
	
(2017).	Shapes	of	educational	data	in	an	online	calculus	course.	Journal	of	Learning	Analytics,	4(2),	76–90.	
http://dx.doi.org/10.18608/jla.2017.42.8	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 76	

Shapes of Educational Data in an Online Calculus Course 

Olga	Caprotti	
Florida	State	University,	USA	
olga.caprotti@gmail.com	

ABSTRACT.	 This	 paper	 describes	 investigations	 in	 visualizing	 logpaths	 of	 students	 in	 an	 online	
calculus	course	held	at	Florida	State	University	in	2014.	The	clickstreams	making	up	the	logpaths	
can	be	used	 to	visualize	 student	progress	 in	 the	 information	 space	of	a	 course	as	a	graph.	We	
consider	 the	 graded	 activities	 as	 nodes	 of	 the	 graph,	 while	 information	 extracted	 from	 the	
logpaths	between	the	graded	activities	label	the	edges	of	the	graph.	We	show	that	this	graph	is	
associated	to	a	Markov	Chain	in	which	the	states	are	the	graded	activities	and	the	weight	of	the	
edge	 is	 proportional	 to	 the	 probability	 of	 that	 transition.	 When	 we	 visualize	 such	 a	 graph,	 it	
becomes	apparent	that	most	students	follow	the	course	sequentially,	section	after	section.	This	
model	allows	us	to	study	how	different	groups	of	students	employ	the	learning	resources	using	
sequence	analysis	on	information	buried	in	their	clickstreams.	

Keywords:	Online	calculus,	Markov	chain,	clickstream,	sequence	analysis	

1 INTRODUCTION 

The	amount	and	breadth	of	data	being	collected	on	student	 learning	 is	growing	quickly	 in	an	effort	to	
improve	education	and	learning.	In	this	work,	we	have	investigated	student	activities	as	they	happen	in	
the	virtual	learning	environment	of	the	World	Education	Portals	(WEPS1)	with	the	ultimate	goal	of	being	
able	to	build	a	recommendation	system	to	help	students	successfully	attain	their	 learning	goals.	WEPS	
was	initiated	by	Dr.	Mika	Seppälä	to	disseminate	good	practice	and	innovative	learning	technologies	for	
the	 STEM	 subject	 areas,	 with	 a	 specific	 focus	 on	 mathematics.	 As	 observed	 in	 Seppälä	 (2014),	 the	
multidimensional	 nature	 of	 the	 educational	 data	 seems	 to	 require	 visualization	 approaches	 that	 can	
display	complex	information.	As	such,	he	proposed	using	a	surface	model	to	help	navigate	and	visualize	
the	 complexity	 in	 a	natural	way	and,	 like	 the	 graph	 representation,	 to	 give	 the	overall	 picture.	 In	 the	
mathematical	model	 for	online	courses	envisioned	by	Seppälä	 (2013),	students	advance	along	a	graph	
“in	which	the	vertices	are	quizzes,	workshops	and	examinations,	and	the	edges	correspond	to	essentially	
different	ways	of	using	the	course	resources.”	

In	 this	 paper,	 we	 show	 that	 this	 mathematical	 model	 is	 a	 Markov	 Chain	 by	 constructing	 it	 from	
educational	data	harvested	from	an	online	calculus	course	hosted	at	WEPS.	

                                                
1	Currently	hosted	at	https://geom.mathstat.helsinki.fi/moodle/	
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WEPS	 is	 based	 on	 the	 Moodle	 system,	 one	 of	 the	 most	 popular	 open	 source	 learning	 management	
systems,	 approaching	 80	 million	 users	 worldwide.	 Moodle	 automatically	 logs	 data	 about	 students’	
online	 activities.	 Each	 Moodle	 installation	 holds	 the	 data	 about	 the	 courses,	 access	 details,	 learning	
sessions,	grades,	and	clickstreams	of	each	student.	The	database	 in	 the	background	holds	 information	
implicitly,	namely	data	that	can	be	computed	from	the	explicit	stored	data.	To	obtain	this	derived	data,	
it	is	necessary	to	study	how	the	system	stores	the	information	about	each	student	session,	and	to	query	
the	 underlying	 database	 tables	 to	 retrieve	 it.	 This	 educational	 data	 mining	 in	 Moodle	 is	 widely	
researched,	 in	 particular	 Romero,	Gutiérrez,	 Freire,	 and	Ventura	 (2008)	 review	 classification	methods	
applied	to	log	data,	and	Casey,	Dublin,	and	Gibson	(2010)	carried	out	studies	of	the	log	trails	of	students	
analyzing	views,	logins,	and	daily	activities	for	a	variety	of	courses.	

In	 this	 paper,	 we	 use	 educational	 log	 data	 from	 students	 enrolled	 in	 courses	 in	 mathematics,	 here	
specifically	 a	 calculus	 course	 in	which	 traditional	 teaching	was	 combined	with	 online	 student-centred	
learning	and	peer	instruction.	In	particular,	we	focus	on	using	visual	learning	analytics:	how	to	visualize	
student	 actions	 in	 a	 course	 in	 a	way	 that	 informs	 the	 instructors	 and	 guides	 the	 students	 to	 a	better	
learning	 strategy	 for	 this	 online	 calculus	 class.	 The	 ultimate	 goal	 of	 this	 effort	 is	 to	 be	 able	 to	
recommend	to	students	how	to	study	and	suggest	which	learning	activities	and	resources	among	those	
available	are	more	likely	to	maximize	successful	attainment	of	their	immediate	learning	goal.	

Here	we	have	used	data	collected	during	an	online	Calculus	II	course	held	at	Florida	State	University	in	
2014	by	Mika	Seppälä.	This	online	course	 in	mathematics	 is	the	result	of	many	 iterations	over	the	 last	
decade,	 documented,	 for	 instance,	 in	 Seppälä,	 Caprotti,	 and	 Xambó	 (2006),	 Caprotti,	 Seppälä,	 and	
Xambó	 (2007),	 Ojalainen	 and	 Pauna	 (2013),	which	 resulted	 in	 the	 course	 structure	 and	methodology	
adopted	 currently	 and	 described	 in	 Pauna	 (2017).	 The	 course	 comprises	 heterogeneous	 learning	
activities,	 with	 the	 intension	 to	 accommodate	 a	 variety	 of	 study	 strategies.	 Contrary	 to	 the	 strict	
sequential	 presentation	 of	materials	 typical	 of	 the	 larger	MOOCs,	 students	 could	 access	 all	 the	 study	
resources	of	the	whole	course	apart	from	the	graded	activities	made	available	at	successive	times.	

We	harvested	the	log	files	from	140	students	enrolled	in	the	online	Calculus	II	course.	From	the	original	
133,570	lines, the	log	file,	after	curation,	was	1,400	lines	 long	and	contained	data	records.	Therefore,	
this	course	is	more	consistent	with	the	definition	of	a	small	private	online	course	(SPOC),	in	the	sense	of	
Fox	(2013),	rather	than	that	of	a	Massively	Open	Online	Course	(MOOC),	where	these	methods	are	more	
typically	used.	Hence,	 these	data	are	 far	 from	being	as	big	and	broad	as	 intended	 these	days,	both	 in	
terms	of	the	number	of	 individuals	and	in	terms	of	heterogeneity	of	the	characteristics	we	are	able	to	
study.	 However,	 it	 is	 large	 enough	 to	make	 the	 analysis	 interesting	without	 having	 to	 deal	with	 size-
induced	hardware	or	software	limitations.	

The	 standard	 log	 data	 recorded	during	 the	 student	 online	 sessions	 is	 composed	of	 the	 time	 stamped	
clicks	that	show	the	student	activities	across	the	online	course.	The	clickstream	makes	up	the	 learning	
path	 followed	 by	 a	 student;	 however,	 we	 must	 keep	 in	 mind	 that	 this	 path	 walks	 along	 higher	
dimensions	when	we	consider	all	variables	still	unknown	that	contribute	to	 learning.	The	 literature	on	
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the	subject	 is	vast,	and	at	 the	beginning	of	 this	project	we	decided	 to	 include	measures	of	attitudinal	
and	 cognitive	 skills	 at	 the	 beginning	 of	 the	 course,	 similar	 to	 what	 was	 suggested	 by	 Niemi	 (2012a;	
2012b),	 along	 with	 some	 demographics	 data.	 The	 results	 of	 the	 analysis	 of	 these	 psychological	
predictors	 correlated	 to	 the	 log	data	of	 the	online	calculus	 course	and	performance	 in	 the	course	are	
described	in	Hart,	Daucourt,	and	Ganley	(2017).	To	further	our	understanding	of	student	learning	in	the	
course,	 a	 continuous	 task	 has	 been	 deciding	 and	 mining	 data	 to	 derive	 additional	 indicators	 for	
describing	 the	 student	 activities	 from	 the	 information	 implicitly	 stored	 across	 multiple	 tables	 in	 the	
underlining	 database.	 Such	 information	 included,	 for	 instance,	 the	 number	 of	 attempts	 and	 related	
scores	 for	 a	 given	quiz,	 the	 time	passed	 since	 a	 graded	 task	was	 assigned,	 the	 grade	 for	 that	 specific	
activity,	and	the	final	grade.	

	 	

Figure	1:	Full	graph	of	the	course	log.	 Figure	2:	Reduced	graph	of	the	course	log.	

For	 this	 paper,	 we	 have	 purposely	 discarded	 data	 regarding	 clicks	 associated	 with	 activities	 like	
participation	in	the	forum	discussion	in	order	to	concentrate	on	aspects	related	only	to	the	usage	of	the	
instructor-provided	course	resources:	quizzes,	peer-assessed	workshops	(i.e.,	homework	problem	sets),	
graded	exams,	and	instructor-produced	videos	of	course	content.	The	initial	complexity	of	the	log	data	is	
visualized	well	 in	Figure	1:	 the	graph	 is	obtained	by	displaying	every	resource	 in	the	 log	 file	as	a	node	
and	by	adding	an	edge	between	resources	that	have	been	visited	sequentially	by	at	least	one	student	in	
the	course.	This	figure	is	almost	uninterpretable.	This	is	because	most	resources	are	made	available	by	
the	system’s	graphical	user	interface	from	the	course	top	page,	the	node	for	the	course	top	page	has	a	
very	high	degree	and	 centrality:	 students	mainly	 access	 intended	activities	 from	 the	 course	 top	page.	
Therefore,	ignoring	this	extra	click,	namely	considering	it	as	noise	induced	by	the	user	interface,	was	the	
initial	step	in	polishing	the	data.	The	resulting	graph	is	already	remarkably	different:	Figure	2	shows	that	
several	nodes	with	high	degree	appear.	It	became	clear	that	student	activities	clustered	around	specific	
resources,	namely	the	graded	activities	that	contributed	to	the	final	course	grade.	This	also	confirmed	
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the	 intuitive	 course	 graph	model	 by	 Seppälä	 (2013)	 that	we	will	 show	how	 to	 formalize	 as	 a	Markov	
Chain	and	further	use	for	analysis	of	student	log	data.	

The	structure	of	the	paper	is	as	follows.	Section	2	describes	how	we	obtained	the	course	Markov	graph	
using	a	Markov	Chain	model	of	the	course	 log	data,	while	Section	3	describes	how	the	course	Markov	
graph	defines	logpaths	and	indices	of	usage	of	learning	resources.	Finally,	in	Section	4	we	show	how	to	
derive	a	study	recommendation	system	from	the	log	data	analysis.	

2 THE COURSE MARKOV GRAPH 

We	start	by	noting	 that	 the	 clickstreams	can	be	used	 to	visualize	 student	progress	 in	 the	 information	
space	of	a	course	as	a	graph.	One	way	to	do	this	is	to	consider	graded	activities	as	vertices	of	the	graph,	
while	 different	 ways	 of	 using	 the	 instructional	 materials	 and	 other	 activities	 to	 prepare	 for	 graded	
activities	 label	 the	 edges	 of	 the	 graph.	 If	 a	 course	 uses	 formative	 assessments,	 then	 it	 is	 every	
instructor’s	 natural	 interpretation	 that	 students	 proceed	 in	 their	 learning	 by	 focusing	 the	 studying	 in	
order	to	solve	the	most	immediate	task.	In	other	words,	it	is	assumed	that	students	are	working	towards	
the	most	immediate	graded	task;	for	example,	if	an	exam	is	coming	up,	then	all	student	interaction	with	
the	 course	 is	 related	 to	 their	 studying	 the	 content	 for	 that	 exam.	 Given	 this,	 abstracting	 away	 the	
granularity	 from	 the	 graph	 in	 Figure	 2	 is	 done	 by	 considering	 as	 nodes	 of	 the	 graph	 only	 the	 graded	
activities	 (and	 not	 every	 learning	 resource	 on	 which	 an	 action	 is	 logged)	 and	 labelling	 the	 edge	 by	
information	 derived	 from	 the	 clickstream	 that	 links	 the	 two	 graded	 activities,	 corresponding	 to	 two	
adjacent	 nodes.	 Basically,	 we	 encode	 the	 different	 ways	 to	 prepare	 for	 a	 graded	 activity	 as	 labelled	
edges	of	the	course	graph.	

To	 give	 an	 idea	 of	 the	 kind	 of	 information	 available,	 a	 fragment	 of	 the	 log	 data	 is	 shown	 in	 Figure	 3	
where	the	Source	and	Target	columns	contains	nodes	of	the	graph	(which	represent	previous	and	next	
graded	activity);	Time.Prev	and	Time.Next	are	the	time	stamps	related	to	the	traversal	day	for	accessing	
the	 Source	 and	 Target	 respectively;	 and	 Label,	 the	 clickstream	 of	 learning	 activities	 leading	 from	 the	
Source	to	the	Target,	contains	information	that	will	be	used	to	label	the	edges	of	the	graph.	An	example	
of	a	clickstream	is	shown	in	the	grey	box	in	Figure	3	connecting	the	peer-assessed	workshop	in	one	part	
of	 the	 course	 to	 a	 different	 peer-assessed	 workshop.	 The	 user	 identification	 codes	 have	 been	
obfuscated,	and	it	is	enough	to	say	that	the	log	is	ordered	chronologically	by	User	so	that	it	is	possible	to	
read	 each	 student’s	 progression	 between	 the	 “_START_”	 and	 the	 “_END_”	 nodes	 from	 the	 Target	
column.	The	student	 in	 line	50	completed	the	peer-assessed	workshop	in	Section	13	after	doing	those	
right	before,	 in	 Sections	11	and	12,	 however	 the	 student	on	 line	59,	 skipped	 them	both.	 Students,	 in	
fact,	were	not	obligated	to	take	part	in	the	peer-assessed	workshops,	even	if	these	activities	contributed	
to	 a	 fraction	 of	 the	 final	 grade,	 which	 explains	 why	 some	 students	 did	 not	 follow	 a	 sequential	
progression	in	how	they	completed	the	graded	portions	of	the	class.	
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Figure	3:	Fragment	of	the	log	data.	

Bearing	 in	mind	this	 interpretation	of	the	 log	data,	 it	becomes	possible	to	visualize	the	clickstreams	of	
the	students	as	a	Markov	Chain	 in	which	the	states	are	the	graded	activities	 (in	this	example	we	have	
only	 considered	 the	 peer-assessed	 workshops)	 and	 the	 thickness	 of	 the	 edge	 connecting	 the	 graded	
activities	 between	 states	 𝛾" 	 and	 𝛾# 	 is	 proportional	 to	 the	 probability	 of	 the	 transition	 from	 𝛾" 	 to	𝛾#.	
Markov	chains	have	been	a	popular	tool	in	Web	path	analysis	since	Sarukkai	(2000).	In	particular,	they	
have	been	used	in	the	Moodle	environment	by	Marques	and	Belo	(2011)	to	carry	out	student	profiling.	
In	 contrast	 to	 their	 work,	 we	 consider	 how	 students	 utilize	 specifically	 the	 resources	 of	 a	 course,	
interpreting	their	use	of	course	resources	as	study	strategies	driven	by	the	course	graded	assignments.	

Figure	 4	 shows	 such	 a	 chain	 of	 order	 1	 in	 the	 actual	 sample	 course.	 From	 the	 probabilities	 of	 the	
transitions,	listed	in	Figure	5,	it	is	apparent	from	the	values	on	the	diagonal	that	the	natural	progression	
followed	by	most	students	corresponds	to	the	sequential	section-based	structure	of	 the	course.	Some	
students	might	skip	three	or four	assignments	but	these	are	usually	students	with	low	attendance	rates.	
In	general,	assignments	close	to	the	course	exams	(Sections	4	and	13)	have	a	higher	probability	of	being	
skipped.	Interestingly,	the	non-zero	probability	of	the	trivial	path	from	“_START_”	to	“_END_”	indicates	
students	who	have	not	taken	part	in	any	of	the	formative	assessment	activities.	
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Figure	4:	Markov	graph	of	order	1	of	the	online	course.	

For	the	computation	of	the	Markov	chain	we	processed	the	log	data	using	the	system	R	by	the	R	Core	
Team	(2015),	with	the	library	TraMineR	by	Gabadinho,	Ritschard,	Müller,	and	Studer	(2011),	to	extract	
student	sequences	of	 the	 target	nodes	 from	the	dataframe,	user_tprev_tnext_target.230 (230	

Figure	5:	Transition	matrix.	
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was	the	course	number),	consisting	of	the	columns	User,	Time.Prev,	Time.Next,	and	Target	from	the	log	
data:	

> usertarget230.seq <- 
seqdef(user_tprev_tnext_target.230,var=c("User","Tprev","Tnext","Target"), 
informat="SPELL",states=seqstatl(user_tprev_tnext_target.230,var=4),process=FALSE, 
left="DEL") 
> usertarget230.dss <- seqdss(usertarget230.seq) 
 

With	 minor	 editing	 of	 the	 discrete	 state	 sequence,	 we	 produced	 the	 input	 data	 to	 the	 R	 library	
clickstream	 by	 Scholz	 (2005)	 that	 finally	 computed	 the	 Markov	 graph	 of	 order	 1	 and	 the	 transition	
matrix.	The	course	Markov	graph,	and	the	log	data	in	Figures	1	and	2,	were	produced	by	the	software	
Gephi	by	Bastian,	Heymann,	and	Jacomy	(2009).	

The	visualization	shown	in	Figure	4	includes	data	related	to	every	student,	unfiltered.	It	is	also	possible	
to	study	how	the	course	graph	changes	by	filtering	data	based	on	specific	characteristics	of	students,	as	
will	be	shown	later	in	Figure	8.	

This	model	of	the	log	data	of	the	course	naturally	 leads	to	investigating	study	strategies	of	students	in	
relation	 to	 how	 they	 completed	 the	 sequence	 of	 assignments.	 To	 do	 that,	 we profiled	 students	 by	
creating	a	measure	of	“diligence,”	which	represents	the	number	of	assignments	they	completed,	as	well	
as	a	measure	of	how	many	assignments	they	skipped	in	a	row.	The	first	question	to	ask	is	whether	the	
students	who	 followed	 the	 sequential	 path	 of	 the	 course	 scored	 higher	 than	 those	who	 did	 not.	 The	
correlation	between	final	grade	and	student	diligence	is	.645.	This	is	not	higher	because	oftentimes	the	
better	students	did	not	complete	some	of	the	assignments,	because	these	contributed	to	only	a	small	
percentage	of	the	final	grade.	Further	 inspection	of	the	average	final	grade	versus	diligence	 in	Table	1	
indicates	that	generally	diligent	students	(diligence	greater	or	equal	to	9)	score	higher	(if	we	disregard	
the	one	good	student	with	diligence	6).	This	unsurprising	observation	aligns	well	with	the	relevance	of	
the	“Daily	Course	Views”	indicator	reported,	for	instance,	by	Casey	et	al.	(2010).	

Table	1:	Final	Grade	Versus	Diligence	
Diligence	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	
Final	grade	avg.	 4.25	 7	 41.5	 37.5	 56	 93	 69	 55	 76.7	 83.2	 78.6	 81.7	 80.4	 88.8	

In	 the	 remaining	 sections	 of	 the	 paper,	we	 study	 how	 students	 employ	 the	 learning	 resources.	More	
specifically,	 we	 look	 into	 how	 much	 students	 rely	 on	 earlier	 learning	 materials	 when	 completing	 an	
assignment,	a	so-called	“look-back,”	which	we	interpret	as	a	possible	indicator	of	poor	(initial)	learning,	
possibly	due	to	lack	of	“diligence.”	

3 LOGPATHS AND LOOK-BACK 

“Looking	back,”	as	defined	by	Polya	 (1973),	 is	 the	reflective	step	 in	 the	mathematical	problem	solving	
process	 in	 which	 the	 solution	 is	 examined.	 We	 wanted	 to	 study	 how	 much	 students	 look-back	 at	
learning	 resources	 studied	 earlier	 while	 preparing	 the	 online	 assignments.	 In	 the	 present	 course,	
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students	had	to	work	out	solutions	of	workshops	assignments	and	also	grade	the	workshop	assignments	
of	their	peers	by	examining	and	evaluating	the	solutions	presented	by	their	peers	 in	a	critical	problem	
solving	 process.	 During	 this	 task,	 looking-back	 to	 learning	 resources	 studied	 in	 earlier	 sections	 of	 the	
course	 occurred.	 Lee	 (2012)	 investigated	 looking-back	 in	 relation	 to	 student	 performance.	 Lee	
examined,	as	 look-back	indicator	cues,	the	verbs	“forgot,”	“remember,”	and	“repeat,”	from	transcripts	
of	 eighth	 grade	 students.	 Although	 we	 do	 not	 analyze	 any	 transcripts	 here	 (e.g.,	 the	 course	 forum	
interactions),	we	are	able	 to	 investigate	 look-backs	by	 inspecting	 the	 clickstreams	with	 respect	 to	 the	
course	sections	in	the	following	way.	

Assume	that	every	graded	activity	𝛾" 	belongs	to	a	section	of	a	WEPS	course,	denoted	by	𝑆 𝛾" .	This	 is	
usually	 true.	Moreover,	 note	 that	 different	 courses	 have	 different	 configurations	 of	 graded	 activities.	
The	online	course	under	study	follows	a	sequential	schedule:	students	are	usually	expected	to	hand	in	
graded	activities	section	after	section.	Hence,	we	assume	𝑆 𝛾" ≤ 𝑆 𝛾# 	 if	the	graded	activity	𝛾" 	occurs	
before	𝛾#,	 that	 also	 implies	 (because	 it	 is	 induced	by	 the	order	of	 creation	of	 the	 resources)	 that	 the	
indices	for	the	activities	are	ordered,	so	that	𝑖 ≤ 𝑗.	There	is	usually	one	graded	activity	per	section,	but	
that	is	not	an	assumption.	In	the	specific	course,	Section	2	had	three	workshop	assignments,	and	Section	
5	did	not	have	any	because	of	the	midterm	exam.	Moreover,	if	we	were	to	also	study	quizzes	as	graded	
activities,	 then	most	sections	would	have	more	than	one	such	activity.	Given	a	student	𝐴	 in	an	online	
course	 with	 graded	 activities	Γ,	 we	 call	 𝑝, = 𝛾", 𝛾"/0 … , 𝛾2 , 𝑆 𝛾" ≤ 𝑆 𝛾# , 𝑖 ≤ 𝑗 ≤ 𝑘, 	𝛾# ∈ Γ	 the	
logpath	of	𝐴	in	Γ.	Namely,	we	order	the	graded	activities	completed	by	a	student	by	section	and	by	id;	
for	example,	 the	 logpath	of	 the	student	whose	 log	data	 is	 recorded	 in	 rows	52–59	 is	 the	sequence	of	
activities	listed	in	the	Target	column	in	Figure	3.	Furthermore,	assume	sections	do	not	share	resources,	
so	that	all	resources	𝐿	in	a	course	with	𝑡	sections	can	be	partitioned	by	section:	𝐿 = 𝐿"78"89 	where	𝐿" 	
are	the	resources	in	section	𝑖,	with	𝐿7	denoting	resources	at	course	top	level.	In	the	log	data	in	Figure	3,	
the	value	appearing	in	the	Label	column	is	the	dash-separated	concatenation	of	the	names	of	resources,	
each	prefixed	by	the	section	number	it	belongs	to.	

We	then	can	also	talk	of	𝐿0:	resources	as	the	set	of	resources	belonging	to	the	union	of	the	sections	1	to	
𝑛.	Let	𝑃,	be	a	 logpath	with	a	graded	activity	𝛾=.	We	define	the	ℎ𝑜𝑝	with	target	𝛾=	as	the	sequence	of	
(actions	on)	learning	resources	recorded	in	the	log	between	the	source,	𝛾=@0,		of	𝛾=	and	𝛾=:	
	

ℎ𝑜𝑝(𝛾=) = [𝜆0, … , 𝜆E] ⊂ 2I,	𝛾= ∈ 𝑃,.	
	

This	corresponds	to	the	label	of	the	edge	going	into	𝛾=in	the	course	graph	corresponding	to	the	logpath	
𝑃,.	In	the	hop	towards	𝛾=,	its	look-back	degree	is	defined	as	the	number	of	(clicks	of)	learning	resources	
belonging	to	sections	below	ℎ	in	the	hop	towards	𝛾=:	
	

𝑙𝑏𝑑 𝛾= = ℎ𝑜𝑝 𝛾= ∩ 𝐿7=@0 .	
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Similarly,	 the	 look-ahead	degree	 is	 the	number	of	 learning	 resources	belonging	 to	 sections	 above	 the	
target	section	ℎ:	

𝑙𝑎𝑑 𝛾= = ℎ𝑜𝑝 𝛾= ∩ 𝐿=/09 .	
Finally,	the	in-section	degree	is	the	number	of	learning	resources	belonging	to	the	target	section	ℎ:	
	

𝑖𝑠𝑑 𝛾= = ℎ𝑜𝑝 𝛾= ∩ 𝐿= .	
 
With	respect	to	failing	and	passing	students,	principal	component	analysis	of	these	three	indices	(look-
back	degree,	 look-ahead	degree,	 in-section	degree),	summed	for	each	hop,	 for	each	student	and	then	
averaged	over	the	diligence,	returned	the	information	in	Figure	6.	

Standard deviations for Fail: 
[1] 25.7  8.9  2.7 
Rotation: 
               PC1   PC2    PC3 
look-backs   0.9864  0.16 -0.042 
look-aheads -0.0062 -0.22 -0.975 
in-section   0.1640 -0.96  0.217 
 
Importance of components: 
                          PC1   PC2     PC3 
Standard deviation     25.677 8.912 2.66811 
Proportion of Variance  0.884 0.106 0.00954 
Cumulative Proportion   0.884 0.990 1.00000	

Standard deviations for Pass: 
[1] 7.2 3.8 2.5 
Rotation: 
             PC1   PC2   PC3 
look-backs  -0.73  0.67  0.11 
look-aheads -0.30 -0.47  0.83 
in-section  -0.61 -0.58 -0.54 
 
Importance of components: 
                         PC1   PC2    PC3 
Standard deviation     7.203 3.845 2.4795 
Proportion of Variance 0.713 0.203 0.0844 
Cumulative Proportion  0.713 0.916 1.0000	

	

	

	
Figure	6:	Principal	component	analysis	of	Fail	and	Pass	course	grades.	

In	particular,	these	indices	seem	to	be	good	indicators	for	students	at	the	risk	of	failing.	 In	both	cases,	
fail	or	pass,	look-backs	play	a	bigger	role	than	in-section	and	look-ahead.	

We	 also	 carried	 out	 detailed	 analyses	 of	 the	 hops	 of	 student	 cohorts,	 defined	 according	 to	 criteria	
related	 to	 diligence	 and	 to	 final	 grades	 using	 sequence	 analysis	 to	 try	 to	 identify	 successful	 studying	
patterns	in	accessing	the	resources.	
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Figure	7:	Sequence	chronograms	of	hops	between	WS7–WS8	by	diligence.	

Figure	7	shows	sequence	chronograms	for	hops	between	Workshops	7	and	8,	filtered	by	student	cohorts	
based	on	diligence.	Because	we	are	 interested	 in	how	resources	are	used	with	 respect	 to	 the	section,	
the	shades	assigned	to	each	resource	depend	on	which	index	they	contribute	to:	blue	represents	look-
back,	green	represents	 in-section,	and	yellow	represents	 look-ahead.	 It	 is	apparent	 that	students	with	
higher	 diligence	 seem	 to	 include	more	 look-ahead	 resources,	 possibly	 an	 indication	 of	 being	 able	 to	
work	in	parallel	on	future	assignments	while	preparing	for	the	assignment	due.	It	 is	also	clear	how	the	
visualization	of	 the	entire	graph	changes	 if	we	 try	 to	portray	 information	 related	 to	 the	details	of	 the	
logpaths.	

For	example,	we	show	how	the	look-back	degree	index	can	be	made	apparent	in	the	graph	visualization.	
Seppälä	suggested	that	a	correlation	distance	between	two	graded	activities	𝛾" 	and	𝛾# 	 in	 the	space	of	
graded	activities	is	given	by	

𝑑(𝛾", 𝛾#) = log	
1

Corr(𝛾", 𝛾#)
	

where	Corr(𝛾", 𝛾#)	 is	a	measure	of	correlation	between	𝛾" 	and	𝛾# 	that	depends	on	which	aspect	of	the	
learning	has	to	be	modelled.	

Our	 candidate	 for	 this	 correlation	 is	 the	 average	 look-back	 degree:	Corr(𝛾"@0, 𝛾") = mean(𝑙𝑏𝑑\](𝛾"))	
where	the	mean	is	taken	over	all	students	passing	between	𝛾" 	and	its	source.	For	the	visualization,	we	
think	of	this	correlation	as	related	to	the	weight	of	the	edge	joining	𝛾" 	and	its	source,	so	that	the	circular	
layout	of	Markov	course	graph	will	not	be	affected	but	the	edges	will	be	thicker	when	the	average	look-
back	degree	is	larger	for	the	paths	of	the	students	being	visualized.	Note	that	the	visualization	depends	
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on	the	cohort	of	students	being	considered:	the	edges	grow	heavier	or	thinner	and	could	disappear.	The	
graphs	in	Figure	8	visualize	the	difference	between	students	with	diligence	below	9	(larger	correlation	in	
terms	of	 look-back	degree)	 and	 the	 rest	of	 the	 students	with	higher	diligence.	Also	noticeable	at	 first	
glance	is	how	less	diligent	students	have	dropped	out	(edges	going	into	the	node	_END_)	much	earlier.	

	
Figure	8:	Course	graphs	of	students	with	diligence	<9	and	>=	9,	weights	proportional	to	the	mean	of	

look-back	degrees.	

Seppälä	envisioned	that	Riemann	surfaces	could	be	a	very	useful	exploratory	tool	for	carrying	out	visual	
learning	analytics	tasks	on	complex,	multidimensional,	educational	data,	in	a	way	addressing	the	issues	
already	pointed	out	by	Hadwin,	Nesbit,	Jamieson-Noel,	Code,	and	Winne	(2007).	They	suggested	a	way	
to	construct	a	surface	from	a	mathematical	model	of	an	online	course	as	a	graph	that	we	have	shown	
can	be	formalized	as	a	Markov	Chain	induced	by	the	graded	activities	in	the	logpaths.	This	interpretation	
of	the	 log	data	allowed	for	the	definition	of	 indices	that	furthered	our	understanding	of	how	students	
utilize	 the	 online	 resources.	 The	 next	 section	 will	 show	 how	 these	 insights	 can	 be	 used	 to	 guide	
students’	study	paths.	

4 A STUDY RECOMMENDATION SYSTEM FOR ONLINE CALCULUS 

The	ultimate	purpose	of	analysing	the	way	students	complete	the	online	course	is	to	be	able	to	suggest	
how	to	best	proceed	through	the	learning	resources	with	suggestions	for	a	study	strategy.	Based	on	the	
data	collected	and	clustered	according	to	all	graded	assignments	(quizzes,	workshops	submissions,	and	
assessments),	we	are	able	to	construct	such	a	recommendation	system	as	a	course	browser,	inspired	by	
the	 concept	 network	 browser,2	 indicating	 the	 learning	 resources	 used	 in	 the	 course	 by	 students	
targeting	a	certain	activity.	Figure	9	shows	an	example	where	the	learning	resources	listed	in	the	middle	
column	are	highlighted	if	they	have	been	used	by	past	students	to	tackle	the	workshop	assignment	on	

                                                
2	http://www.findtheconversation.com/concept-map	
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Improper	 Integrals.	 Clicking	 a	 graded	 activity	 will	 show	 all	 related	 resources	 with	 a	 measure	 of	 how	
much	they	have	been	used	according	to	the	 log	data.	Furthermore,	 it	 is	possible	to	personalize	such	a	
system	based	on	additional	 student	profiling	data;	 for	 instance,	 just	 taking	 into	account	 the	strategies	
employed	by	 top	 scoring,	 by	most	diligent,	 or	 by	highly	motivated	 students.	 Based	on	a	 few	of	 these	
investigations	for	several	different	courses,	we	observed	that	diligent	students	consult	fewer	resources	
and	carry	out	a	more	focused	study	activity,	thus	resulting	in	a	more	targeted	set	of	recommendations.	
However,	 the	 resulting	 recommendation	 system	 is	 not	 necessarily	 the	 best	 option	 for	 the	 generic	
student	 and	 the	 personalization	must	 be	 done	 after	 careful	 analysis	 of	 several	 instances	 of	 the	 same	
course.	 Towards	 this	 end	 then,	 the	 diligence	 of	 a	 student	 is	 an	 example	 of	 a	 real-time	 (in	 terms	 of	
skipped	assignments)	classification	of	students	useful	in	filtering	data	collected	in	past	instances	of	the	
course	for	building	a	personalized	course	browser.	

Ideally,	learning	resources	and	activities	would	be	associated	more	generally	with	learning	goals,	which	
now	 are	 only	 implicitly	 defined	 by	 belonging	 to	 specific	 sections	 of	 the	 course.	 Using	 learning	 goals	
would	add	a	 layer	of	 freedom	 to	 the	 course	designer	who	 could	 replace/change	 the	 resources	within	
each	goal	while	keeping	the	learning	goals	unaltered.	This	would	allow	one	to	conduct	the	analysis	and	
construct	the	recommendation	system	independently	of	the	instantiation	of	resources	also	in	terms	of	
version,	 type	 of	 media,	 or	 even	 language.	 At	 the	 time	 of	 this	 investigation,	 there	 was	 only	 limited	
support	in	Moodle	for	assigning	learning	goals	metadata	(as	defined,	for	instance,	in	the	Common	Core)	
to	activities	and	resources.	

	
5 FINAL REMARKS AND FUTURE WORK	

We	 have	 presented	 how	 the	 intuitive	 interpretation	 of	 the	 progression	 of	 student	work	 in	 an	 online	
calculus	 course	 can	 be	 formally	 interpreted	 as	 stepping	 through	 the	 graph	 associated	 to	 the	Markov	
Chain	induced	by	the	graded	activities	in	the	course.	This,	in	turn,	gives	rise	to	several	possible	ways	to	

Figure	9:	Course	browser	based	on	log	data.	
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analyze	 the	 study	 strategies	 of	 the	 students	 and	 derive	 measures	 that	 allow	 us	 to	 construct	 a	
recommendation	engine	able	to	suggest	the	best	learning	resources	in	real-time	to	target	completion	of	
a	certain	learning	task.	

The	 online	 classroom	 scenario	 in	 which	 the	 data	 was	 collected	 was	 not	 an	 a-priori	 controlled	
experimental	environment	but	 relied	on	a	course	that	had	evolved	over	several	years,	 structured	as	a	
progression	 of	 topics	 organized	 in	 sections.	While	 the	 course	 activities	were	 kept	 roughly	 uniform	 in	
each	 section,	 their	 number	 and	 composition	 varied.	 In	 particular,	 some	 of	 the	 final	 sections	 did	 not	
contain	any	quizzes.	As	it	turned	out,	all	sections	contained	one	workshop	graded	activity,	except	for	the	
first	section	which	had	three.	Study	resources	were	available	to	students	during	the	entire	course	time,	
whereas	 graded	 activities	were	 opened	 at	 subsequent	 times	 and	 had	 to	 be	 completed	 by	 due	 dates.	
More	relevant,	however,	 to	the	goal	of	deducing	study	strategies	 from	clickstreams,	 is	 the	fact	that	 in	
some	 weeks,	 multiple	 graded	 activities	 were	 open	 and	 students	 could	 have	 studied	 for	 multiple	
assignments,	in	several	upcoming	sections.	While	it	might	be	true	that	study	strategies	are	driven	by	the	
most	 urgent	 assignment,	 it	 is	 also	 possible	 that	 farther	 away	 from	 the	 deadline,	 behaviour	 is	 more	
exploratory.	From	the	point	of	view	of	 the	experienced	 instructor,	 this	 could	be	a	way	 to	1)	motivate	
students,	by	advancing	to	concepts	that	lie	ahead	in	the	course,	and	2)	train	students	in	thinking	along	
multiple	pathways,	even	if	unconsciously.	For	these	reasons,	such	a	course	setup	cannot	be	disregarded,	
but	is	not	an	ideal	setup	for	a	controlled	study.	

To	 improve	 our	model,	we	 need	 to	 deal	with	 the	 issue	 of	endogeneity,	 which	we	 have	 yet	 to	 define	
exactly	 in	our	specific	case.	For	example,	 in	some	sections	the	log	data	did	not	record	any	video	being	
watched	or	resource	being	looked	at	because	another	activity	overshadowed	it.	In	fact,	Moodle	allows	
the	 instructor	 to	 arrange	 resources	 arbitrarily,	 and	 to	 group	 them	 under	 a	 general	 “Page,”	 and	 this	
negatively	impacted	the	uniformity	of	the	data	collected.	Even	if	every	section	contained	the	same	kinds	
of	 learning	 resources,	 these	were	 presented	 differently	 by	 the	 graphical	 user	 interface.	 The	 lack	 of	 a	
uniform	structure	for	every	course	section	had	the	drawback	of	imposing	a	cognitive	load	on	students,	
who	 had	 to	 learn	 to	 navigate	 a	 different	 interface	 in	 every	 section;	 this	 consequently	 hindered	 the	
possibility	 of	 carrying	 out	 an	 unbiased	 learner	 profile	 analysis.	 The	 issue	 of	 collecting	 data	 from	
resources	hosted	on	third-party	servers	(e.g.,	YouTube)	is	also	crucial	in	obtaining	a	complete	picture	of	
learner	 online	 activity.	While	 standards	 exist	 to	 support	 re-usage	 of	 open	 learning	 resources,	 and	we	
successfully	experimented	with	the	Tin	Can3	plugin	for	Moodle,	it	is	still	very	disrupting	to	re-design	and	
re-package	the	whole	course. One	of	the	impacts	of	this	research,	however,	is	the	insights	that	will	guide	
design	and	structuring	of	the	WEPS	online	courses	in	the	future. 

Moreover,	we	are	aware	of	the	fact	that	we	certainly	are	 looking	at	a	very	small	data	set	because	the	
broad	 data	 landscape	 influencing	 learning	 is	 extremely	 varied,	 ranging	 from	 societal	 background	 to	
infrastructure,	 from	well-being	 to	 health	 related	 conditions,	 all	 data	which	we	have	not	 been	 able	 to	
collect	so	far	but	might	become	available	in	the	future.	

                                                
3	http://tincanapi.com	and	http://scorm.com/	
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To	tackle	the	landscape	of	educational	data	for	online	calculus	we	chose	the	strategy	of	understanding	
smaller	portions	that	contribute	to	the	bigger	picture.	Because	our	teaching	is	online,	it	makes	sense	to	
start	by	understanding	the	shape	and	the	geometry	of	the	log	data	collected	by	our	own	online	course.	
This	in	turn	will	inform	our	own	future	work,	that	of	designers	of	online	learning	environments	on	which	
actions	to	track,	and	that	of	students	on	how	best	to	organize	their	study	activity.	
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