

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

92

Volume 5(1), 92 – 100. http://dx.doi.org/10.18608/jla.2018.51.7

A Modular and Extensible Framework for Open
Learning Analytics
Arham Muslim1*, Mohamed Amine Chatti2, Muhammad Bassim Bashir3, Oscal Eduardo Barrios
Varela4, Ulrik Schroeder5

Abstract
Open Learning Analytics (OLA) is an emerging concept in the field of Learning Analytics (LA). It deals with learning
data collected from multiple environments and contexts, analyzed with a wide range of analytics methods to address
the requirements of different stakeholders. Due to this diversity in different dimensions of OLA, the LA developers
and researchers face numerous challenges while designing solutions for OLA. The Open Learning Analytics
Platform (OpenLAP) is a framework that addresses these issues and lays the foundation for an ecosystem of OLA
that aims at supporting learning and teaching in fragmented, diverse, and networked learning environments. It
follows a user-centric approach to engage end users in flexible definition and dynamic generation of personalized
indicators. In this paper, we address a subset of OLA challenges and present the conceptual and implementation
details of the analytics framework component of OpenLAP, which follows a flexible architecture that allows the easy
integration of new analytics methods and visualization techniques in OpenLAP to support end users in defining
indicators based on their needs in order to embed the results into their personal learning environment.

Keywords
Personalized learning analytics, OpenLAP, analytics framework, modularity, extensibility.

Submitted: 07/06/17 — Accepted: 10/27/17 — Published: 04/09/18

*Corresponding author 1Email: muslim@cil.rwth-aachen.de Address: RWTH Aachen University, Germany, Ahornstr. 55, 52074 Aachen,
Germany
2Email: mohamed.chatti@uni-due.de Address: University of Duisburg-Essen, Germany, Forsthausweg 2, 47057 Duisburg, Germany
3Email:bassim.bashir@rwth-aachen.de Address: RWTH Aachen University, Germany, Ahornstr. 55, 52074 Aachen, Germany
4Email: oscar.barrios@rwth-aachen.de Address: RWTH Aachen University, Germany, Ahornstr. 55, 52074 Aachen, Germany
5Email: schroeder@informatik.rwth-aachen.de Address: RWTH Aachen University, Germany, Ahornstr. 55, 52074 Aachen, Germany

1. Introduction
Learning Analytics (LA) incorporates the concepts of big data and data analytics to improve the learning and teaching
processes of different stakeholders (Siemens et al., 2011). The term LA has been defined at the First International Conference
on Learning Analytics and Knowledge (LAK ’11) as “the measurement, collection, analysis, and reporting of data about
learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs”
(Siemens & Long, 2011). The technological boom in the last decade has revolutionized the education sector, moving the
learning environment from traditional classrooms (e.g., learning management systems, virtual learning environments) toward
more open, self-organized and networked settings (e.g., personal learning environments, massive open online courses; Chatti,
2010). This openness has led to the emergence of a new LA research area called Open Learning Analytics (OLA). In general,
OLA encompasses different stakeholders associated with a common interest in LA but with diverse needs and objectives, a
wide range of data coming from various learning environments and contexts, as well as multiple infrastructures and methods
that enable us to draw value from data in order to gain insight into learning processes (Chatti, Muslim, & Schroeder, 2017).

In order to provide an effective solution, OLA introduces a number of challenges for LA practitioners, developers, and
researchers. These include data aggregation and integration, interoperability, specifications and standards, reusability,
modularity, flexibility and extensibility, performance and scalability, usability, privacy, transparency, and personalization
(Chatti et al., 2017).

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

93

In this paper, we focus on the modularity and extensibility challenges in OLA and present the conceptual and
implementation details of the analytics framework component of the Open Learning Analytics Platform (OpenLAP; Chatti et
al., 2017). The main aim of the analytics framework is to provide a flexible architecture that makes it easy to extend OpenLAP
with new analytics methods and visualization techniques to support end users in self-defining indicators according to their
needs.

The remainder of the paper is structured as follows: In Section 2, we present the architecture and the main components of
OpenLAP; Section 3 presents the design and implementation details of the analytics framework component of OpenLAP;
finally, Section 4 concludes the paper and gives perspectives for future work.

2. Open Learning Analytics Platform (OpenLAP)
Chatti et al. (2017) propose a vision for an open learning analytics ecosystem and present a concrete conceptual and technical
architecture for OpenLAP.1 It provides end users with a user-centric mechanism to flexibly and dynamically generate their
personalized indicators. In order to meet the requirements of diverse users, OpenLAP adapts a modular and extensible
architecture that allows the easy integration of new analytics modules, analytics methods, and visualization techniques. In the
following sections, we present a brief description of the OpenLAP abstract architecture and discuss supported system
scenarios.

2.1. Abstract Architecture
The abstract architecture of OpenLAP shown in Figure 1 consists of three main components, namely Data Collection and
Management, Indicator Engine, and Analytics Framework.

Figure 1. OpenLAP Abstract Architecture (Muslim, Chatti, Mughal, & Schroeder, 2017).

The Data Collection and Management component in OpenLAP is responsible for collecting learning activities data from
different sources adhering to the privacy policies of OpenLAP and generating the learner and context models from it. OpenLAP
uses the data model called Learning Context Data Model (LCDM) suggested by Thüs, Chatti, Greven, and Schroeder (2014)
in the frame of the Learning Context Project.2 LCDM represents a user-centric, modular, easy-to-understand data model that
holds additional semantic information about the context in which an event has been generated (Lukarov et al., 2014). OpenLAP
follows a rule-based approach to define the data access mechanism based on the selected parameters of the indicator. These
rules can easily be modified to allow adaptation of other data models for LA, such as IMS Caliper, xAPI, Activity Streams,
CAM, MOOCdb, or DiscourseDB (Muslim, Chatti, Mahapatra, & Schroeder, 2016). The Data Collection and Management
component in OpenLAP provides an LCDM-based API that enables collecting data from various sources. For each new source,
a data collection component (collector) needs to be developed. It can be an integrated component in a source that gathers data
and pushes it to OpenLAP in the LCDM format. It can also be an intermediate component (adapter) that receives data from a
source and transforms it into the LCDM format before sending it to OpenLAP (Chatti et al., 2017).

The aim of the Indicator Engine in OpenLAP is to achieve personalized and goal-oriented LA by following a Goal–
Question–Indicator (GQI) approach that allows users to easily define new indicators through an interactive UI. Additionally,
it provides an administration panel to manage the analytics modules, analytics methods, and visualization techniques in
OpenLAP (Muslim, Chatti, Mughal, & Schroeder, 2017).

1 http://lanzarote.informatik.rwth-aachen.de/openlap
2 http://www.learning-context.de/

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

94

The Analytics Framework is the core component of OpenLAP, which manages, generates, and executes indicators. It is
responsible for fetching raw data from the database, performing the analysis and visualizing the indicator. Additionally, the
Analytics Framework implements the extensibility by supporting easy mechanisms to manage, add, and remove analytics
modules, analytics methods, and visualization techniques in OpenLAP. It is the combination of five sub-components; namely,
OpenLAP-DataSet, Analytics Modules, Analytics Methods, Visualizer, and Analytics Engine.
2.2. System Scenarios
The different components in OpenLAP interact with each other to provide two main system scenarios, namely the indicator
generation and the indicator execution.

During the indicator generation, the user interacts with the Indicator Engine UI to define an LA goal, ask an LA question,
and associate multiple indicators to answer this question. In order to define a new indicator, the user follows a 4-step process.
First, select an appropriate dataset by exploring the learning events data. Second, apply various filters on the selected dataset.
Third, choose an analytics method and maps the dataset columns to the inputs of the analytics method to analyze the dataset.
Fourth, select an appropriate visualization technique, map the outputs of the analytics method to the inputs of the visualization
technique, and preview the indicator visualization. After finalizing, the indicator is validated by the Analytics Engine and saved
in the Analytics Modules as a triad containing references to the indicator query, the chosen analytics method, and the
visualization technique. Additionally, the triad contains the two mappings: query-method and method-visualization. In return,
the user gets an HTML and JavaScript based indicator request code for this indicator containing the triad identifier. This
indicator request code can then be embedded in any client application (e.g., any Web page, dashboard, LMS) where it will
visualize the indicator.

The indicator execution scenario is initiated when the indicator request code embedded in the client application
communicates with OpenLAP to visualize the indicator. The Analytics Engine intercepts the request and validates it. Next, it
gets the triad from the respective Analytics Module using the triad identifier in the request. Afterwards, it gets the related query
from the database, executes it to get the raw data, and transforms it to the OpenLAP-DataSet. The OpenLAP-DataSet and the
mapping query-method is sent to the analytics method referenced in the triad for analysis. The received analyzed data as an
OpenLAP-DataSet and the mapping method-visualization is forwarded to the visualization technique referenced in the triad.
The Visualizer generates the indicator visualization code and returns it to the Analytics Engine, which forwards it to the
requesting client application to visualize the indicator.

3. Analytics Framework in OpenLAP
In this paper, we focus on the Analytics Framework component of OpenLAP, which is responsible for implementing
modularity and extensibility by providing a flexible infrastructure that enables us to easily integrate new analytics methods
and visualization techniques into OpenLAP. In the following sections, we present the Analytics Framework by discussing one
of the possible user scenarios, requirements, and implementation details.

3.1. User Scenario
Asma is a researcher at XYZ University, which uses OpenLAP to support open learning analytics. Asma developed a mobile
application for uploading learning materials to her course in the LMS. She is interested in using the Analytics Framework of
OpenLAP to analyze which of the learning materials are most viewed. She uses the Indicator Engine UI of OpenLAP to define
a new indicator called “Top 10 Learning Material,” which should apply a “Count top 10 items” analytics method and visualize
it using the “Bar Chart” format of the “Google Charts” library. Unfortunately, neither “Count top 10 items” nor “Google
Charts” are available in the Analytics Framework. Thus, she develops a new analytics method called “Count top 10 items” by
following the provided templates and guidelines and uploads it to the Analytics Framework using the administration panel in
the Indicator Engine. Furthermore, she develops a new visualization method called “Bar Chart” for “Google Charts” and
uploads it to the Analytics Framework. Asma goes back to the Indicator Engine UI and selects the newly added analytics
method and visualization technique to be applied in the indicator.

3.2. Requirements
Developing a framework that allows for the dynamic addition of new analytics methods and visualization techniques at runtime
as well as managing a growing number of user-defined indicators is a challenging task. Therefore, a modular, service-oriented
approach should be followed in the design of the Analytics Framework to support easy, effective communication between
loosely coupled modules. Additionally, the framework should be flexible and extensible to support a growing amount of
analytics functionality by enabling the smooth plug-in of new modules, analytics methods, and visualization techniques after
the platform has been deployed and is running. These newly added analytics methods and visualization techniques should be

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

95

reusable so that other users can also define their personalized indicators. These requirements represent a subset of the
OpenLAP requirements, which are discussed in more detail in Chatti et al. (2017).

3.3. Implementation
The Analytics Framework consists of four main components: Analytics Modules, Analytics Methods, Visualizer, and Analytics
Engine as well as a data exchange format called OpenLAP-DataSet, as shown in Figure 1. It is a Java Spring Framework3
based web application in which each component follows the Facade design pattern (Gamma, Helm, Johnson, & Vlissides,
1994) and exposes API endpoints through a single simplified interface called “Controller” to communicate with other
components. For the sake of understandability, API endpoints of each component are grouped together based on the nature of
the task performed by them, as shown in the technical architecture of the Analytics Framework in Figure 2. In the following
sections, we discuss the implementation details of the Analytics Framework at a level of detail that enables insights into the
modularity and extensibility mechanisms in OpenLAP. More details about the functionalities of each component in the
Analytics Framework are available on the project GitHub wiki.4

Figure 2. Technical architecture of the analytics framework.

3.3.1. OpenLAP-DataSet
The internal data exchange format used in the Analytics Framework is the OpenLAP-DataSet. It is a modular JSON-based
serializable dataset to validate and exchange data between different components. Since the modular approach is used to
develop the Analytics Framework, different components act with relative independence from each other. Thus, a data exchange
model is needed that can easily be serialized to and from JSON and allow automatic parsing.

The OpenLAP-DataSet is a collection of “OpenLAP-DataColumns,” as shown in Figure 3. Each column consists of two
distinct sections, namely an “OpenLAP-ColumnConfigData” section containing metadata for describing the column ID, type
and required flag, and an “OpenLAP-Data” section that stores the data itself.

3 http://projects.spring.io/spring-framework/
4 https://github.com/OpenLearningAnalyticsPlatform/

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

96

Figure 3. OpenLAP-DataSet abstract architecture.

In order to provide support for dynamic validation of types and the presence of all required columns in the OpenLAP-
DataSet before sending it to another component, a class named “OpenLAP-PortConfig” is used. This class specifies which
columns of the sending component’s OpenLAP-DataSet should map to which columns of the receiving component’s
OpenLAP-DataSet. The sending component generates this configuration and sends it to the receiving component for validation.
Since the configuration only has the metadata section of the OpenLAP-DataSet (i.e., “OpenLAP-ColumnConfigData”), it is
relatively lightweight. The receiving component executes the “validateConfiguration()” method of its OpenLAP-DataSet with
the received configuration and returns the compatibility results to the sending component. After validation, the configuration
along with the OpenLAP-DataSet including the data is sent to the receiving component, which then replaces the incoming
OpenLAP-DataSet metadata with the metadata of its OpenLAP-DataSet using the configuration in order to process it.

3.3.2. Analytics Modules
The component representing a collection in which each module corresponds to an analytics goal such as monitoring,
personalization, prediction, assessment, reflection, and recommendation is represented by the Analytics Modules. Each module
is responsible for managing a list of analytics methods associated with each goal. Moreover, each module manages a list of
user-defined indicators in the form of triads. As shown in Figure 2, the Analytics Modules component consists of two groups:
“Modules Manager” and “Triad Manager.” It is only accessed by the Analytics Engine. Thus, all communication between the
Analytics Modules and other components goes through the Analytics Engine.

Modules Manager. Methods to manage the analytics goals and the list containing metadata of the associated analytics
methods is provided by the “Modules Manager.” To access the list of analytics goals available in the Analytics Modules,
methods such as “getAnalyticsGoal()” and “getAllAnalyticsGoals()” are available; these are used to help end users in selecting
appropriate analytics goals during the process of indicator definition in the Indicator Engine UI. If the user does not find the
required analytics goal, they can request a new one, which is created using “addAnalyticsGoal().” To moderate the creation of
new analytics goals, all newly created goals have an internal flag marked as “inactive” and are not accessible by users until
they are activated by OpenLAP system administrators via the administration panel in the Indicator Engine, using
“activateAnalyticsGoal().”

During the process of defining new indicators, the user can select an analytics method to apply before visualizing the
indicator. The list of all analytics methods available in the Analytics Framework is presented to the user in which the analytics
methods previously used in conjunction with the selected goal are provided on top of the list using
“getAllAnalyticsMethodsOfGoal().” If the user selects an analytics method not previously used with the selected goal, that
analytics method will be associated with this goal using “addAnalyticsMethodToGoal().”

Triad Manager. Basic methods to access and save triads in the Analytics Modules are provided by the “Triad Manager”
group. A Triad in the context of the Analytics Framework is defined as a data structure that represents a single user-defined
indicator. It contains references to the indicator query, to the associated analytics method, and to the visualization technique to
be used for the indicator (Chatti et al., 2017). Additionally, the triad also stores two “OpenLAP-PortConfig” configurations
(see Section 3.3.1); the first defines the mapping between the OpenLAP-DataSet of the query data and the input OpenLAP-

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

97

DataSet of the associated analytics method; the second defines the mapping between the output OpenLAP-DataSet of the
analytics method and the input OpenLAP-DataSet of the selected visualization technique.

3.3.3. Analytics Methods
The component responsible for managing the repository of all available analytics methods in the Analytics Framework is
Analytics Methods. Analytics methods of any type can be added to the repository, such as statistics, data mining (DM), and
social network analysis (SNA). As shown in Figure 2, Analytics Methods consists of two groups: “Methods Manager” and
“Methods Validator.” Similar to the Analytics Modules, the Analytics Methods also communicates with other components of
the Analytics Framework through the Analytics Engine.

Methods Manager.	The “Methods Manager” provides methods for managing available analytics methods in the Analytics
Framework, such as “viewAllAnalyticsMethods(),” and “updateAnalyticsMethod().” During the indicator generation process,
the Analytics Engine uses the methods “getInputPorts()” and “getOutputPorts()” of the selected analytics method to get the
expected input and output OpenLAP-DataSets metadata. The Indicator Engine UI uses this metadata to support end users in
defining the mappings query-method and method-visualization and generate their respective “OpenLAP-PortConfig.”

In order to implement a new analytics method, developers perform the following steps to extend the
“<<Abstract>>AnalyticsMethod” class:

• Initialize the expected input and output OpenLAP-DataSets in the constructor.
• Override the “implementationExecution()” method that should perform the analysis on the input OpenLAP-DataSet

and store the analysis results in the output OpenLAP-DataSet.
• If the analytics method is predictive, then the result of the training phase of the machine learning algorithm should

be provided as an XML-based predictive model using Predictive Model Markup Language (PMML; Guazzelli,
Zeller, Lin, & Williams, 2009). The “hasPMML()” method should return true and the “getPMMLInputStream()”
method should provide input stream to read the XML file.

The developer can then add the new analytics method to the Analytics Methods repository via the administration panel in
the Indicator Engine. Besides uploading the JAR bundle that contains the compiled relevant files, the developer needs to
specify the name and description of the analytics method, name of the developer, and the name of the class that implements
the “<<Abstract>>AnalyticsMethod” class. Internally, the Analytics Engine uses the provided information to create a JSON
object and calls the “uploadAnalyticsMethod()” method with the JAR file and the JSON object as parameters to add the new
analytics method to the Analytics Methods repository. A more detailed step-by-step guide on how to implement a new analytics
method along with a concrete example is available on the project GitHub wiki.5

Methods Validator. The “validateNewAnalyticsMethod()” — provided by the “Methods Validator” — checks before
adding them to the collection of available analytics methods in the Analytics Framework. The method checks whether the class
specified in the JSON object has implemented the “<<Abstract>>AnalyticsMethod” class and verifies if it has all the required
methods. It also verifies the uniqueness of the analytics method name and file name in order to avoid conflicts. If a PMML file
is also included in the JAR bundle, then it is also validated. After successful validation, the information provided in the JSON
object is stored in the internal database and the new analytics method is made available in the Analytics Framework.

3.3.4. Visualizer
Providing an extensible and modular architecture for managing visualization techniques in the Analytics Framework is the
responsibility of the Visualizer component. A visualization technique consists of a visualization framework, such as Google
Charts, D3/D4, jpGraph, Dygraphs, and jqPlot, along with their supported visualization types, such as bar chart, pie chart, or
line chart. The Visualizer is also responsible for generating the indicator visualization code consisting of HTML and
JavaScripts that can be embedded easily into any client application. As shown in Figure 2, the Visualizer consists of four
groups: “Visualizer Manager,” “Visualization Generator,” “Visualizer Validator,” and “Visualization Suggestion.”

Visualizer Manager. The “Visualizer Manager” provides methods to manage visualization frameworks and their
supported visualization types. These methods are used by the Analytics Engine via the administration panel in the Indicator
Engine. In order to add a new visualization framework in the Visualizer, the following tasks need to be performed for each
visualization type in the framework:

• Extend the “<<Abstract>>VisualizationCodeGenerator” class.
• Initialize the expected input OpenLAP-DataSet in the “initializeDataSetConfiguration()” method.

5 https://github.com/OpenLearningAnalyticsPlatform/OpenLAP-AnalyticsMethodsFramework

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

98

• As each visualization type of a framework may require the data to be present in a different structure, an interface
called “DataTransformer” is provided, which can be extended to transform the data from the expected input
OpenLAP-DataSet into the expected data structure required by the visualization type. The same
“DataTransformer” can be reused by multiple visualization types if they expect the same data structure.

• Override the “visualizationCode()” method and add the logic to generate the indicator visualization code using
the transformed data generated in the previous step.

The developer then needs to create a bundled JAR file containing the implementation classes of the new visualization
technique and upload it to the Visualizer via the administration panel in the Indicator Engine along with further information,
including the visualization framework name and description, developer name, and the list of the implemented visualization
types with the used data transformers. The JAR file and the specified metadata are used by the Analytics Engine as parameters
of the method “uploadVisualizationFramework()” to add the new visualization technique to the Visualizer. A more detailed
description on how to add a new visualization framework is available on the project GitHub wiki.6

Visualizer Validator. The “Visualizer Validator” provides a “validateFramework()” method to validate the new
visualization framework before making it available in the Analytics Framework. As soon as a new framework is uploaded to
the Visualizer at runtime, first and foremost the JSON object is checked. The implemented classes stated as part of the
visualization methods and data transformers in the metadata are loaded by a class loader to check if they implement the correct
interface/abstract classes. After a successful validation, the actual upload of the frameworks starts. This step includes storing
the JAR in the deployment server’s file system and making the new visualization framework available.

Visualization Generator. The “Visualization Generator” provides a “getIndicatorVisualizationCode()” method to get the
indicator visualization code by providing the visualization framework name/id, the visualization type name/id, the output
OpenLAP-DataSet of the analytics method, and the mapping method-visualization. This method first maps the output
OpenLAP-DataSet of the analytics method to the expected input OpenLAP-DataSet of the visualization technique. It then calls
the “DataTransformer” provided in the JSON object to transform the expected input OpenLAP-DataSet into the expected data
structure required by the specified visualization type. After that, the “visualizationCode()” method in the implemented
“VisualizationCodeGenerator” class is called along with the transformed data to generate the indicator visualization code,
which is sent back to the client where it is visualized. The indicator visualization code for the “Top 10 Learning Material"
indicator is shown below and its visualization on the client side is shown in Figure 4.

<div id=“chartdiv”></div>
<script type=“text/javascript”>
 var data=google.visualization.arrayToDataTable([
 [“x-axis_labels,” “y-axis_values”], [“1-3 Topic Assignment.pdf,” 114],
 [“1-2 Overview.pdf,” 89], [“1-1 Orga.pdf,” 87], [“assignment_04.pdf,” 50],
 [“assignment_03.pdf,” 46], [“presentation.pdf,” 43], [“assignment_template.pdf,” 34],
 [“assignment_template.docx,” 33], [“node_js_final.pdf,” 30], [“Handout.pdf,” 28]]);
 var options = { title: “Top 10 Learning Material,” width: 440, height: 200, is3D: true,
 chartArea:{ width: “95%,” height: “135,” left: “50,” top: “10” }, vAxis:{ title: “Count” },
 hAxis:{ title: “Learning Materials” }, backgroundColor: { fill: “transparent” } };
var chart = new google.visualization.ColumnChart(document.getElementById(“chartdiv”));
chart.draw(data, options);
</script>

Visualization Suggestion. The “Visualization Suggestion” provides methods to suggest which possible visualization
techniques can be applied based on the OpenLAP-DataSet metadata. The suggestions are generated by comparing a given
OpenLAP-DataSet metadata with the expected input OpenLAP-DataSet metadata of each visualization type stored in the
Visualizer.

3.3.5. Analytics Engine
The Analytics Engine is the main orchestrator of the Analytics Framework. It is responsible for managing the indicator
generation and the indicator execution processes (see Section 2.2). As shown in Figure 2, the Analytics Engine consists of five
groups: “Request Handler,” “Indicator Manager,” “Indicator Validator,” “DataSet Transformer,” and “Indicator Executor.”

6 https://github.com/OpenLearningAnalyticsPlatform/OpenLAP-Visualizer-Framework

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

99

Figure 4. Visualization of “Top 10 Learning Material” indicator.

Request Handler. The “Request Handler” group is composed of methods responsible for handling the incoming requests
from the Indicator Engine to generate new indicators and from external systems to execute indicators. The methods
“getIndicatorsByQuestion(),” “getIndicatorsByGoal(),” “getIndicatorByID(),” and “getAllIndicators()” are mainly used by the
Indicator Engine to implement the GQI approach in the indicator generation process to get an indicator request code consisting
of HTML and JavaScripts that can be embedded in any client application. The “getIndicatorData()” method is called by the
indicator request code from a client application in the indicator execution process to get the indicator visualization code (see
Section 2).

Indicator Manager. The “Indicator Manager” group consists of methods for accessing and saving triads to the Analytics
Modules. After finalizing the new indicator generation process in the Indicator Engine, the Analytics Engine saves the indicator
as a triad using the “saveTriad()” method. Whenever the “getIndicatorData()” method is called from a client application with
the triad ID as parameter, the Analytics Engine starts the indicator execution process by getting the triad from the Analytics
Modules using the “getTriad()” method that contains references to the indicator query, the analytics method, and the
visualization technique, as well as the “query-method” and “method-visualization” mappings.

Indicator Validator. The “Indicator Validator” provides the “validateIndicator()” method that is called at the end of the
indicator generation process to determine whether the mappings indicator query-method and method-visualization are valid or
not using the “validateConfiguration()” method available in the OpenLAP-DataSet of the chosen analytics method and the
visualization technique, respectively.

DataSet Transformer. The “DataSet Transformer” group provides a method to convert the indicator query result data
from the underlying database format to the OpenLAP-DataSet. Currently, an SQL-based database is being used by the
Analytics Framework to store learning activities data using LCDM data model. Thus, only a “convertSQLToDataSet()” method
is provided, which converts the SQL-based data to OpenLAP-DataSet. This provides the Analytics Framework with the ability
to easily adapt different underlying databases by implementing new “DataSet Transformer” methods for the new databases
(e.g., NoSQL databases).

Indicator Executor.The “Indicator Executor” group provides two methods. The “executeTriad()” method is used to
perform the indicator execution process including data acquisition, transformation, analysis, and visualization. The
“executeIndicatorForPreview()” method is called to preview the result of the indicator generation process. Thereby only a
subset of the indicator query data is used so that the visualization is generated relatively faster. The methods in this group also
handle the exceptions that might occur during the indicator execution process.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

100

4. CONCLUSION AND FUTURE WORK
Open learning analytics (OLA) is a particularly rich area for future research. In this paper, we addressed the modularity and
extensibility challenges in OLA by presenting the conceptual and implementation details of the analytics framework
component in the Open Learning Analytics Platform (OpenLAP). The analytics framework lays the foundation of a simple
yet powerful framework that provides an easy, flexible mechanism for LA researchers and developers to add new analytics
methods and visualization techniques to OpenLAP by following the provided templates and guidelines. Our future work
includes implementing further analytics methods based on data mining and social network analysis algorithms as well as new
visualization techniques using, for example, D3.js, C3, Highcharts, and InfoVis. Additionally, the current implementation of
the administration panel only allows for the adding of new analytics methods and visualization techniques by researchers and
developers. Therefore, an enhancement of the administration panel is planned to allow easy modification, deletion, and
management of the added analytics methods and visualization techniques. In order to support developers in validating their
newly developed analytics methods and visualization techniques, we have plan to provide a mechanism in the administration
panel to generate sample data based on the inputs of the developed component and a set of guidelines to use it. The sample
data can be used to debug and validate components before uploading them to OpenLAP. In terms of evaluation, we are
preparing to conduct the pilot phase for OpenLAP at RWTH Aachen University and the University of Duisburg-Essen in
which we plan to evaluate the architecture quality of OpenLAP, the extensibility process, and the usability and usefulness of
the indicator generation process.

Declaration of conflicting interest
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this
article.

Funding
The author(s) declared no financial support for the research, authorship, and/or publication of this article.

References
Chatti, M. A. (2010). Personalization in technology enhanced learning: A social software perspective. Dissertation RWTH

Aachen, Shaker Verlag. http://www.shaker.eu/shop/978-3-8322-9575-2
Chatti, M. A., Muslim, A., & Schroeder, U. (2017). Toward an open learning analytics ecosystem. In B. K. Daniel (Ed.), Big

data and learning analytics in higher education (pp. 195–219). Springer. http://dx.doi.org/10.1007/978-3-319-06520-
5_12

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented software.
London: Pearson Education.

Guazzelli, A., Zeller, M., Lin, W.-C., & Williams, G. (2009). PMML: An open standard for sharing models. The R Journal,
1, 60–65. https://journal.r-project.org/archive/2009/RJ-2009-010/index.html

Lukarov, V., Chatti, M. A., Thüs, H., Kia, F. S., Muslim, A., Greven, C., & Schroeder, U. (2014). Data models in learning
analytics. Proceedings of DeLFI Workshops, 15 September 2014, Freiburg, Germany (pp. 88–95). http://ceur-
ws.org/Vol-1227/paper22.pdf

Muslim, A., Chatti, M. A., Mahapatra, T., & Schroeder, U. (2016). A rule-based indicator definition tool for personalized
learning analytics. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16),
25–29 April 2016, Edinburgh, UK (pp. 264–273). New York: ACM. http://dx.doi.org/10.1145/2883851.2883921

Muslim, A., Chatti, M. A., Mughal, M., & Schroeder, U. (2017). The goal–question–indicator approach for personalized
learning analytics. Proceedings of the 9th International Conference on Computer Supported Education (CSEDU
2017) 21–23 April 2017, Porto, Portugal (Vol. 1, pp. 371–378). ScitePress.
http://dx.doi.org/10.5220/0006319803710378

Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46, 30.
https://eric.ed.gov/?id=EJ950794

Siemens, G., Gasevic, D., Haythornthwaite, C., Dawson, S., Shum, S. B., Ferguson, R., . . . Baker, R. S. (2011). Open
learning analytics: An integrated and modularized platform. Proposal to design, implement and evaluate an open
platform to integrate heterogeneous learning analytics techniques. http://solaresearch.org/wp-
content/uploads/2011/12/OpenLearningAnalytics.pdf

Thüs, H., Chatti, M. A., Greven, C., & Schroeder, U. (2014). Kontexterfassung, -modellierung und-auswertung in
Lernumgebungen. DeLFI 2014-Die 12. e-Learning Fachtagung Informatik (pp. 157–162). Gesellschaft für Informatik.
http://cs.emis.de/LNI/Proceedings/Proceedings233/157.pdf

