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ABSTRACT:	In	this	short	thought-piece,	I	attempt	to	capture	the	type	of	freewheeling	discussions	
I	had	with	our	 late	colleague,	Mika	Seppälä,	a	research	mathematician	from	Helsinki.	Mika,	not	
being	a	psychometrician	or	learning	scientist,	was	blissfully	free	from	the	design	constraints	that	
experts	sometimes	ingest,	unwittingly.	 I	also	draw	on	delightful	conversations	with	the	German	
research	 mathematician,	 Heinz-Otto	 Peitgen,	 a	 polyglot	 whose	 work	 includes	 advances	 in	
medical	 imaging	and	explorations	 in	 fractal	geometry	 for	K–12	students.	Together,	 they	 taught	
me	to	reconsider	foundational	assumptions	about	learning,	how	to	describe	it,	and	how	to	grow	
it.	 Accordingly,	 I	 use	 this	 set	 of	 papers	 as	 a	 prompt	 for	 examining	 assumptions	 that	 numerical	
precision	ensures	scientific	 insight,	that	 linear	models	best	capture	growth	in	learning,	and	that	
relaxing	a	fixation	with	time	(exemplified	by	the	reification	of	pre-	and	post-testing)	might	open	
up	 new	 topologies	 for	 describing,	 predicting,	 and	 promoting	 learning	 in	 its	 myriad	
manifestations.	

Keywords:	Learning,	modelling,	linearity,	complexity	theory	

1 TOOLS FOR REPRESENTING DATA 

Which	mathematical	tools	are	powerful	for	analyzing	data	on	learning?	For	many	education	and	social	
science	researchers,	typical	quantitative	tools	include	natural	numbers,	 lines	of	best	fit	for	scatterplots	
of	coordinate	points,	and	(comparisons	of)	measures	of	central	tendency.	

1.1 Numbers as Points on a Line	

Many	researchers	routinely	assume	that	“numbers”	faithfully	represent	social	and	learning	phenomena	
and	 that	 these	 numbers	 represent	 interval	 (or	 ratio)	 scales.	 However,	 distinctions	 drawn	 between	
nominal,	ordinal,	interval,	and	ratio	data	are	often	lost.	

For	example,	in	what	sense	is	a	“score”	on	a	test	a	number?	Accepting	that	all	 items	on	a	20-item	test	
are	not	cognitively	or	semantically	interchangeable,	there	are	the	184,756	different	ways	that	a	score	of	
“10	 out	 of	 20”	 can	 be	 generated.	 Thus,	 in	 what	 sense	 does	 a	 score	 of	 “10”	 represent	 a	 unique	
knowledge	state	for	a	learner?	In	what	sense	is	a	score	of	“10”	diagnostic	(i.e.,	to	which	pertinent	set	of	
the	184,756	options	does	it	refer)?	What	can	be	inferred	by	the	clustering	of	students	who	each	scored	
“10”	on	the	test?	Further,	in	what	sense	is	it	valid	to	compare	two	groups	who	each	scored	an	average	
of	“10”	and	to	argue	that	no	differences	exist	between	the	groups?	This	problem	is	compounded	when	a	
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test	requires	sophisticated	reasoning	(e.g.,	Semak,	Dietz,	Pearson,	&	Willis,	2017),	and	when	scores	from	
disparate	tests	are	combined	to	generate	a	course	grade.	

When	we	add	scores	on	a	test	or	generate	means,	we	assert	that	a	linear	relationship	is	the	appropriate	
geometric	expression	for	modelling	learning.	However,	is	it	the	case	that	a	student	who	scored	66	(on	a	
100-item	test)	knows	“three	 times	more”	 than	the	person	who	scored	22?	 Is	 the	 five-point	difference	
between	the	scores	of	55	and	60	equal,	phenomenologically,	to	the	difference	between	scores	of	15	and	
20,	or	90	and	95?	

It	 is	 beyond	 the	 scope	of	 this	 paper	 to	 examine	 the	 use	 of	 numbers	 to	 describe	 behaviors	 in	 greater	
detail,	 but	 the	 interested	 reader	may	wish	 to	 explore	 the	work	 of	 Tatsuoka	 classifying	 learners	 using	
cognitive	 task	analyses	employing	 rule	 space	 (Tatsuoka,	2009),	 the	use	of	partially	ordered	 set	 theory	
(Tatsuoka	 &	 Ferguson,	 2003),	 and	 related	 methods	 that	 describe	 knowledge	 spaces	 (e.g.,	 Heller,	
Stefanutti,	Anselmi,	&	Robusto,	2015).	

1.2 Associations	

While	curve	fitting,	time	series,	and	trend	analyses	have	been	available	for	many	decades,	we	often	rely	
on	 straight	 lines	 to	 capture	 the	 shape	 of	 education	 data.	 However,	 assumptions	 of	 linearity	 may	
unconsciously	 blind	 our	 perceptions	 and	 predetermine	 our	 conclusions.	 For	 example,	 a	 low	 or	 zero	
correlation	may	suggest	“no	relationship”	between	variables.	Yet,	when	curvilinear	data	are	present,	a	
simple	 Pearson	 correlation	 will	 incorrectly	 represent	 the	 phenomenon	 (see	 the	 first	 figure	 at	
https://en.wikipedia.org/wiki/Correlation_and_dependence).	For	a	compelling	example	where	disparate	
datasets	have	the	exact	same	non-zero	correlation	coefficient,	see	Anscombe	(1973).	

2 MIKA SEPPÄLÄ AND THE SHAPE OF DATA 

Discussions	 such	 as	 these	 with	 our	 late	 colleague,	 Mika	 Seppälä,	 led	 to	 three	 NSF	 awards	 (i.e.,	 NSF	
Award	 Numbers:	 1252625,	 1338509,	 and	 1450501).	 The	 most	 recent	 of	 these	 awards	 squarely	
approached	 the	 generative	 topic	 the	 shape	 of	 educational	 data.	 This	 grant	 supported	 a	 meeting	 in	
Fairfax,	Virginia,	from	which	this	set	of	papers	emanated.	

As	 a	 research	 mathematician,	 Mika	 encouraged	 us	 to	 adopt	 tools	 other	 than	 points	 and	 lines.	 He	
favoured	Riemann	surfaces,	and	recommended	that	we	examine	the	work	of	topologists	such	as	Buser	
at	 Lausanne,	 Carlsson	 at	 Stanford,	 and	 Harer	 at	 Duke.	 In	 this	 vein,	 we	 find	 near-neighbour	 ideas	
proposed	by	fellow	mathematicians	Buser	and	Semmler	(2017)	and	Munch	(2017).	

In	this	short	piece,	 I	extend	the	playful	conversations	that	began	with	Mika	and	speculate	on	how	the	
“shape	of	 educational	 data”	might	 illuminate	 some	of	 the	papers’	 points.	None	of	 these	 speculations	
should	be	considered	a	criticism	of	any	paper;	 rather,	 I	hope	 that	 they	spur	generative	conversations.	
Indeed,	the	treatment	by	Caprotti	of	Markov	graphs	(2017)	suggests	that	the	following	exploration	may	
not	be	too	fanciful.	
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3 THE TURN FROM POINTS TO SPACES 

Ostrow,	Wang,	and	Heffernan	(2017)	reported	that	an	analog	approach	to	partial	credit	provided	more	
insight	 on	 learning	 than	 a	 binary	 scoring	 approach	 (i.e.,	 correct/incorrect	 scoring	 only).	 This	 finding	
suggests	that	assessment	 is	better	viewed	as	sampling	from	a	relevant	knowledge	space	rather	than	a	
collection	 of	 binary	 switches	 that	 privileges	 point	 estimates.	 Minstrell	 showed	 that	 correct/incorrect	
scoring	may	punish	learning	along	an	entire	learning	trajectory	(e.g.,	DeBarger,	Ayala,	Minstrell,	Kraus,	&	
Stanford,	 2009).	 To	 further	 explore	 the	 knowledge	 space	 for	 assessment,	 the	 interested	 reader	 is	
directed	 to	 the	 work	 of	 Messick	 (1994)	 on	 validity,	 Lesh	 and	 colleagues	 on	 model-eliciting	 activities	
(Diefes-Dux,	 Hjalmarson,	 Miller,	 &	 Lesh,	 2008),	 Mislevy’s	 (2009)	 work	 on	 evidence-based	 design	 of	
assessments,	and	Schaffer’s	work	on	epistemic	network	analysis	(Shaffer,	Collier,	&	Ruis,	2016).	

3.1 Playing with “Ribbons,” Orbits, Attractors, and Phase Spaces	

Buser	and	Semmler	(2017)	describe	students’	different	educational	tracks	as	tracing	trajectories	through	
a	set	of	bifurcating	cylinders.	These	cylinders	are	similar	to	subway	paths	marking	the	beginning	to	the	
end	of	a	journey,	explicitly	bound	to	the	variable	of	time.	

In	this	vein,	 imagine	that	the	primary	shape	that	describes	a	domain	expert’s	view	of	the	content	of	a	
course	 is	 represented	 by	 a	 ribbon.	 Is	 this	 metaphor,	 if	 the	 content	 is	 judged	 uniformly	 difficult,	 the	
ribbon	 lies	 flat.	 If	 the	 course	 introduces	 difficult	 content	 at	 first	 (e.g.,	 to	 “weed	 out”	 students),	 less	
challenging	content	toward	the	middle,	and	increasingly	challenging	material	toward	the	end,	the	ribbon	
would	trace	a	rising	inclined	plane,	followed	by	a	plateau,	ending	as	a	rising	inclined	plane.	A	number	of	
other	possible	surfaces	(e.g.,	staircases)	may	occur	to	the	reader.	Indeed,	since	the	content	of	courses	is	
complex,	a	set	of	ribbons	may	be	required.	For	example,	Pauna	(2017)	lists	nine	online	assessments	of	
calculus	 competencies	 that	 we	may	 imagine	 reflect	 the	 content	 of	 the	 course	 (from	 factual	 recall	 to	
information	transfer;	see	p.	13).	Thus,	for	each	student	there	may	be	a	unique	ribbon,	tracing	different	
pathways	 with	 different	 gradients	 through	 the	 course	 material	 (compare	 Pauna,	 2017,	 on	 student	
pathways).	

3.2 Assessment-of-Progress Ribbons	

We	can	see	from	Pauna	(2017)	and	from	Caprotti	(2017)	that	a	student	can	take	many	pathways	through	
the	 course	 resources:	 traversing	 quizzes,	 workshops,	 lectures,	 and	 other	materials.	 For	 students,	 the	
actual	course	difficulty	will	be	an	interaction	between	the	content	and	a	range	of	 individual	and	social	
factors	 (e.g.,	 prior	 instructional	 history,	 readiness	 to	 learn,	 socioeconomic	 factors)	 (e.g.,	 Gašević,	
Dawson,	Rogers,	&	Gašević,	2016).	

Thus,	 before	 a	 course	 begins,	 and	 once	 it	 is	 underway,	 we	 may	 predict	 the	 shape	 of	 the	 course	
trajectories	 for	 different	 ability	 students	 (e.g.,	 via	 Bayesian	 updates	 based	 on	 their	 prior	 instructional	
histories,	and	covariates).	Thus,	an	online	course	that	was	easily	traversed	by	most	students	would	have	
surface	gradients	consistent	with	a	flat	plain	with	an	attractor	of	a	passing	grade.	However,	for	a	set	of	
weaker	students,	their	prior	and	emerging	behaviors	might	predict	the	rapid	emergence	of	a	“basin”	in	
the	topology	of	the	course	predicting	drop	out	or	failure.	
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4 SOCIAL LEARNING, TUTORING, AND TRAVERSING 

The	contours	of	ribbons	for	failing	students	could	change	for	each	student	in	response	to	support	from	
networks	 of	 students	 or	 from	dedicated	mentors	 (e.g.,	 Treisman,	 1992).	We	 learn	 from	Pauna	 (2017)	
and	Caprotti	(2017)	that	a	comprehensive	approach	to	modelling	learning	analytics	should	be	responsive	
to	individual,	dyad–,	group–	and	student–instructor	interventions	(see	also	Ayoubi,	Pezzoni,	&	Visentin,	
2017).	

From	Wang	and	Kelly	(2017),	we	learn	that	video	frames	can	be	time-stamped	and	meta-tagged	to	be	
searchable	by	students	and	researchers.	Further,	videos	can	be	organized	in	content-sensitive	clips,	and	
annotated	by	peers,	teaching	assistants	or	faculty.	And,	video	segments	can	be	interspersed	with	quizzes	
or	other	assessments	(e.g.,	using	the	quizzes	from	Gage,	2017).	

Thus,	 with	 strategic	 interventions	 by	 tutors	 or	 mentors,	 and	 by	 judicious	 use	 of	 course-support	
materials,	the	changing	topology	of	a	course	may	positively	diverge	from	the	emerging	predictions	(i.e.,	
the	“basin”	may	resolve	itself	for	weaker	students).		

5 INTERSECTING CONTENT AND ASSESSMENT SPACES 

We	can	now	return	 to	 the	 techniques	 that	describe	knowledge	spaces	and	ask	anew	 if	 content	 in	 the	
instructional	materials	and	assessment	domains	describe	mutually	intersecting	surfaces.	Ideally,	course	
content	ontologies,	 assessment	material	 constructs,	 and	 student	 readiness	 indicators	 should	mutually	
interpenetrate	 to	 advance	 student	 learning	 (see	 Gašević,	 Jovanović,	 Pardo,	 &	 Dawson,	 2017).	 For	
example,	if	formative	assessments	in	the	calculus	course	measured	only	factual	recall	or	the	videos	for	
certain	 topics	were	missing,	basins	predicting	 failure	would	appear	 in	 any	 shared	 content/assessment	
surface.	

For	example,	let’s	focus	on	the	mental	rotation	measure	and	its	low	correlation	with	final	grades	in	the	
paper	by	Hart,	Daucourt,	and	Ganley	(2017).	The	authors	wrote,	“We	also	found	it	surprising	that	mental	
rotation	was	not	an	important	predictor	(or	even	a	strong	correlate)	of	final	grade	in	Calculus	II”	(p.	146).	
However,	 the	 relationship	 between	 spatial	 abilities	 and	 STEM	 learning	 is	 complex,	 and	 different	
mathematical	sub-constructs	might	relate	to	spatial	abilities,	but	not	be	captured	by	a	final	grade	(e.g.,	
Stieff	&	Uttal,	 2015;	Uttal	 et	 al.,	 2013).	 Since	Uttal	 and	 colleagues	 also	 argue	 that	 spatial	 abilities	 are	
malleable,	targeted	interventions	related	to	spatial	reasoning	(justified	by	a	task	analysis	of	the	course	
materials)	might	 increase	 the	 correlation	 between	 spatial	 abilities	 and	 learning.	 	 In	 other	 words,	 the	
course	and	assessment	design	may	not	be	sophisticated	enough	to	adequately	analyze	and	support	the	
expression	of	students’	abilities.	

6 MOVING FORWARD 

In	addition	to	the	suggestions	above	for	reconsidering	the	shape	of	educational	data	prompted	by	our	
colleague	 Mika	 Seppälä,	 the	 reader	 is	 encouraged	 to	 attend	 conferences	 on	 learning	 analytics	 (e.g.,	
those	supported	by	SOLAR),	to	track	investments	related	to	the	recent	NSF	10	Big	Ideas	(especially	the	
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ones	 on	 harnessing	 data	 and	 the	 human	 technology	 frontier1),	 and	 to	 review	 sources	 such	 as	 Foster,	
Ghani,	Jarmin,	Kreuter,	and	Lane	(2017).	
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