored rating system to provide both learners and items with 

current ability and difficulty ratings, and an adaptive engine that matches learners to items. Moreover, we explore 

the quality of fit by means of prediction accuracy and parallel item reliability. Limitations and pitfalls are discussed 

by diagnosing sources of misfit, like violations of unidimensionality and unforeseen dynamics. Finally, directions 

for development are discussed, including embedded learning analytics and a focus on online experimentation to 

evaluate both the system itself and the users’ learning gains. Though many challenges remain open, we believe 

that large steps have been made in providing methods to efficiently manage and research educational big data 

from a massive online learning system. 

 

Notes for Practice 

• We analyzed an online adaptive practice environment for arithmetic, actively used by over 400,000 
primary school children in the Netherlands. 

• Adaptive practice is achieved by continuously tracking both student abilities and item difficulties, and 
matching students to items. 

• A unidimensional adaptive algorithm, separately employed within each domain (e.g., multiplication), 
takes care of tracking abilities and difficulties. 

• We show that the obtained unidimensional ability and difficulty estimates are, to a large extent, 
reliable and accurate. 

• Moreover, we explore the many sources of misfit, or violations of the unidimensionality assumption, 
including differences in response processes (fast and slow responders) and response strategies 
(erroneous strategies that work for clusters of items). 

• To advance the field of learning analytics, we call for active analytics such as exemplified in this 
paper. Learning analytics must actively help direct a student towards his or her educational objective 
by means of embedded analytics that not only analyze the student, but also shape their learning 
path (such as the discussed adaptive algorithm) and includes experiments that ensure changes to 
the system have the desired effect. 
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1. Introduction 

The societal expectations of educational data and learning analytics are high. As more and more educational institutes 

routinely use computerized tools for training and testing, enormous amounts of data on learning are collected. These data 

support the idea that “in the near future it will be possible to continuously assess and store the unfolding life history 

(trajectory in behaviour space) of each individual” (Molenaar, 2004, p. 216), and thereupon allow for a detailed study and 

targeted improvement of education. It should, for instance, be possible for teachers to create completely individualized 

educational programs based on the progress and learning difficulties of each student. 

The role of learning analytics in shaping online learning systems is still emerging. In this paper, we contribute to this 

conversation by providing a case study of Math Garden (Klinkenberg, Straatemeier, & van der Maas, 2011), an online 

practice system for arithmetic. Math Garden aims to live up to the aforementioned promise by providing individualized 

computer-adaptive practice to over 400,000 primary school children in the Netherlands — by means of real-time ability 

estimates — and by giving teachers the tools to track the children’s progress. In this case study, we first share design 

considerations, such as embedding learning analytics in the educational model, and then critically inspect the level to which 

those analytics are reliable. To this end, we determine the fit of the computer-adaptive model and explore sources of misfit. 

We finally share important considerations for the future of learning analytics. 

We believe such a case study is particularly valuable, as designing learning analytics for such large-scale systems is not 

an easy task. Learning environments can have a sizable impact on education in general and individual students in particular. 

Moreover, interventions or design considerations in such systems, for instance based on learning analytics, may too have a 

significant impact on students’ learning experiences, and must arguably be addressed with the same scrutiny as is demanded 

in traditional education. 

To illustrate the reach, Math Garden involves almost 853,300,000 responses from over 452,000 K–12 children, 

distributed across 5,300 schools and many more household subscriptions, playing in 26 arithmetic domains totaling more 

than 37,000 different items. The rate at which items are answered is currently about 900,000 per school day. Then, to 

illustrate learning in Math Garden, Figure 1 shows the development of the domain addition over time (the Methods section 

explains the ability estimation procedure in detail). For each birth cohort (based on birth year), the development of average 

monthly performance is plotted, and nicely shows the development throughout a school year. After the school year, the 

development continues in the next class in the next year. Figure 1 illustrates how learning progresses through the years, and 

how classes compare to one another and over time. The graph includes almost 40 million responses from over six years of 

data. All analyses are performed using R (R Core Team, 2015). 

Traditional psychometric methods, like classical test theory and item response models (e.g., Rasch, 1960; Hambleton, 

Swaminathan, & Rogers, 1991; Lord & Novick, 1968), fall short in systems like these due to the scale and adaptive nature of 

these systems. Therefore, Math Garden utilizes a different approach, and analyzes student responses on the fly, while 

continuously updating the estimates of student abilities and item difficulties. In this case study, we draw upon the lessons we 

learned during a decade of analyzing Math Garden data. 

Design considerations and the implemented computer-adaptive model are discussed in the Methods section. We 

scrutinize the fit of this model in the Results section by inspecting whether the predictions of the model are in accordance 

with the actual observed responses. Additionally, we determine the reliability of the model’s estimates of item difficulties by 

comparing the estimates of parallel items (e.g., 𝑛 ×𝑚 and 𝑚 × 𝑛). We then take a deep dive into the many different possible 

causes of the small but significant amount of misfit observed in the system. We consider user-dependent responses 

processes, on both the global and local level: that is, the user-specific and item-specific strategies that children use for 

solving the items. The discussed sources of misfit primarily pertain to violations of the strict unidimensionality assumption 

that underlies the model. 
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Figure 1. Growth in monthly average addition ability per grade, over a period of 𝟔 years. Estimated ability represents the 

proportion of correct responses, if one responded to all addition items in the item bank. The number of responses in this 

graph totals 𝟑𝟗,𝟑𝟗𝟏, 𝟔𝟏𝟕, and the number of monthly responses can be seen to increase over time. For every new school 

year, the development of each grade is well visible. Also the continuation of progress over school years is clearly shown. 

 

This multi-method approach exposes the fact that many facets play a role in educational systems that embed learning 

analytics into their educational model. In the Discussion section, we suggest that this embedded approach, combined with 

other active forms of learning analytics such as online experiments, might prove worthwhile as a first step towards a more 

coherent field. The central challenge in this approach is ensuring that the defined educational model works as desired — for 

which the following sections provide a case study. 

2. Methods 

2.1. Math Garden 

Dating from 2007, Math Garden is a computer adaptive practice system for arithmetic items, mainly focused on K–12 

(Klinkenberg et al., 2011; Straatemeier, 2014). Originally, it was designed to freely capture long and dense time series data 

for the microgenetic study of cognitive development in general, and mathematical development in particular. Due to popular 

demand, it was commercialized in 20091 and different domains were developed, such as the adaptive practice of languages 

(English and Dutch), statistics (Groeneveld, 2014; Klinkenberg, 2014), and typing (van den Bergh, Hofman, Schmittmann, 

& van der Maas, 2015). Each system hosts eight to 26 games that each train a distinct ability relevant to the domain. 

Children who log in to Math Garden land on a personalized page with a garden and various plants (see Figure 2). Each 

plant represents a mathematical domain, such as addition, multiplication, or fractions. By clicking the plant, children start 

practicing that domain (see Figure 3 for an example). Plants grow and flourish when the corresponding domain is frequently 

practiced, while plants wither when a domain is neglected. In each practice session, a set of 15 items is sequentially 

presented for 20 seconds each. Depending on the domain, children either pick the correct response from a set of alternatives 

or respond in an open format. Children may, within certain limits, hit a question mark button to skip items that seem too 

difficult. 

After each game, children return to the landing page where they can again choose a domain to practice. Math Garden 

adaptively matches children to items with an appropriate level of difficulty: an individual child who fails to solve an item or 

does so too slowly will receive easier items, whereas a child who succeeds within the expected time will receive more 

                                                           
1 https://www.oefenweb.com  
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difficult items. Additionally, children can set the difficulty level (i.e., expected probability correct) themselves individually, 

to either easy (about 90% correct), medium (about 75% correct), or hard (about 60% correct). Adaptive item selection in the 

context of a practice system such as Math Garden is therefore quite different from item selection in computer adaptive tests 

(CATs). CATs optimize measurement efficiency by selecting maximally informative items for measuring ability (i.e., items 

with a probability correct of about 50% might be selected) to obtain maximum measurement precision within a limited set of 

items (e.g., van der Linden & Glas, 2002; Wainer, 2000). Adaptive practice systems on the other hand, choose items to 

facilitate learning and motivation, as discussed by Veldkamp, Matteucci, and Eggen (2011) and shown by Jansen et al. 

(2013). In Math Garden, no optimal item selection is currently attempted, but items are sampled, taking into account the 

preferred difficulty level of the learner and recent history of answered items to avoid recent items. 

 

 
Figure 2. Landing page with a garden and various plants that represent mathematical domains. The smileys can be used to 

select the difficulty level. The buttons in the top right can be used to navigate to other parts of the environment, such as a 

bonus garden with more domains or a prize cabinet. Camera symbols communicate the availability of instruction videos. 

 

 

 
Figure 3. An item in the domain “series.” Children must fill in the number that completes the incomplete series. The virtual 

coins indicate the remaining time. Children earn the remaining amount of coins if the answer is correct, and lose the 

remaining amount of coins if the answer is incorrect. The question mark can be used to skip the item. 
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In order to anticipate the multidimensional structure of math practice, Math Garden is designed such that each of the 

games consists of a separate ability, hence is assumed to be unidimensional. This can be regarded as quite a conservative 

approach given the involvement of 26 games and thus as many dimensions. Many psychometric models assume 

unidimensionality, as does the Elo rating system (ERS). Hence, for each single game a separate rating scale is implemented. 

However, due to the large amount of data, it is still possible to distinguish different dimensions within a single game. This is 

demonstrated in the Model Fit Results section where misfit is discussed. Yet, the amount of bias introduced by this 

multidimensionality, together with all other sources of misfit, is believed to be limited, as is discussed in section 3.1.1. For 

each game within the Math Garden, two psychometric innovations are implemented: scoring rules and adaptive item 

selection, both discussed hereafter. 

2.2. Scoring Rule 

Scoring rules play an important role in such diverse domains as sports, games, educational testing, and recruitment. In all 

these domains, they are introduced to elicit specific behaviour that one somehow wants to quantify (e.g., answering correctly 

within a certain amount of time), thereby discouraging unwanted behaviour that can reduce the validity and reliability (also 

called the accuracy or dependability, cf. Cronbach, 1951) of the measuring procedure (e.g., guessing). See for example 

Lazer, Kennedy, King, and Vespignani (2014) for a general discussion on measurement in big data analysis, and 

Klinkenberg (2014) for an evaluation of the reliability and validity of the scoring rule. In large-scale computerized 

educational frameworks such as Math Garden, scoring rules additionally serve as a means to control the progression of the 

global system and to steer it towards a desired goal. To this end, it is important that the scoring rule is explicitly known and 

understood by the students, and that students act accordingly. 

The scoring rule used in Math Garden, introduced by Maris and van der Maas (2012) and displayed in Figure 4, can 

easily be made explicit to the individual student. This scoring rule has the following form: 

 

𝑆𝑝𝑖 = (2𝑥𝑝𝑖 − 1)(𝑑 − 𝑡𝑝𝑖), 

where 𝑆𝑝𝑖 denotes the score earned by user 𝑝 after responding to item 𝑖, 𝑑 denotes the time limit and 𝑥𝑝𝑖 ∈ {0,1} and 𝑡𝑝𝑖 ∈

[0, 𝑑] denote, respectively, the accuracy and the response time of user 𝑝 on item 𝑖. In Math Garden the time limit 𝑑 is 

generally fixed at 20 seconds. The absolute value of the score 𝑆𝑝𝑖 is determined by the remaining time until the time limit, 

𝑑 − 𝑡𝑝𝑖, whereas the sign of 𝑆𝑝𝑖 is determined by the accuracy 𝑥𝑝𝑖.  

 
Figure 4. The Signed Residual Time scoring rule. If a user’s response is correct, the score equals the remaining time until 

the time limit (shown by the top slope). If a user’s response is incorrect, the score equals minus the remaining time until the 

time limit (shown by the bottom slope). 

 

In this way, the scoring rule discourages fast guessing and imposes an explicit speed–accuracy trade-off (Wickelgren, 1977). 

The form of the scoring rule makes it easy to visualize the score to the individual user. At the start of an item the user sees a 

number of coins equal to the time limit in seconds, as visible in Figure 3. Each second one coin disappears. When a correct 

response is given the remaining number of coins is added to the total. In case of an incorrect response, it is subtracted. In 

Math Garden, children can collect these coins to buy virtual prizes. To allow users to omit an item that they do not know the 
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correct response to, without having to wait until the time limit has passed, a question mark button has been built in. By using 

this question mark button, a user can go to the next item directly, and earns a score of zero on the skipped question, though 

its use is now limited to constrain strategic behaviour in which students only try very easy items to maximize their points. 

Unless otherwise stated, all analyses presented in this paper are based on data from which these question mark responses are 

removed. 

From the Signed Residual Time (SRT) scoring rule, Maris and van der Maas (2012) derived a response model. To 

estimate the response model’s parameters on the incoming data streams from Math Garden, a rating system is implemented 

for each of the 18 games, facilitating real-time parameter updates, and driving the adaptive item selection discussed 

hereafter. 

2.3. Adaptive Item Selection 
To provide adaptive item selection, there is a need to determine what items are suitable to present to a specific student at a 

specific time. An algorithm based on the Elo Rating System (ERS) that both continually estimates the difficulty of the items 

and the ability of the students is used for this purpose. 

The ERS has a history in the chess community, where dynamically changing abilities of chess players are expressed in 

Elo ratings (Batchelder & Bershad, 1979; Batchelder, Bershad, & Simpson, 1992; Elo, 1978). This provides a means to 

estimate dynamic ratings in setups that involve possibly massive paired comparisons. Hence, it is suitable for application in 

an educational context where item responses can be regarded as person–item paired comparisons, and we expect abilities and 

item difficulties to change over time (e.g., Klinkenberg et al., 2011; Brinkhuis, Bakker, & Maris, 2015; Pelánek, 2014; 

Wauters, Desmet, & Van den Noortgate, 2010). 

To use the ERS in a computerized adaptive system like Math Garden, several modifications are required. First of all, the 

opposing player is replaced by an item 𝑖 such that a user 𝑝 responding to an item 𝑖 is considered a match between the user 

and the item. This match is won by the user if the response is correct, and won by the item if the response is incorrect. The 

ratings correspond to the user ability 𝜃𝑝 and the item difficulty 𝛿𝑖, the score corresponds to the SRT score (previous 

equation), which takes values in the interval [−𝑑, 𝑑], and the response model from which the expected score is computed is 

provided by the SRT model. After user 𝑝 responds to item 𝑖 and achieves SRT score 𝑆𝑝𝑖, the user and item ratings are 

updated as follows (Klinkenberg et al., 2011): 

 

𝜃𝑝 → 𝜃𝑝 + 𝐾(𝑆𝑝𝑖 − ℰ(𝑆𝑝𝑖)) ,

𝛿𝑖 → 𝛿𝑖 − 𝐾(𝑆𝑝𝑖 − ℰ(𝑆𝑝𝑖)) ,
 

where 𝐾 is a scaling factor and the expected score ℰ(𝑆𝑝𝑖) is based on the current ability estimate 𝜃𝑝 and item difficulty 

estimate 𝛿𝑖: 
 

ℰ(𝑆𝑝𝑖|𝜃𝑝, 𝛿𝑖) = 𝑑 
exp(2𝑑(𝜃𝑝 − 𝛿𝑖)) + 1

exp(2𝑑(𝜃𝑝 − 𝛿𝑖)) − 1
−

1

𝜃𝑝 − 𝛿𝑖
 

where 𝑑 is the time limit. Brinkhuis and Maris (2009, p. 11) provide an intuitive visualization of how such updates work. 

The ERS has two specific advantages that are beneficial in the context of adaptive practice. First, the method in which 

ratings are updated makes them self-correcting. In the equation above, the part 𝑆𝑝𝑖 − ℰ(𝑆𝑝𝑖) is simply the observed minus 

expected score. These differences facilitate the ERS to be self-correcting in its ratings — updates always steer in the right 

direction (e.g., a score that is higher than expected always gains points) — and the update size is related to the difference 

between observed and expected scores (e.g., for an unexpected correct response, the difference between observed and 

expected is quite high, and therefore the rating update is quite large, while for an expected correct response, the rating update 

is relatively small or can even be negative if the response given is too slow). This self-correcting feature makes the rating 

system quite robust: after every new response, ratings are updated in a sensible direction and hence adapt to changes in the 

underlying parameters. The 𝐾 factor in ERS functions is a scaling factor, and determines the size of the influence of the 

current response on the update of the ratings. A high 𝐾 factor allows for ratings to quickly adapt to changes in the underlying 

parameters, yet introduces noise, whereas a lower 𝐾 obtains smoother rating developments at the risk of adapting too slowly. 

This can be regarded as a classical bias–variance trade-off. Discussions on how to optimize 𝐾 can be found in Klinkenberg et 

al. (2011; Elo, 1978; Glickman, 1999, 2001), and Sonas (2005). 

A second beneficial feature of this rating system is that it is iterative and computationally light. When the ERS was first 

introduced in the 1960s, updates could be calculated by hand, with the assistance of simple tables (Elo, 1978). The expected 

win probabilities depend on straightforward functions of estimated parameters, not on past data, and can be easily obtained. 
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Clearly, with the advent of big data, this allows for real-time calculations on possibly large streams of data, with little 

computational load. In the implementation of Math Garden, parameters are therefore updated in real-time as responses 

become available. Note that real-time updates of parameters with IRT models is challenging — see for example Veldkamp et 

al. (2011) for an approach on updating ability parameters, or Brinkhuis (2014, pp. 83–114) for a (time-intensive) approach to 

updating parameters on a daily basis. 

The ERS allows us to obtain up-to-date estimates of both person ability estimates 𝜃𝑝 and item difficulty estimates 𝛿𝑖, 

which are continually adapted to possible changes. These ratings are used to facilitate many functions, such as adaptively 

selecting items at different difficulty levels, and providing teachers with child ratings and reference groups. 

3. Model Fit Results 

Having discussed the design considerations and embedded learning analytics in Math Garden’s computer-adaptive system, in 

this section we evaluate its model fit. Relevant for both the field of learning analytics in general, and computer-adaptive 

practice environments in particular, we scrutinize model fit by exploring various causes of misfit. To this end, we use a 

variety of methods on very diverse sets of data from the Math Garden ecosystem. 

3.1. Evaluation of Model Fit 

We start by a general evaluation of the computer-adaptive Elo model that underlies Math Garden, specifically by evaluating 

the quality of fit of the model. Model fit is evaluated in two specific traditions. First, we use prediction accuracy from the 

field of machine learning. Second, we use reliability measures from the field of psychometrics. 

3.1.1. Prediction Accuracy 

Figure 5 gives an indication of the quality of fit of Math Garden’s computer adaptive practice model. It shows the amount of 

practice, and the extent to which it is able to predict a child’s responses. To be more precise, the figure shows for one 

particular child over the course of three years the difference between the observed and expected SRT scores, normalized over 

𝑑, to every single item (s)he attempted in the fields of addition, subtraction, and multiplication. These differences can be 

interpreted as a proxy for model fit for this person. Hence, the closeness of these differences to the zero-lines correspond to 

good prediction, and therefore good model fit. The RMSE decreases from .45 (𝑛 = 5,804) to .29 (𝑛 = 4,312) for addition, 

and from .54 (𝑛 = 4,369) to .31 (𝑛 = 3,305) for subtraction, comparing 2012 and the rest. The total RMSE is .41 (𝑛 =
20,392). 

 
Figure 5. The development of model fit for one particular individual over time, for the domains addition, subtraction, and 

multiplication. For every single response over the course of three years (𝒏 = 𝟐𝟎, 𝟑𝟗𝟐), the differences between the observed 

and expected SRT scores are shown, normalized over the time limit. The smaller this difference, the more accurate the 

expected score. For this individual, fit can be seen to improve over time on all three domains. The onset of practice differs 

between domains, and the amount of practice drops for these domains after May 2014. Some bimodality can be observed 

(partly due to guessing). 
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In addition, one can see intensive practice starting in September 2012, and lasting through June 2013. Observations span 

a couple of years, since in Math Garden users are encouraged to revisit domains occasionally. Practice levels of this child 

and for these domains decline sharply after May 2014. First, narrowing down to the quality of fit, we see that after some 

initial phase, the difference between observed and expected responses tends to get centred closely around zero. At the onset 

of a new domain there is quite some noise, which reduces after some time. Since the estimated item difficulty parameters are 

readily available, the improvement in fit is not only due to better parameter estimation. This user increasingly conforms to 

the scoring rule and the response model that goes with it, which can also be observed by the relatively fast increase in fit in 

the multiplication domain. Hence, the estimated model parameters facilitate a good prediction. That Elo ratings can provide 

good prediction accuracy is not unique to Math Garden, and for instance also shown by Nižnan, Pelánek, and Řihák (2015). 

 

 
Figure 6. Histogram of the difference between the observed and expected SRT scores, normalized over the time limit, for all 

𝟒𝟔𝟑,𝟕𝟐𝟗 Math Garden responses on May 26, 2015, excluding skips. Overlaid is a fitted mixture of two normal 

distributions. The smaller distribution on the left contains 𝟐𝟏% of the observations at 𝓝(−𝟎.𝟗𝟎, 𝟎. 𝟑𝟏) (dashed), and the 

larger distribution on the right contains 𝟕𝟗% of the observations at 𝓝(𝟎. 𝟐𝟖,𝟎. 𝟐𝟖) (dotted). The mean difference between 

observed and expected scores is close to zero (𝟎. 𝟎𝟐). The smaller distribution on the left corresponds to person-item 

interactions, where the expected result was correct, but the observed score was fast and incorrect — typical for typing errors 

and guessing. 

 

Figure 6 provides another representation of the difference between observed and expected responses, this time for a large 

group of students. For one particular day, May 26, 2015, we have selected all responses for all games in Math Garden. As 

this day is situated at the end of the school year, we expect few new students and hence expect fit to have converged for this 

group, e.g., see Figure 5 for an improved fit near the end of the school year. On this day, 13,608 students provided 463,729 

responses to 10,983 items on 17 different games. The differences between the observed and expected scores, normalized 

over time limit 𝑑, for all these responses are provided in Figure 6. The mean difference is close to zero (∼ 0.02), which 

means that the ERS appears to do a good job at adjusting the expected scores toward the observed scores. 

As the expected responses are best guesses at the time the actual responses are observed, the achieved accuracy indicates 

a significant amount of control on the dynamics in the environment. Nonetheless, Figure 5 also shows a constant stream of 

responses for which the observed score is not close to the expected one, and in Figure 6 one can clearly see that the 

histogram is bimodal. 

We estimated a mixture of two normal distributions on this data, using the mixtools R package (Benaglia, Chauveau, 

Hunter, & Young, 2009)., and obtained a smaller distribution with 21% of the observations at 𝒩(−0.90,0.31), and a larger 

proportion of 79% at 𝒩(0.28,0.28). The smaller distribution seems to collect all sorts of unexpected errors, such as typing 

errors, or fast guessing (Wang & Xu, 2015). When rather easy items are selected for the students, which have positive 

expected value, a quick error results in a quite large negative observed score (Figure 4), resulting in a (large) negative 

difference between observed and expected scores. These errors can also be observed in Figure 5, where for all three domains 

points can be seen hovering at the lower end of the panels. Since these errors are asymmetric, they introduce some bias in the 

estimated expected scores. Such bias might be removed, for example by disregarding quick incorrect responses in updates of 



 

 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 
37 

the ratings. The larger component 𝒩(0.28,0.28) includes responses that conform to the SRT score model (i.e., excluding 

guessing, typing errors, etc.), and allows us to estimate the RMSE of prediction to be 0.28, across all Math Garden games, 

excluding quick incorrect answers. Further considerations of fast and slow processes are discussed in section 3.2. 

3.1.2. Reliability of Parallel Item Development 

In addition to prediction accuracy, the quality of fit of the adaptive system can be investigated by comparing the temporal 

development of the ratings of parallel items. Such temporal developments can be interpreted as a measure of reliability of the 

measurement, since similar items should have a similar (development of) difficulty. Parallel items look different superficially 

but share a number of features, which make them more or less equivalent. See Brinkhuis et al. (2015) for an approach to 

detect differential development of items of pairs. An example of such parallel items is provided by mirror items like 2 × 9 

and 9 × 2. In the left panel of Figure 7, the temporal development over a period of 3.5 years of the daily average ratings of 

two pairs of parallel items from the multiplication domain in Math Garden are displayed. It is clear that for both pairs the 

ratings of the parallel items remain very similar over time: their temporal rating evolutions overlap to a large extent, though 

the ERS allows for estimating their item difficulties independently. 

 
Figure 7. (Left) Temporal development of the daily average rating of 2 pairs of parallel items from the multiplication 

domain. The lower pair of ratings constitutes the items 𝟐 × 𝟗 and 𝟗 × 𝟐 and the upper pair constitutes the items 𝟔 × 𝟕 and 

𝟕 × 𝟔. Item ratings are non-transformed Elo ratings. (Right) Temporal development (grey area) of the distribution of the 

absolute item pair-rating difference of all 4,005 item pairs by the 90 non-symmetric items in the multiplication table. The 

absolute item pair-rating difference of the 45 mirror item pairs can be found at the bottom of the figure. Med. refers to the 

median of the distribution of non-mirror items (with 25%–75% boundaries) and mir. refers to the median of the mirror 

items. 

 

The right panel of Figure 7 generalizes these findings to all 45 parallel item pairs that can be formed by the 90 non-

symmetric items in the multiplication table. For every day in the 3.5-year period, the median, 25%-, and 75%-quantiles are 

determined of the absolute value of the item pair differences in daily average rating for all 45 item pairs. To put this in the 

right perspective, the figure also displays the temporal development of the median of the absolute item pair-rating differences 

computed over all 4,005 item pairs that can be formed by the 90 non-symmetric items in the multiplication table. This figure 

makes it quite clear that the ratings of parallel items remain much closer over time than the ratings between two generic 

items. Even though other single-digit multiplication items can be equally difficult, the consistent small differences between 

mirror items is an indicator of the reliability of these ratings. See van der Ven, Straatemeier, Jansen, Klinkenberg, and van 

der Maas (2015) for considerations on the difficulties of single-digit multiplication, and when items cannot be considered 

mirror items. 
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Taking the above results together, both the prediction accuracy and the item ratings of parallel items suggest that the 

computer-adaptive architecture is able to create a considerable amount of stability within such a complex dynamical system. 

Given this achieved stability, the observed data collected with the system allows for a detailed look at the cognitive processes 

used in learning arithmetic. However, we also observed a certain amount of misfit, which we investigate next. 

3.2. Diagnosis of Model Misfit 

The methods in the previous section give different perspectives on the quality of fit, and give rise to further — more specific 

— explorations aimed at diagnosing misfit. Figures 5 and 6 display a number of promising results that indicate a good 

working of the mechanics underlying Math Garden. However, the dashed mixture component in Figure 6 clearly indicates a 

set of responses for which there are substantial differences between the observed and expected scores. These types of 

responses indicate alternative behaviour (e.g., typing errors or fast guessing), which may lead to an incorrect assessment of 

the ratings, and to misfit of the response model. 

A good working of the system requires the detection of the sources of this misfit after which appropriate steps can be 

taken to properly deal with these. First, we diagnose misfit by investigating different response processes (section 3.2.1). 

Second, we analyze local item strategies (section 3.2.2). Finally, we provide a short overview of other sources of misfit, 

illustrating the complexity of identifying and correcting sources of misfit (section 3.2.2). 

3.2.1. Global Response Processes 

An attempt to assess the misfit of the SRT model and to situate the model in a more generalized framework of speed–

accuracy response models can be found in Coomans, Hofman, Brinkhuis, van der Maas, and Maris (2016). In that paper the 

quality of fit of several of these models, including the SRT model, is investigated in the simplest possible non-trivial setup: 

persons try to solve two problems only; it is registered whether or not their response is correct and whether their response 

time is faster than half the time limit or slower than half the time limit. Hence, in this setup there are four different ways a 

person can answer a single item (fast and correct, slow and correct, slow and incorrect, and fast and incorrect) and 16 

different ways a person can answer a pair of items. This simplistic setup is advantageous because: 

 

• It gives access to data from a large number of item pairs, spanning such diverse subject areas as basic arithmetic, 

language learning, and intelligence-related problems, with large numbers of independent observations per item pair. 

• Different speed–accuracy response models predict qualitatively different probability distributions of the 16 possible 

response patterns in a population of test takers. By inferring these distributions empirically by using, for example, Math 

Garden data, we can easily get a handle on the allowed speed–accuracy trade-off mechanisms. 

 

To give an example of the analysis done in Coomans et al. (2016), reconsider the item pair 9 × 2 and 2 × 9, previously 

discussed in Figure 7. We obtained the response patterns of 13,152 persons who responded to this pair of items within one 

day, and collapsed the response times in two categories: response times smaller than half the time limit are classified as slow, 

others as fast. The resulting data is summarized in the contingency table displayed as Table 1.  

Table 1. Item pair contingency table for the items 𝟗 × 𝟐 and 𝟐 × 𝟗, constructed from 𝟏𝟑, 𝟏𝟓𝟐 persons who responded 

to the item pair within a single day (over the period 2011-03-01 to 2015-06-29). The cells are numbered using superscript. 

The cells 1, 4, 13, and 16 constitute the events for which both responses on the item pair are fast. The cells 6, 7, 10, and 11 

constitute the events for which both responses on the item pair are slow. All remaining cells constitute the events for which 

the speed of both responses on the item pair differs. 

    𝟐 × 𝟗    

   incorr./fast incorr./slow corr./slow corr./fast  

  incorr./fast 3131 1072 1373 4344  

 𝟗 × 𝟐 incorr./slow 1245 986 1537 2308  

  corr./slow 1329 13010 68411 122112  

  corr./fast 44013 19014 121115 755016  

 

In Coomans et al. (2016) it is demonstrated that the SRT model constrains the expected frequencies of the response 

patterns on anti-diagonals (9,6,3), (13,10,7,4), and (14,11,8) to be monotonically increasing or decreasing along these anti-

diagonals. However, Table 1 is clearly incompatible with these predictions: the frequencies of the events on anti-diagonals 

(9,6,3), (13,10,7,4), and (14,11,8) are not monotonically increasing or decreasing along these anti-diagonals, but instead 

exhibit a dip (along (9,6,3)), a dip (along (13,10,7,4)), and a peak (along (14,11,8)). The same features are found for 
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numerous other item pairs in different domains, for all of which there are a great many observations that can be easily 

extracted from the Math Garden database. 

Coomans et al. (2016) concludes that these features cannot be accounted for by simple “one-process” models, such as the 

SRT model, and that a more complex model is needed. Therefore, they consider a “two-process” model developed in 

Partchev and De Boeck (2012) and which explicitly distinguishes between fast and slow responses, showing that this model 

results in a better fit than the more parsimonious SRT model, which does not make such a distinction. A similar conclusion 

was reached in Hofman, Visser, Jansen, Marsman, and van der Maas (2017). 

3.2.2. Local Response Strategies 

We will now turn to an example where the adaptive nature of Math Garden steers towards undesired behaviour, ultimately 

resulting in misfit of the model. This example was encountered in the balance-scale task (Inhelder & Piaget, 1958), 

implemented in Math Garden in 2010. In this task, children predict the movement of a balance-scale (see Figure 8), with a 

varying number of blocks on each peg and varying distance between the blocks and the fulcrum. The task is famous for the 

interesting (erroneous) strategies used by children (and adults). To discriminate between these strategies, Siegler (1976) 

classified items to different item types. Simple items are included to discriminate between children who use a simple strategy 

based on only one dimension; counting only the number of weights or only looking at the distance between the location of 

the blocks and the centre of the scale. Next to the simple items, complex items are added where children need to integrate 

both the weight and the distance information to correctly solve the item. 

 

 
Figure 8. Example of the balance-scale task, as implemented in Math Garden. The coins reflect the used scoring-rule: if a 

correct/incorrect response is provided, the coins are added/subtracted to/from the child’s virtual savings. Children respond 

by clicking the left, middle, or right picture of the balance scale — depicting the three possible states of the balance scale — 

or by clicking the question mark button. 

 

In the first implementation of the task, the adaptive item selection was based on the differences between estimated item 

difficulties and user abilities, as in all other Math Garden domains. Interestingly, when items are selected based on the Elo 

parameters, the collected estimated ability ratings for individual users show jumps between qualitatively different strategies. 

However, when items are selected in a fixed order, no such development is present (see left-panel of Figure 9 for both 

patterns). Also, a closer look at the responses to items (see right-panel of Figure 9) reveals that item responses are clustered 

when items are selected based on Elo ratings (groups of correct and incorrect responses are visible). 
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Figure 9. The development of responses to the balance-scale task, for a single child. The left-panel shows the rating 

development of a single user. When items are selected with the adaptive item selection based on the Elo estimates, large 

jumps in rating are observed, but when items are selected with a fixed sequence, a decrease in rating is observed for all 

users. The right-panel shows the responses (left, balance, or right), and whether the response was correct or incorrect, for 

both the data collected with the adaptive item selection procedure (clustering is visible) and fixed item selection procedure 

(no clustering visible). 

 

This clustering has an intriguing cause. The users seem to develop a local strategy that only works on the cluster of items 

presented at that specific moment. For example, a user might recognize that the response “balance” is not correct for the first 

few items and learns that the balance response is always incorrect. Between item position 25 and 50 some of these items are 

presented but made incorrect, hence the ability estimate does not increase in the left panel of Figure 9. Since the system 

adapts the item difficulty estimates based on these responses, the difficulty estimates of these items increase and of the 

remaining items decrease. This results in an automatic clustering of items for which this local strategy fails versus items on 

which the strategy succeeds. After some incorrect responses, and receiving feedback, this child learns that he/she should 

provide only balance responses, as can be seen around item 80. This results in an increase in the ability estimate, what 

eventually results in the selection of items of yet another type (around 130), and a new local strategy seems to be learned. 

In this example, the dynamic estimation of the item and user ratings, in combination with local strategies, result in 

dynamics that reinforce the reward of developing erroneous local strategies. Importantly, in this situation an ability estimate 

is based on the local cluster of items that the user has practiced, and does not generalize to the other clusters. This violates 

the assumption of unidimensionality and results in misfit. 

To solve this undesired state of the system we intervened on the item selection by presenting a fixed order of items to all 

children, thus making the system less adaptive. The collected data and estimated ratings in the new implementation of the 

task showed large deviations compared to the first implementation. For example, the observed responses and ability ratings 

do not show a clear developmental pattern when items of different types are mixed (see the lower-panel of Figure 9). 

Although changing the item selection resolved the development of local strategies, still large discrepancies are found in the 

strategies used by children in Math Garden compared to strategies invoked by more traditional paper-and-pencil 

tests (Hofman, Visser, Jansen, & van der Maas, 2015). Clearly, such interactions between the content of the domain and the 

adaptive algorithm are not easily foreseen and require careful investigation into sources of misfit. 

3.2.3. Other Sources 

The previous example illustrates that complex learning systems can have undesirable side effects, and that one should be on 

guard for unexpected behaviour in different forms. Having diagnosed sources of misfit in alternative response processes and 
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specific item strategies, in this section we briefly identify four more sources of misfit that are currently active areas of 

research in Math Garden. This collection of sources further demonstrates the rich variation in sources of misfit, the diverse 

set of methods required for their diagnosis, and hence the complexity in reducing misfit. 

One source of misfit can be found in the (lack of) adherence to the scoring rule. A good working of the system implies 

that its users respond in accordance with the scoring rule, i.e., that their ability is reflected in the score that they earn. This is 

ensured in part by the form of the SRT scoring rule which strongly discourages guessing and thus prevents low ability users 

to earn scores that are too high and do not correspond to their actual ability. However, despite this explicit penalizing of fast 

incorrect responses, a substantial amount of guessing remains. Moreover, the particular form of the scoring rule can have a 

negative effect on less confident, yet high ability users. They might be scared by the high stakes associated to fast responding 

and produce a slow response resulting in a score that is too low for their actual ability. For these reasons it is important to 

develop methodology that enables an evaluation of scoring rules to find out if the (majority of) users conform to the SRT 

scoring rule, as discussed by Klinkenberg (2014). 

A second source of misfit is very much related to the issue of users not adhering to the scoring rule. As mentioned in the 

section, children earn virtual coins by giving correct responses, and faster responses yield more coins. Some children who 

aim to maximize the number of collected coins are observed to quickly skip problems that they deem too difficult to answer 

within a short time. They quickly use the question mark button to proceed to the next problem, as they’re not penalized for 

doing so, and wait for an item that they can quickly answer correctly. This way, they somewhat circumvent the adaptive item 

selection by only choosing items that yield the most coins. Ultimately, this strategic behaviour results in subtle misfit, as 

these children’s abilities cannot be assessed correctly. For assessing such misfit, standard errors of estimates in the ERS 

would be beneficial, as explored by Brinkhuis and Maris (2010). 

Interestingly, a solution to this issue was implemented in the Math Garden ecosystem. Savi, Ruijs, Maris, and van der 

Maas (2018) explain how a large online randomized experiment revealed that a simple delay in making the question mark 

button available, decreased the number of question marks used, and increased the amount of effort put into the children’s 

responses. The development team of Math Garden has subsequently implemented such a delay throughout their ecosystem. 

The degree to which this intervention helped decrease misfit in the adaptive system is a subject of study. 

For a third source of misfit, we investigate single-person-by-item time series. The size of the Math Garden data allows 

investigation of development in a new level of detail; that is, the individual development of accuracy, including the error 

types and response times, on a single item (Klinkenberg et al., 2011). These time series show interesting patterns from a 

developmental perspective and allow testing, for example, of whether learning of one set of items is related to learning 

another set of items. To illustrate the different patterns, we selected three of these series. Figure 10 shows the development of 

three different users on three different items (5 + 1, 3 + 4, and 4 × 3) over a long period, with a maximum of 136 weeks. 

The upper panel shows the responses of a child who learns to add five and one (and the parallel item), in three different 

stages. In the first stage, until position 25, he or she provides incorrect responses, mostly answering five. Thereafter, in the 

second stage, the correct solution is learned. In the third stage, from position 38 onward, the observed response time 

decreases indicating a more efficient strategy or faster sampling from memory (Ashcraft, 1982) compared to the previous 

stages. 

On the other hand, the middle panel shows a time series of a child who does not learn 3 + 4, while practicing this item 

for 61 times. Some correct responses are stated, but these are alternated with errors. These errors provide insight into the 

highly variable cognitive process of this child over time. The child alternates responses that can be labelled as close misses 

(6, 8 and 9) and responses labelled by wrong multiplication operand strategy (12). This highlights possibilities for tailoring 

instruction and feedback to misconceptions of a child as detailed as to a single item. 

The development depicted in the lower panel shows a different pattern. This child starts with fast question-mark 

responses. Around position 22, he provides (too) slow responses, and seems to learn during this period the correct response. 

In the last part of the series he gives correct responses to this item. The dynamics of this child also highlight the 

differentiation between fast and slow processes, discussed previously. 

The quantification of these developmental patterns, and the connection between multiple single-item time series, is 

ongoing research. Especially the connection between different time series provides insight into an important type of misfit. 

That is, the possible presence of item clusters within a certain domain, see for example Pelánek, Papoušek, Řihák, Stanislav, 

and Nižnan (2017) or the previous discussion of the balance-scale task. These possible item clusters show that learning a 

subset of items is strongly related to some items, whereas it is unrelated to other items within the same domain. These 

clusters provide insights in qualitative differences between the solutions strategies and learning patterns of children. 

Furthermore, the inclusion of these possible clusters in the measurement model can reduce the amount of misfit. 

The fourth and final source of misfit is captured in the just mentioned error responses. Error analyses provide an 

interesting direction for investigating misfit, because information about individual cognitive processes is contained in the 
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types of errors that students make. More specifically, since different students may have different misconceptions, and 

different items are susceptible to different misconceptions, error analyses can help detect violations of unidimensionality. 

 

 
Figure 10. The development of both accuracy and response time, for responses to three different items (and their parallel 

items). For each item, the responses by one particular individual over time are shown. The ordered position in the time series 

are on the horizontal axis, which can span a maximum 62 responses. The upper and lower panel show a three-stage pattern, 

moving from mainly incorrect responses, to slow correct responses, to fast correct responses. 

 

An example of error analyses is shown in Figure 11. It shows the frequencies of the most made errors of the same set of 

items as depicted in Figure 7. Different aspects are highlighted by this plot. First, the observed correspondence in the error 

frequencies between the two sets of parallel items supports the reliability of the system. Second, the most frequent error for 

each parallel item pair seems to indicate different processes. The response 19 to the item 2 × 9 implies a mistake in 

counting, since children missed the correct response by one. Whereas the response 56 to the item 6 × 7 implies an operand 

relevant mistake, since the answer is correct for another multiplication problem (Straatemeier, 2014, pp. 99–128). 

 
Figure 11. Frequencies of the ten most frequent errors on the items 𝟐 × 𝟗 and 𝟔 × 𝟕, and their parallel items. 

 

However, the classification of observed errors to error types is often ambiguous (Brown & VanLehn, 1980), and is 

therefore an active area of research in Math Garden. Take for example the incorrect response 18 to the item 9 × 9. This error 

can indicate that this child (1) adds instead of multiplies (wrong operand), (2) incorrectly reverses 81 to 18, or (3) states the 

response to an item from within the same table (operand related error). To solve this issue in error-classification, 

Straatemeier (2014, pp. 99–128) introduced and compared multiple classification methods (two literature-based approaches 

and four data-based approaches) that can be used with the availability of big data to uncover what types of errors a child 

makes on a particular item. Using the weighted frequency rule, more than 80% of the 1,104,865 errors can be classified as 
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coming from a certain strategy, and distinctions in age can be made. Importantly, since these errors provide information 

about which erroneous strategies children use to provide a response, the classification of these errors can provide a valuable 

tool in educational computer programs, as it allows for providing personalized feedback. 

4. Discussion 

The Math Garden ecosystem, like other large-scale learning environments, contributes to what Molenaar (2004) described as 

an opportunity to “continuously assess and store the unfolding life history (trajectory in behaviour space) of each 

individual.” However, although the phrase nicely catches the opportunities of today’s educational data, it fails to draft the 

desired way forward. In this final section, we reflect on the research discussed in the current paper, and give important 

considerations for the future of learning analytics. 

4.1. Active analytics 

A primary characteristic of learning systems is their educational objective, and this objective should have a central place in 

learning analytics. Savi, van der Maas, and Maris (2015) argue that reaching a desired educational objective requires one to 

first accurately track a student’s development, and subsequently map each student’s learning route. That is, the spectrum of 

each student’s ability should be assessed and tracked over time, such that an accurate learner model is created. This learner 

model may for instance encompass the discussed ability measures for various scholastic domains, or possibly some 

diagnosed misconceptions, and should give rise to the creation of an optimal learning path for this particular student. 

To this end, we believe that learning analytics should be an active exercise. Rather than passively collecting analytics about a 

learning environment, learning analytics must actively help direct a student towards his or her educational objective — such 

as effortful practice on the level of the individual child in the case of Math Garden. Math Garden applies active forms of 

learning analytics on multiple levels. First and foremost, as laid out in the section, it utilizes embedded learning analytics: 

the Elo rating system at the core of Math Garden estimates item difficulties and user abilities on the fly, and dynamically 

steers each student’s learning experience in the desired direction. 

Moreover, as we show in the section, making sure a learning system optimally directs the student towards the intended 

goal additionally requires active development. In this paper, we took model fit as the primary approach, and showed how 

different data selections and different methods shed diverse lights on the problem of misfit. We showed that although in 

general the adaptive system both accurately predicts student responses and reliably estimates item difficulties, these analytics 

may be biased by systematically misfitting responses. Multiple sources of this misfit were discussed, such as the possibly 

distinct processes underlying observed responses and local response strategies for subsets of items. Finally, the rich diversity 

of possible sources became evident when we discussed four more explorations of misfit, including a diversity in possible 

error patterns, and unexpected and undesired consequences of the used scoring rule. 

The nevertheless good fit of the system illustrates that embedded learning analytics can help track and direct the 

development of an individual student. We hope to have conveyed that model fit can be seen as a central endeavor in learning 

analytics, with implications for very diverse parts of a learning system. Moreover, active analytics, such as the embedded 

learning analytics employed in Math Garden, need to assure that the system and its users reach their educational objectives. 

Besides the embedded learning analytics, we believe a second form of active analytics deserves careful consideration: 

experimentation. The different sources of misfit in the section illustrate that without careful supervision, the ecosystem may 

move towards an unintended or even undesirable goal. Moreover, the necessary continuous maintenance of a large-scale 

online learning system like Math Garden unmistakably changes the system in both intentional and unintentional ways. In 

such a goal-directed system, these changes can alter the degree to which the goal is reached. Experiments serve to detect how 

an intervention alters the complex system, and to make sure it does not behave in unintentional and possibly detrimental 

ways. 

An experimental method particularly suited to large-scale online learning systems is the online randomized controlled 

experiment, commonly known as the A/B test (Savi, Williams, Maris, & van der Maas, 2017). In the section, we briefly 

discussed one such experiment, aimed at preventing undesirable strategic responses that increase the misfit of the adaptive 

system. Additionally, besides using experiments to evaluate the mechanics of a learning system, experimental comparisons 

of pedagogical interventions can provide additional leverage. The learning sciences provide a wealth of possible 

interventions targeted at achieving learning gains, and often well suited for testing. Similarly, large online educational 

systems provide an exceptional testing ground for such interventions. 

5. Conclusions 

Although a vast share of research on learning is conducted within the safe boundaries of confined experiments, that is not 
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where the actual everyday learning happens. Everyday learning happens in vivo — in a complex, dynamic, ecological 

system. Such a system is inherently difficult to track, let alone deliberately navigate towards a desired goal. Fortunately, an 

ever-increasing worldwide accessibility to the internet and serious efforts to scale learning technologies, increasingly 

succeed to unlock the big data of learning. These data, with an unprecedented granularity, combined with advanced methods, 

are now starting to provide a window into the complexity and dynamics of learning in vivo. In this paper, we reported on a 

decade of experience from one such system, Math Garden. We described what we have learned and how we are still learning 

from a system that develops while we observe learning as it happens. 
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