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Abstract 
Open Learning Analytics (OLA) is an emerging concept in the field of Learning Analytics (LA). It deals with learning 
data collected from multiple environments and contexts, analyzed with a wide range of analytics methods to address 
the requirements of different stakeholders. Due to this diversity in different dimensions of OLA, the LA developers 
and researchers face numerous challenges while designing solutions for OLA. The Open Learning Analytics 
Platform (OpenLAP) is a framework that addresses these issues and lays the foundation for an ecosystem of OLA 
that aims at supporting learning and teaching in fragmented, diverse, and networked learning environments. It 
follows a user-centric approach to engage end users in flexible definition and dynamic generation of personalized 
indicators. In this paper, we address a subset of OLA challenges and present the conceptual and implementation 
details of the analytics framework component of OpenLAP, which follows a flexible architecture that allows the easy 
integration of new analytics methods and visualization techniques in OpenLAP to support end users in defining 
indicators based on their needs in order to embed the results into their personal learning environment. 
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1. Introduction 
Learning Analytics (LA) incorporates the concepts of big data and data analytics to improve the learning and teaching 
processes of different stakeholders (Siemens et al., 2011). The term LA has been defined at the First International Conference 
on Learning Analytics and Knowledge (LAK ’11) as “the measurement, collection, analysis, and reporting of data about 
learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs” 
(Siemens & Long, 2011). The technological boom in the last decade has revolutionized the education sector, moving the 
learning environment from traditional classrooms (e.g., learning management systems, virtual learning environments) toward 
more open, self-organized and networked settings (e.g., personal learning environments, massive open online courses; Chatti, 
2010). This openness has led to the emergence of a new LA research area called Open Learning Analytics (OLA). In general, 
OLA encompasses different stakeholders associated with a common interest in LA but with diverse needs and objectives, a 
wide range of data coming from various learning environments and contexts, as well as multiple infrastructures and methods 
that enable us to draw value from data in order to gain insight into learning processes (Chatti, Muslim, & Schroeder, 2017). 

In order to provide an effective solution, OLA introduces a number of challenges for LA practitioners, developers, and 
researchers. These include data aggregation and integration, interoperability, specifications and standards, reusability, 
modularity, flexibility and extensibility, performance and scalability, usability, privacy, transparency, and personalization 
(Chatti et al., 2017). 
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In this paper, we focus on the modularity and extensibility challenges in OLA and present the conceptual and 
implementation details of the analytics framework component of the Open Learning Analytics Platform (OpenLAP; Chatti et 
al., 2017). The main aim of the analytics framework is to provide a flexible architecture that makes it easy to extend OpenLAP 
with new analytics methods and visualization techniques to support end users in self-defining indicators according to their 
needs. 

The remainder of the paper is structured as follows: In Section 2, we present the architecture and the main components of 
OpenLAP; Section 3 presents the design and implementation details of the analytics framework component of OpenLAP; 
finally, Section 4 concludes the paper and gives perspectives for future work. 

2. Open Learning Analytics Platform (OpenLAP)  
Chatti et al. (2017) propose a vision for an open learning analytics ecosystem and present a concrete conceptual and technical 
architecture for OpenLAP.1 It provides end users with a user-centric mechanism to flexibly and dynamically generate their 
personalized indicators. In order to meet the requirements of diverse users, OpenLAP adapts a modular and extensible 
architecture that allows the easy integration of new analytics modules, analytics methods, and visualization techniques. In the 
following sections, we present a brief description of the OpenLAP abstract architecture and discuss supported system 
scenarios. 

2.1. Abstract Architecture 
The abstract architecture of OpenLAP shown in Figure 1 consists of three main components, namely Data Collection and 
Management, Indicator Engine, and Analytics Framework. 

 
 

 
Figure 1. OpenLAP Abstract Architecture (Muslim, Chatti, Mughal, & Schroeder, 2017).  

The Data Collection and Management component in OpenLAP is responsible for collecting learning activities data from 
different sources adhering to the privacy policies of OpenLAP and generating the learner and context models from it. OpenLAP 
uses the data model called Learning Context Data Model (LCDM) suggested by Thüs, Chatti, Greven, and Schroeder (2014) 
in the frame of the Learning Context Project.2 LCDM represents a user-centric, modular, easy-to-understand data model that 
holds additional semantic information about the context in which an event has been generated (Lukarov et al., 2014). OpenLAP 
follows a rule-based approach to define the data access mechanism based on the selected parameters of the indicator. These 
rules can easily be modified to allow adaptation of other data models for LA, such as IMS Caliper, xAPI, Activity Streams, 
CAM, MOOCdb, or DiscourseDB (Muslim, Chatti, Mahapatra, & Schroeder, 2016). The Data Collection and Management 
component in OpenLAP provides an LCDM-based API that enables collecting data from various sources. For each new source, 
a data collection component (collector) needs to be developed. It can be an integrated component in a source that gathers data 
and pushes it to OpenLAP in the LCDM format. It can also be an intermediate component (adapter) that receives data from a 
source and transforms it into the LCDM format before sending it to OpenLAP (Chatti et al., 2017). 

The aim of the Indicator Engine in OpenLAP is to achieve personalized and goal-oriented LA by following a Goal–
Question–Indicator (GQI) approach that allows users to easily define new indicators through an interactive UI. Additionally, 
it provides an administration panel to manage the analytics modules, analytics methods, and visualization techniques in 
OpenLAP (Muslim, Chatti, Mughal, & Schroeder, 2017). 
                                                        

1 http://lanzarote.informatik.rwth-aachen.de/openlap 
2 http://www.learning-context.de/ 
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The Analytics Framework is the core component of OpenLAP, which manages, generates, and executes indicators. It is 
responsible for fetching raw data from the database, performing the analysis and visualizing the indicator. Additionally, the 
Analytics Framework implements the extensibility by supporting easy mechanisms to manage, add, and remove analytics 
modules, analytics methods, and visualization techniques in OpenLAP. It is the combination of five sub-components; namely, 
OpenLAP-DataSet, Analytics Modules, Analytics Methods, Visualizer, and Analytics Engine.  
2.2. System Scenarios 
The different components in OpenLAP interact with each other to provide two main system scenarios, namely the indicator 
generation and the indicator execution. 

During the indicator generation, the user interacts with the Indicator Engine UI to define an LA goal, ask an LA question, 
and associate multiple indicators to answer this question. In order to define a new indicator, the user follows a 4-step process. 
First, select an appropriate dataset by exploring the learning events data. Second, apply various filters on the selected dataset. 
Third, choose an analytics method and maps the dataset columns to the inputs of the analytics method to analyze the dataset. 
Fourth, select an appropriate visualization technique, map the outputs of the analytics method to the inputs of the visualization 
technique, and preview the indicator visualization. After finalizing, the indicator is validated by the Analytics Engine and saved 
in the Analytics Modules as a triad containing references to the indicator query, the chosen analytics method, and the 
visualization technique. Additionally, the triad contains the two mappings: query-method and method-visualization. In return, 
the user gets an HTML and JavaScript based indicator request code for this indicator containing the triad identifier. This 
indicator request code can then be embedded in any client application (e.g., any Web page, dashboard, LMS) where it will 
visualize the indicator. 

The indicator execution scenario is initiated when the indicator request code embedded in the client application 
communicates with OpenLAP to visualize the indicator. The Analytics Engine intercepts the request and validates it. Next, it 
gets the triad from the respective Analytics Module using the triad identifier in the request. Afterwards, it gets the related query 
from the database, executes it to get the raw data, and transforms it to the OpenLAP-DataSet. The OpenLAP-DataSet and the 
mapping query-method is sent to the analytics method referenced in the triad for analysis. The received analyzed data as an 
OpenLAP-DataSet and the mapping method-visualization is forwarded to the visualization technique referenced in the triad. 
The Visualizer generates the indicator visualization code and returns it to the Analytics Engine, which forwards it to the 
requesting client application to visualize the indicator. 

3. Analytics Framework in OpenLAP 
In this paper, we focus on the Analytics Framework component of OpenLAP, which is responsible for implementing 
modularity and extensibility by providing a flexible infrastructure that enables us to easily integrate new analytics methods 
and visualization techniques into OpenLAP. In the following sections, we present the Analytics Framework by discussing one 
of the possible user scenarios, requirements, and implementation details. 

3.1. User Scenario 
Asma is a researcher at XYZ University, which uses OpenLAP to support open learning analytics. Asma developed a mobile 
application for uploading learning materials to her course in the LMS. She is interested in using the Analytics Framework of 
OpenLAP to analyze which of the learning materials are most viewed. She uses the Indicator Engine UI of OpenLAP to define 
a new indicator called “Top 10 Learning Material,” which should apply a “Count top 10 items” analytics method and visualize 
it using the “Bar Chart” format of the “Google Charts” library. Unfortunately, neither “Count top 10 items” nor “Google 
Charts” are available in the Analytics Framework. Thus, she develops a new analytics method called “Count top 10 items” by 
following the provided templates and guidelines and uploads it to the Analytics Framework using the administration panel in 
the Indicator Engine. Furthermore, she develops a new visualization method called “Bar Chart” for “Google Charts” and 
uploads it to the Analytics Framework. Asma goes back to the Indicator Engine UI and selects the newly added analytics 
method and visualization technique to be applied in the indicator. 

3.2. Requirements 
Developing a framework that allows for the dynamic addition of new analytics methods and visualization techniques at runtime 
as well as managing a growing number of user-defined indicators is a challenging task. Therefore, a modular, service-oriented 
approach should be followed in the design of the Analytics Framework to support easy, effective communication between 
loosely coupled modules. Additionally, the framework should be flexible and extensible to support a growing amount of 
analytics functionality by enabling the smooth plug-in of new modules, analytics methods, and visualization techniques after 
the platform has been deployed and is running. These newly added analytics methods and visualization techniques should be 
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reusable so that other users can also define their personalized indicators. These requirements represent a subset of the 
OpenLAP requirements, which are discussed in more detail in Chatti et al. (2017). 

3.3. Implementation 
The Analytics Framework consists of four main components: Analytics Modules, Analytics Methods, Visualizer, and Analytics 
Engine as well as a data exchange format called OpenLAP-DataSet, as shown in Figure 1. It is a Java Spring Framework3 
based web application in which each component follows the Facade design pattern (Gamma, Helm, Johnson, & Vlissides, 
1994) and exposes API endpoints through a single simplified interface called “Controller” to communicate with other 
components. For the sake of understandability, API endpoints of each component are grouped together based on the nature of 
the task performed by them, as shown in the technical architecture of the Analytics Framework in Figure 2. In the following 
sections, we discuss the implementation details of the Analytics Framework at a level of detail that enables insights into the 
modularity and extensibility mechanisms in OpenLAP. More details about the functionalities of each component in the 
Analytics Framework are available on the project GitHub wiki.4 

 

 
Figure 2. Technical architecture of the analytics framework. 

3.3.1. OpenLAP-DataSet 
The internal data exchange format used in the Analytics Framework is the OpenLAP-DataSet. It is a modular JSON-based 
serializable dataset to validate and exchange data between different components. Since the modular approach is used to 
develop the Analytics Framework, different components act with relative independence from each other. Thus, a data exchange 
model is needed that can easily be serialized to and from JSON and allow automatic parsing. 

The OpenLAP-DataSet is a collection of “OpenLAP-DataColumns,” as shown in Figure 3. Each column consists of two 
distinct sections, namely an “OpenLAP-ColumnConfigData” section containing metadata for describing the column ID, type 
and required flag, and an “OpenLAP-Data” section that stores the data itself. 

                                                        
3 http://projects.spring.io/spring-framework/ 
4 https://github.com/OpenLearningAnalyticsPlatform/ 
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Figure 3. OpenLAP-DataSet abstract architecture. 

In order to provide support for dynamic validation of types and the presence of all required columns in the OpenLAP-
DataSet before sending it to another component, a class named “OpenLAP-PortConfig” is used. This class specifies which 
columns of the sending component’s OpenLAP-DataSet should map to which columns of the receiving component’s 
OpenLAP-DataSet. The sending component generates this configuration and sends it to the receiving component for validation. 
Since the configuration only has the metadata section of the OpenLAP-DataSet (i.e., “OpenLAP-ColumnConfigData”), it is 
relatively lightweight. The receiving component executes the “validateConfiguration()” method of its OpenLAP-DataSet with 
the received configuration and returns the compatibility results to the sending component. After validation, the configuration 
along with the OpenLAP-DataSet including the data is sent to the receiving component, which then replaces the incoming 
OpenLAP-DataSet metadata with the metadata of its OpenLAP-DataSet using the configuration in order to process it. 

3.3.2. Analytics Modules 
The component representing a collection in which each module corresponds to an analytics goal such as monitoring, 
personalization, prediction, assessment, reflection, and recommendation is represented by the Analytics Modules. Each module 
is responsible for managing a list of analytics methods associated with each goal. Moreover, each module manages a list of 
user-defined indicators in the form of triads. As shown in Figure 2, the Analytics Modules component consists of two groups: 
“Modules Manager” and “Triad Manager.” It is only accessed by the Analytics Engine. Thus, all communication between the 
Analytics Modules and other components goes through the Analytics Engine. 

Modules Manager. Methods to manage the analytics goals and the list containing metadata of the associated analytics 
methods is provided by the “Modules Manager.” To access the list of analytics goals available in the Analytics Modules, 
methods such as “getAnalyticsGoal()” and “getAllAnalyticsGoals()” are available; these are used to help end users in selecting 
appropriate analytics goals during the process of indicator definition in the Indicator Engine UI. If the user does not find the 
required analytics goal, they can request a new one, which is created using “addAnalyticsGoal().” To moderate the creation of 
new analytics goals, all newly created goals have an internal flag marked as “inactive” and are not accessible by users until 
they are activated by OpenLAP system administrators via the administration panel in the Indicator Engine, using 
“activateAnalyticsGoal().” 

During the process of defining new indicators, the user can select an analytics method to apply before visualizing the 
indicator. The list of all analytics methods available in the Analytics Framework is presented to the user in which the analytics 
methods previously used in conjunction with the selected goal are provided on top of the list using 
“getAllAnalyticsMethodsOfGoal().” If the user selects an analytics method not previously used with the selected goal, that 
analytics method will be associated with this goal using “addAnalyticsMethodToGoal().” 

Triad Manager. Basic methods to access and save triads in the Analytics Modules are provided by the “Triad Manager” 
group. A Triad in the context of the Analytics Framework is defined as a data structure that represents a single user-defined 
indicator. It contains references to the indicator query, to the associated analytics method, and to the visualization technique to 
be used for the indicator (Chatti et al., 2017). Additionally, the triad also stores two “OpenLAP-PortConfig” configurations 
(see Section 3.3.1); the first defines the mapping between the OpenLAP-DataSet of the query data and the input OpenLAP-
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DataSet of the associated analytics method; the second defines the mapping between the output OpenLAP-DataSet of the 
analytics method and the input OpenLAP-DataSet of the selected visualization technique. 

3.3.3. Analytics Methods 
The component responsible for managing the repository of all available analytics methods in the Analytics Framework is 
Analytics Methods. Analytics methods of any type can be added to the repository, such as statistics, data mining (DM), and 
social network analysis (SNA). As shown in Figure 2, Analytics Methods consists of two groups: “Methods Manager” and 
“Methods Validator.” Similar to the Analytics Modules, the Analytics Methods also communicates with other components of 
the Analytics Framework through the Analytics Engine. 

Methods Manager.	The “Methods Manager” provides methods for managing available analytics methods in the Analytics 
Framework, such as “viewAllAnalyticsMethods(),” and “updateAnalyticsMethod().” During the indicator generation process, 
the Analytics Engine uses the methods “getInputPorts()” and “getOutputPorts()” of the selected analytics method to get the 
expected input and output OpenLAP-DataSets metadata. The Indicator Engine UI uses this metadata to support end users in 
defining the mappings query-method and method-visualization and generate their respective “OpenLAP-PortConfig.” 

In order to implement a new analytics method, developers perform the following steps to extend the 
“<<Abstract>>AnalyticsMethod” class: 

• Initialize the expected input and output OpenLAP-DataSets in the constructor. 
• Override the “implementationExecution()” method that should perform the analysis on the input OpenLAP-DataSet 

and store the analysis results in the output OpenLAP-DataSet. 
• If the analytics method is predictive, then the result of the training phase of the machine learning algorithm should 

be provided as an XML-based predictive model using Predictive Model Markup Language (PMML; Guazzelli, 
Zeller, Lin, & Williams, 2009). The “hasPMML()” method should return true and the “getPMMLInputStream()” 
method should provide input stream to read the XML file. 

The developer can then add the new analytics method to the Analytics Methods repository via the administration panel in 
the Indicator Engine. Besides uploading the JAR bundle that contains the compiled relevant files, the developer needs to 
specify the name and description of the analytics method, name of the developer, and the name of the class that implements 
the “<<Abstract>>AnalyticsMethod” class. Internally, the Analytics Engine uses the provided information to create a JSON 
object and calls the “uploadAnalyticsMethod()” method with the JAR file and the JSON object as parameters to add the new 
analytics method to the Analytics Methods repository. A more detailed step-by-step guide on how to implement a new analytics 
method along with a concrete example is available on the project GitHub wiki.5 

Methods Validator. The “validateNewAnalyticsMethod()” — provided by the “Methods Validator” — checks before 
adding them to the collection of available analytics methods in the Analytics Framework. The method checks whether the class 
specified in the JSON object has implemented the “<<Abstract>>AnalyticsMethod” class and verifies if it has all the required 
methods. It also verifies the uniqueness of the analytics method name and file name in order to avoid conflicts. If a PMML file 
is also included in the JAR bundle, then it is also validated. After successful validation, the information provided in the JSON 
object is stored in the internal database and the new analytics method is made available in the Analytics Framework. 

3.3.4. Visualizer 
Providing an extensible and modular architecture for managing visualization techniques in the Analytics Framework is the 
responsibility of the Visualizer component. A visualization technique consists of a visualization framework, such as Google 
Charts, D3/D4, jpGraph, Dygraphs, and jqPlot, along with their supported visualization types, such as bar chart, pie chart, or 
line chart. The Visualizer is also responsible for generating the indicator visualization code consisting of HTML and 
JavaScripts that can be embedded easily into any client application. As shown in Figure 2, the Visualizer consists of four 
groups: “Visualizer Manager,” “Visualization Generator,” “Visualizer Validator,” and “Visualization Suggestion.” 

Visualizer Manager. The “Visualizer Manager” provides methods to manage visualization frameworks and their 
supported visualization types. These methods are used by the Analytics Engine via the administration panel in the Indicator 
Engine. In order to add a new visualization framework in the Visualizer, the following tasks need to be performed for each 
visualization type in the framework: 

• Extend the “<<Abstract>>VisualizationCodeGenerator” class. 
• Initialize the expected input OpenLAP-DataSet in the “initializeDataSetConfiguration()” method. 

                                                        
5 https://github.com/OpenLearningAnalyticsPlatform/OpenLAP-AnalyticsMethodsFramework 
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• As each visualization type of a framework may require the data to be present in a different structure, an interface 
called “DataTransformer” is provided, which can be extended to transform the data from the expected input 
OpenLAP-DataSet into the expected data structure required by the visualization type. The same 
“DataTransformer” can be reused by multiple visualization types if they expect the same data structure. 

• Override the “visualizationCode()” method and add the logic to generate the indicator visualization code using 
the transformed data generated in the previous step. 

The developer then needs to create a bundled JAR file containing the implementation classes of the new visualization 
technique and upload it to the Visualizer via the administration panel in the Indicator Engine along with further information, 
including the visualization framework name and description, developer name, and the list of the implemented visualization 
types with the used data transformers. The JAR file and the specified metadata are used by the Analytics Engine as parameters 
of the method “uploadVisualizationFramework()” to add the new visualization technique to the Visualizer. A more detailed 
description on how to add a new visualization framework is available on the project GitHub wiki.6 

Visualizer Validator. The “Visualizer Validator” provides a “validateFramework()” method to validate the new 
visualization framework before making it available in the Analytics Framework. As soon as a new framework is uploaded to 
the Visualizer at runtime, first and foremost the JSON object is checked. The implemented classes stated as part of the 
visualization methods and data transformers in the metadata are loaded by a class loader to check if they implement the correct 
interface/abstract classes. After a successful validation, the actual upload of the frameworks starts. This step includes storing 
the JAR in the deployment server’s file system and making the new visualization framework available. 

Visualization Generator. The “Visualization Generator” provides a “getIndicatorVisualizationCode()” method to get the 
indicator visualization code by providing the visualization framework name/id, the visualization type name/id, the output 
OpenLAP-DataSet of the analytics method, and the mapping method-visualization. This method first maps the output 
OpenLAP-DataSet of the analytics method to the expected input OpenLAP-DataSet of the visualization technique. It then calls 
the “DataTransformer” provided in the JSON object to transform the expected input OpenLAP-DataSet into the expected data 
structure required by the specified visualization type. After that, the “visualizationCode()” method in the implemented 
“VisualizationCodeGenerator” class is called along with the transformed data to generate the indicator visualization code, 
which is sent back to the client where it is visualized. The indicator visualization code for the “Top 10 Learning Material" 
indicator is shown below and its visualization on the client side is shown in Figure 4. 

 
<div id=“chartdiv”></div> 
<script type=“text/javascript”> 
 var data=google.visualization.arrayToDataTable([ 
  [“x-axis_labels,” “y-axis_values”], [“1-3 Topic Assignment.pdf,” 114], 
  [“1-2 Overview.pdf,” 89], [“1-1 Orga.pdf,” 87], [“assignment_04.pdf,” 50], 
  [“assignment_03.pdf,” 46], [“presentation.pdf,” 43], [“assignment_template.pdf,” 34], 
  [“assignment_template.docx,” 33], [“node_js_final.pdf,” 30], [“Handout.pdf,” 28] ] ); 
 var options = { title: “Top 10 Learning Material,” width: 440, height: 200, is3D: true, 
  chartArea:{ width: “95%,” height: “135,” left: “50,” top: “10” }, vAxis:{ title: “Count” }, 
  hAxis:{ title: “Learning Materials” }, backgroundColor: { fill: “transparent” } }; 
var chart = new google.visualization.ColumnChart(document.getElementById(“chartdiv”)); 
chart.draw(data, options); 
</script> 
 

Visualization Suggestion. The “Visualization Suggestion” provides methods to suggest which possible visualization 
techniques can be applied based on the OpenLAP-DataSet metadata. The suggestions are generated by comparing a given 
OpenLAP-DataSet metadata with the expected input OpenLAP-DataSet metadata of each visualization type stored in the 
Visualizer. 

3.3.5. Analytics Engine 
The Analytics Engine is the main orchestrator of the Analytics Framework. It is responsible for managing the indicator 
generation and the indicator execution processes (see Section 2.2). As shown in Figure 2, the Analytics Engine consists of five 
groups: “Request Handler,” “Indicator Manager,” “Indicator Validator,” “DataSet Transformer,” and “Indicator Executor.” 
 
                                                        

6 https://github.com/OpenLearningAnalyticsPlatform/OpenLAP-Visualizer-Framework 
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Figure 4. Visualization of “Top 10 Learning Material” indicator. 

Request Handler. The “Request Handler” group is composed of methods responsible for handling the incoming requests 
from the Indicator Engine to generate new indicators and from external systems to execute indicators. The methods 
“getIndicatorsByQuestion(),” “getIndicatorsByGoal(),” “getIndicatorByID(),” and “getAllIndicators()” are mainly used by the 
Indicator Engine to implement the GQI approach in the indicator generation process to get an indicator request code consisting 
of HTML and JavaScripts that can be embedded in any client application. The “getIndicatorData()” method is called by the 
indicator request code from a client application in the indicator execution process to get the indicator visualization code (see 
Section 2). 

Indicator Manager. The “Indicator Manager” group consists of methods for accessing and saving triads to the Analytics 
Modules. After finalizing the new indicator generation process in the Indicator Engine, the Analytics Engine saves the indicator 
as a triad using the “saveTriad()” method. Whenever the “getIndicatorData()” method is called from a client application with 
the triad ID as parameter, the Analytics Engine starts the indicator execution process by getting the triad from the Analytics 
Modules using the “getTriad()” method that contains references to the indicator query, the analytics method, and the 
visualization technique, as well as the “query-method” and “method-visualization” mappings. 

Indicator Validator. The “Indicator Validator” provides the “validateIndicator()” method that is called at the end of the 
indicator generation process to determine whether the mappings indicator query-method and method-visualization are valid or 
not using the “validateConfiguration()” method available in the OpenLAP-DataSet of the chosen analytics method and the 
visualization technique, respectively. 

DataSet Transformer. The “DataSet Transformer” group provides a method to convert the indicator query result data 
from the underlying database format to the OpenLAP-DataSet. Currently, an SQL-based database is being used by the 
Analytics Framework to store learning activities data using LCDM data model. Thus, only a “convertSQLToDataSet()” method 
is provided, which converts the SQL-based data to OpenLAP-DataSet. This provides the Analytics Framework with the ability 
to easily adapt different underlying databases by implementing new “DataSet Transformer” methods for the new databases 
(e.g., NoSQL databases). 

Indicator Executor.The “Indicator Executor” group provides two methods. The “executeTriad()” method is used to 
perform the indicator execution process including data acquisition, transformation, analysis, and visualization. The 
“executeIndicatorForPreview()” method is called to preview the result of the indicator generation process. Thereby only a 
subset of the indicator query data is used so that the visualization is generated relatively faster. The methods in this group also 
handle the exceptions that might occur during the indicator execution process. 
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4. CONCLUSION AND FUTURE WORK 
Open learning analytics (OLA) is a particularly rich area for future research. In this paper, we addressed the modularity and 
extensibility challenges in OLA by presenting the conceptual and implementation details of the analytics framework 
component in the Open Learning Analytics Platform (OpenLAP). The analytics framework lays the foundation of a simple 
yet powerful framework that provides an easy, flexible mechanism for LA researchers and developers to add new analytics 
methods and visualization techniques to OpenLAP by following the provided templates and guidelines. Our future work 
includes implementing further analytics methods based on data mining and social network analysis algorithms as well as new 
visualization techniques using, for example, D3.js, C3, Highcharts, and InfoVis. Additionally, the current implementation of 
the administration panel only allows for the adding of new analytics methods and visualization techniques by researchers and 
developers. Therefore, an enhancement of the administration panel is planned to allow easy modification, deletion, and 
management of the added analytics methods and visualization techniques. In order to support developers in validating their 
newly developed analytics methods and visualization techniques, we have plan to provide a mechanism in the administration 
panel to generate sample data based on the inputs of the developed component and a set of guidelines to use it. The sample 
data can be used to debug and validate components before uploading them to OpenLAP. In terms of evaluation, we are 
preparing to conduct the pilot phase for OpenLAP at RWTH Aachen University and the University of Duisburg-Essen in 
which we plan to evaluate the architecture quality of OpenLAP, the extensibility process, and the usability and usefulness of 
the indicator generation process. 
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