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ABSTRACT: Researchers have long recognized the potential benefits of open-ended computer-
based learning environments (OELEs) to help students develop self-regulated learning (SRL)
behaviours. However, measuring self-regulation in these environments is a difficult task. In this
paper, we present our work in developing and evaluating coherence analysis (CA), a novel
approach to interpreting students’ learning behaviours in OELEs. CA focuses on the learner’s
ability to seek out, interpret, and apply information encountered while working in the OELE. By
characterizing behaviours in this manner, CA provides insight into students’ open-ended
problem-solving strategies as well as the extent to which they understand the nuances of their
current learning task. To validate our approach, we applied CA to data from a recent classroom
study with Betty’s Brain. Results demonstrated relationships between CA-derived metrics, prior
skill levels, task performance, and learning. Taken together, these results provide insight into
students’ SRL processes and suggest targets for adaptive scaffolds to support students’
development of science understanding and open-ended problem-solving skills.
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1 INTRODUCTION

For several years, researchers have sought to leverage the power of computer-based learning
environments (CBLEs) to study aspects of students’ self-regulated learning (SRL) behaviours (Sabourin,
Shores, Mott, & Lester, 2013). SRL is an active theory of learning that describes how learners are able to
set goals, create plans for achieving those goals, continually monitor their progress, and revise their
plans when necessary. SRL is a multi-faceted construct: it involves emotional and behavioural control,
management of one’s learning environment and cognitive resources, perseverance in the face of
difficulties, and social interactions to promote effective learning (Zimmerman & Schunk, 2011). For
decades, researchers have recognized academic advantages for learners who are self-regulated (e.g.,
Bransford, Brown, & Cocking, 2000; Butler & Winne, 1995; Zimmerman, 1990), and devising techniques
for automatically detecting and supporting students’ development of self-regulation in CBLEs is an active
area of research (Winters, Greene, & Costich, 2008).
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SRL is particularly important for students working in open-ended computer-based learning environments
(OELEs; Clarebout & Elen, 2008; Land, Hannafin, & Oliver, 2012), which provide a learning context and a
set of tools for exploring, hypothesizing, and building solutions to authentic and complex problems. Such
environments are demanding; they require students to wrestle simultaneously with their emerging
understanding of a complex topic (e.g., ecosystems or macroeconomics), develop and utilize problem-
solving skills to support their learning, and employ SRL processes for managing the complexity and open-
ended nature of the learning task. As such, OELEs can prepare students for future learning (Bransford &
Schwartz, 1999) by developing their ability to investigate and solve open-ended problems
independently.

However, research with OELEs has produced mixed results. While some students with higher levels of
prior knowledge and SRL skills show large learning gains as a result of using OELEs, many of their less
capable counterparts experience significant confusion and frustration (Azevedo & Witherspoon, 2009;
Hacker, Dunlosky, & Graesser, 2009; Kinnebrew, Loretz, & Biswas, 2013). Research examining the
activity patterns of those students indicates that they typically make ineffective, suboptimal learning
choices when they work independently toward completing open-ended tasks (Kinnebrew et al., 2013;
Land, 2000; Mayer, 2004; Sabourin, Mott, & Lester, 2013).

Thus, an important goal of learning analytics research is to develop techniques for studying aspects of
SRL and their manifestations in OELEs. These environments can provide a wealth of fine-grained process
data, and the inferences made from such data necessarily depend on the analytic lens applied. In this
paper, we present our work in developing and evaluating coherence analysis (CA), a novel approach to
analyzing and interpreting student behaviour in OELEs. CA, an extension of our model-based approach
to analyzing learner behaviour in OELEs (Segedy, Biswas, & Sulcer, 2014), focuses on the learner’s ability
to seek out, interpret, and apply information encountered while working in the OELE. By characterizing
behaviours in this manner, CA provides insight into students’ open-ended problem-solving strategies, as
well as the extent to which they understand the nuances of the learning task they are currently
completing.

To validate our approach, we applied CA to data from a recent classroom study with the Betty’s Brain
OELE (Kinnebrew, Segedy, & Biswas, 2014; Leelawong & Biswas, 2008). Results demonstrate the
effectiveness of CA in 1) predicting students’ task performance and learning gains and 2) identifying
common problem-solving approaches among the students in the study. Further, the results demonstrate
relationships between CA-derived metrics and students’ prior skill levels, offering a potential
explanation for students’ problem-solving behaviours. Taken together, these results provide insight into
students’ SRL processes and suggest targets for adaptive scaffolds to support students’ development of
open-ended problem-solving skills.
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2 OPEN-ENDED LEARNING ENVIRONMENTS AND SELF-
REGULATED LEARNING

OELEs focus on supporting learners’ development of strategies for independently completing open-
ended problem-solving tasks. They are typically designed “to support thinking-intensive interactions
with limited external direction” (Land, 2000, p. 62) by providing a learning context and a set of tools for
learning and problem solving. Some OELEs provide explicit goals, while others allow learners to define
their own goals. Examples include hypermedia environments (e.g., Bouchet, Harley, Trevors, & Azevedo,
2013), modelling and simulation environments (e.g., Barab, Hay, Barnett, & Keating, 2000; van
Joolingen, de Jong, Lazonder, Savelsbergh, & Manlove, 2005; Sengupta, Kinnebrew, Basu, Biswas, &
Clark, 2013), and immersive narrative-centred environments (e.g., Clark et al., 2011; Spires, Rowe, Mott,
& Lester, 2011). While OELEs may vary in the particular sets of tools they provide, they often include
tools for 1) seeking and acquiring information, 2) applying that information to a problem-solving task,
and 3) assessing the quality of the constructed solution. For example, students may be given the
following task:

Use the provided simulation software to investigate which properties relate to the distance that a
ball will travel when allowed to roll down a ramp, and then use what you learn to design a ramp
suitable for wheelchairs at a local community centre. To test a solution, enter the details of your
ramp into the system and press “Test.”

OELEs place students in a self-regulatory context in which they must utilize both cognitive and
metacognitive processes to achieve success (Kinnebrew, Segedy, & Biswas,2014; Segedy et al., 2014). To
accomplish this wheelchair task, for example, students must manage their own learning processes in
order to 1) use the system’s resources to learn about factors important to the design of ramps; 2) apply
their knowledge to a problem-solving context by designing a wheelchair ramp; and 3) assess their
developing understanding by testing their designs. As part of managing their learning processes,
students need to plan their interactions with the system, monitor their progress toward completing
their goals, and, when necessary, modify their problem-solving strategies.

2.1 Metacognition and Self-Regulated Learning

Metacognition (Brown, 1975; Flavell, 1976), when applied to learning, is a key component of SRL that
describes the ability to reason about, manage, and redirect one’s own approach to learning (Whitebread
& Cardenas, 2012). It is often broken down into two sub-components: knowledge and regulation
(Schraw, Crippen, & Hartley, 2006; Young & Fry, 2008). Metacognitive knowledge refers to an
individual’s understanding of her own cognition and strategies for managing that cognition.
Metacognitive regulation refers to how metacognitive knowledge is used for creating plans, monitoring
and managing the effectiveness of those plans, and then reflecting on the outcome of plan execution in
order to refine metacognitive knowledge (Veenman, 2011).
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Metacognitive regulation is often considered a subset of SRL that deals directly with cognition without
explicitly considering its interactions with emotional or motivational constructs (Whitebread &
Cardenas, 2012). Despite this, models of self-regulation are valuable in depicting key metacognitive
processes. For example, Roscoe, Segedy, Sulcer, Jeong, & Biswas describe SRL as containing “multiple
and recursive stages incorporating cognitive and metacognitive strategies” (2013, p. 286). Their
description of SRL is summarized in Figure 1; it presents SRL as involving phases of orientation and
planning, enactment and learning, and reflection and self-assessment.
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Figure 1. A model of SRL according to the description in Roscoe et al. (2013)

Students may start by orienting themselves to the task and formulating task understanding (i.e., an
understanding of what the task is). A student’s task understanding is necessarily influenced by her
metacognitive knowledge about her own abilities and available strategies for completing the task
(Veenman, 2013). Together, these two sources of information, task understanding and metacognitive
knowledge, provide a foundation that, in conjunction with other student attributes such as self-efficacy,
governs students’ subsequent goal-setting and planning processes. Once a plan has been formulated,
students begin executing it. As they carry out the activities specified in their plans, students may
exercise metacognitive monitoring as they consciously evaluate the effectiveness of their plans and the
success of the activities they are engaging in. The result of these monitoring processes may lead
students to exercise metacognitive control by modifying or abandoning their plan as they execute it.
Once a plan has been completed or abandoned, students may engage in reflection as they analyze the
effectiveness of their plans and their planning processes. Such reflection may lead students to revise
their metacognitive knowledge and task understanding.

2.2 Real-Time Measurement of Metacognition and Self-Regulated Learning

Measuring students’ self-regulation and metacognitive behaviour in real time is a difficult task; it
requires developing systematic analysis techniques for detecting aspects of goal setting, planning,
monitoring, and reflection in the context of the learning environment. In OELEs, such diagnoses involve
identifying and assessing learners’ cognitive skill proficiency, interpreting their action sequences in
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terms of their goals and the learning strategies they apply to achieve those goals, and evaluating their
success in accomplishing their current tasks. The open-ended nature of OELEs further exacerbates the
measurement problem; since the environments are learner-centred, they typically do not restrict the
approaches that learners take to solving their problems. Thus, interpreting and assessing students’
learning behaviours is inherently complex; they may simultaneously pursue, modify, and abandon any of
a large number of both short-term and long-term approaches to completing their tasks.

Despite this complexity, researchers have developed several approaches to measuring aspects of self-
regulation and metacognition in OELEs. For example, MetaTutor (Bouchet et al.,, 2013) adopts a very
direct approach; it provides interface features through which students can externalize their SRL
processes. By selecting an option from the SRL Palette, students indicate that they would like to, for
example, judge their learning or activate their prior knowledge. To ensure that these features are used
regularly, the system includes pedagogical agents that prompt students to engage in SRL processes
through these features. This allows the system to capture students’ SRL processes directly without
having to make inferences based solely on their activities in the system.

Another approach employed in several OELEs involves developing a predictive, data-driven model for
diagnosing constructs related to SRL in real time (e.g., engagement, frustration, or confusion). In some
OELEs, such as Crystal Island (Sabourin, Shores, Mott, & Lester [2013]) and EcoMUVE (Baker,
Ocumpaugh, Gowda, Kamarainen, & Metcalf, 2014), models have been created by first employing
human coding to label students’ log data with aspects of SRL and then using that labelled data to
construct predictive models. For example, Sabourin, Mott, & Lester (2013) asked students to author
“status updates” at regular intervals while using Crystal Island. These updates were later coded
according to whether or not they included evaluations of the student’s progress toward a goal, and this
coded data, along with other features related to the student and her behaviours in the system, was used
to build a predictive model of good versus poor self-regulation.

In other OELEs, researchers have developed theory-driven models of SRL and embedded those models
into learning environments. For example, EcoLab (Luckin & du Boulay, 1999; Luckin & Hammerton,
2002) measures students’ metacognitive awareness of their own ability by comparing the system’s
assessment of students’ ability levels with the difficulty of the activities they choose to pursue. Should
students choose activities that are too easy or too difficult, the system decreases its confidence in the
student’s metacognitive awareness and then prompts them to reconsider their choice (e.g., “You should
try a more difficult activity”). As another example, Snow, Jackson, & McNamara (2014) measured the
order and stability of students’ behaviour patterns as they used iSTART-ME, a computer-based learning
environment for helping students improve their science comprehension. In their model, lower levels of
the information theoretic measure, Shannon Entropy (Coifman& Wickerhauser, 1992) were interpreted
as indicative of ordered and self-regulated behaviours.

The approach presented in this paper is similar to this second set of environments: we have developed a
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novel theory-driven approach to modelling learning behaviours in OELEs, called coherence analysis (CA),
and applied that approach to the interpretation of log data from Betty’s Brain. However, rather than
focusing on a specific aspect of SRL (e.g., awareness of one’s own ability), CA focuses on students’ ability
to seek for, interpret, and apply information encountered while working in the OELE. In doing so, CA
models aspects of students’ problem-solving skills and metacognitive abilities simultaneously. The
approach is designed to be general, and should apply to OELEs beyond Betty’s Brain, allowing
researchers to study the coherence aspect of SRL in multiple contexts. The next section presents a brief
overview of Betty’s Brain, and the one following presents our coherence analysis approach.

3 BETTY'S BRAIN

Betty’s Brain (Kinnebrew, Segedy, & Biswas, 2014; Leelawong & Biswas, 2008), shown in Figure 2,
presents the task of teaching a virtual agent, Betty, about a science phenomenon (e.g., climate change)
by constructing a causal map that represents that phenomenon as a set of entities connected by
directed links representing causal relationships. Once taught, Betty can use the map to answer causal
guestions and explain those answers by reasoning through chains of links (Leelawong & Biswas, 2008).
The goal for students using Betty’s Brain is to construct a causal map that matches an expert model of
the domain.

As an OELE, Betty’s Brain includes tools for acquiring information, applying that information to a
problem-solving context, and assessing the quality of the constructed solution. Students acquire domain
knowledge by reading hypertext resources that include descriptions of scientific processes (e.g.,
shivering) and information pertaining to each concept that appears in the expert map (e.g., friction). As
students read, they need to identify causal relations, such as “skeletal muscle contractions create friction
in the body.” Students can then apply the learned information by adding the two entities to the causal
map and creating the causal link between them (which “teaches” the information to Betty). In Betty’s
Brain, learners are provided with the list of concepts, and link definitions are limited to the qualitative
options of increase (+) and decrease (-). Students can also add textual descriptions to each link.

Learners can assess their causal map by asking Betty to answer questions (using a causal question
template) and explain her answers. To answer questions, Betty applies qualitative reasoning methods to
the causal map (e.g., the question said that the hypothalamus response increases. This causes skin
contraction to increase. The increase in skin contraction causes...). After Betty answers a question,
learners can ask Mr. Davis, another pedagogical agent that serves as the student’s mentor, to evaluate
her answer. If Betty’s answer and explanation match the expert model (i.e., in answering the question,
both maps utilize the same causal links), then Betty’s answer is correct. Note that a link’s textual
description is not considered during this comparison.
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Figure 2. Betty’s Brain showing the quiz interface

Learners can also have Betty take quizzes, which are a set of questions that can be answered by chaining
together causal links in the map. An example quiz question is “If vehicle use increases what happens to
heat reflected back to earth?” The question can be answered by following a chain of links from the
concept vehicle use to the concept heat reflected back to earth, to derive the answer “heat reflected
back to earth will increase.” Quiz questions are selected dynamically by comparing Betty’s current causal
map to the expert map such that a portion of the chosen questions, in proportion to the completeness
of the current map, will be answered correctly by Betty. The rest of her quiz answers will be incorrect or
incomplete, helping the student identify areas for correction or further exploration. When Betty
answers a quiz question correctly, students know that the links she used to answer that question are
correct. Similarly, when Betty answers a question incorrectly, students know that at least one of the
links she used to answer the question is incorrect. To help students keep track of correct links, the
system allows students to annotate causal links as being correct.

4 COHERENCE ANALYSIS

This section describes our novel Coherence Analysis (CA) approach to learner modelling in OELEs. To
develop this approach, we first performed a task-driven analysis of Betty’s Brain (similar to cognitive
task analysis; Chipman, Schraagen, & Shalin, 2000) to derive 1) the primary tasks that students should be
able to complete to succeed in an OELE, and 2) the processes students must execute to complete those
tasks. The result of this analysis is presented in the following section on “Cognitive and Metacognitive
Problem-solving Processes in OELEs”; the CA approach is presented in “Modelling Learner Behaviours

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 19



JOURNAL OF LEARNING ANALYFICS. 0

(2015). Using Coherence Analysis to Characterize Self-Regulated Learning Behaviours in Open-Ended Learning Environments. Journal of
Learning Analytics, 2(1), 13—48.

with Coherence Analysis” below.
4.1 Cognitive and Metacognitive Problem-solving Processes in OELEs

As discussed above, learners working in OELEs need to access and interpret information, apply that
information to constructing their problem solutions, and assess the quality of the constructed solutions
using assessments provided in the system (Clarebout & Elen, 2008; Land et al., 2012; Land, 2000). These
tasks and their more specific implementations in Betty’s Brain have been incorporated into a task model
(Figure 3) that specifies the tasks important for achieving success in Betty’s Brain. The highest level of
the model identifies the three broad classes of OELE tasks related to 1) information seeking and
acquisition, 2) solution construction and refinement, and 3) solution assessment. Each of these task
categories is further broken down into three levels that represent 1) general task descriptions common
across all OELEs (according to the definition of OELE discussed above); 2) Betty’s Brain specific
instantiations of these tasks; and 3) interface features in Betty’s Brain through which students can
accomplish their tasks.

The directed links in the task model represent dependency relations. Information seeking and
acquisition depends on one’s ability to identify, evaluate the relevance of, and interpret information in
the context of the overall task. Solution construction and refinement tasks depend on one’s ability to
apply information gained both by conducting information seeking tasks and by analyzing the solution
assessment results. Finally, solution assessment tasks depend on one’s ability to interpret the results of
solution assessments as actionable information that can be used to refine the solution in progress. In
order to accomplish these general tasks in Betty’s Brain, students must understand how to perform the
related Betty’s Brain specific tasks by utilizing the system’s interface features.

Identifying and evaluating the relevance of information describes the processes students employ as they
observe, operate on, and make sense of the information presented in an OELE’s information acquisition
tools (Land, 2000; Quintana et al., 2004). Productively employing these processes requires an
understanding of how to identify critical information and interpret it correctly. While learning in Betty’s
Brain, students need to identify sections of the hypertext resources that describe causal relations
between entities in the problem domain. They must then correctly interpret those relations in order to
create an accurate mental model of the science phenomena involved. Such processes can be difficult for
learners; they may not have a firm grasp of causal reasoning mechanisms and the corresponding
representational structures, or they may have difficulty in extracting the correct causal relations from
the nuanced, technical writing style typical of science texts (McNamara, 2004). Further complications
exist when the information contained in the resources conflicts with or challenges learners’ prior
inaccurate understandings of the problem domain. Land (2000) explains that in such situations, learners
are resistant to restructuring their knowledge; instead, they often misinterpret the information in a way
that supports their original conceptions.
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When constructing problem solutions, learners utilize their developing understanding of the problem
domain to make decisions about how to construct solutions. Productively employing these processes
requires an understanding of 1) the structure of problem solutions; 2) the tools available for
constructing solutions; and 3) methods for translating one’s own understanding of the problem domain
and solution requirements into explicit plans for solution construction in the OELE. In Betty’s Brain,
solutions take the form of a visual causal map, and accurately constructing such a map requires
representational fluency (Suh & Moyer, 2007). Students must be able to convert causal information
between and among the system’s hypertext resources, their internal knowledge structures, and the
causal map representation. Students unfamiliar with causal structures or how to represent knowledge
using them will most likely struggle to succeed in completing the Betty’s Brain learning task (Segedy,
Kinnebrew, & Biswas, 2013; Roscoe et al., 2013).

Assessing the quality of constructed solutions describes the processes students employ as they submit
their solutions to automated tests within the system and interpret the resulting feedback. In Betty’s
Brain, learners receive feedback in the form of Betty’s quiz results: a list of questions that are either
addressed appropriately by the model (i.e., Betty can answer these questions correctly), not addressed
by the model (i.e., Betty cannot answer these questions), or addressed incorrectly by the model (i.e.,
Betty generates an incorrect answer to these questions). Learners are expected to use this information
to determine which of their causal links are correct, which are incorrect, and what information is
missing. This requires understanding how to interpret question grades, identify the causal links used to
generate an answer, and evaluate the assessment information obtained via quizzes and question
explanations. If students do not understand the relationship between a question, its quiz grade, and the
links used to answer it, then they will most likely experience difficulty in obtaining meaningful
information from quizzes.

The task model, along with the model of SRL presented in Figure 1, identifies and draws connections
among the cognitive and metacognitive processes critical for learning in OELEs. Students need to
leverage their metacognitive knowledge and task understanding in order to select intermediate goals for
completing their tasks and then create plans for coordinating their use of skills and strategies in service
of achieving those goals. Creating these plans requires understanding the purposes of, and relationships
among, the tasks identified in the task model. Effective plans will utilize information gained from both
information acquisition and solution assessment activities in order to build and refine a causal map that
more closely approximates the expected solution. Because students are likely to make mistakes in
constructing their solutions, they need to understand how to utilize the results of solution assessments
to direct their thinking as they reflect on the sources of their errors.

4.2 Modelling Learner Behaviours with Coherence Analysis

The Coherence Analysis (CA) approach analyzes learners’ behaviours by combining information from
sequences of student actions to produce measures of action coherence. CA interprets students’

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 22



JOURNAL OF LEARNING ANALYFICS. 0

(2015). Using Coherence Analysis to Characterize Self-Regulated Learning Behaviours in Open-Ended Learning Environments. Journal of
Learning Analytics, 2(1), 13—48.

behaviours in terms of the information they encounter in the system and whether or not this
information is utilized during subsequent actions. When students take actions that put them into
contact with information that can help them improve their current solution, they have generated
potential that should motivate future actions. The assumption is that if students can recognize relevant
information in the resources and quiz results, then they should act on that information. If they do not
act on information that they encountered previously, CA assumes that they did not recognize or
understand the relevance of that information. This may stem from incomplete or incorrect
understanding of the science topic, the learning task, and/or strategies for completing the learning task.
Additionally, when students edit their map when they have not encountered any information that could
motivate that edit, CA assumes that they are guessing’. These two notions come together in the
definition of action coherence:

Two ordered actions (x — y) taken by a student in an OELE are action coherent if the second
action, y, is based on information generated by the first action, x. In this case, x provides support
for y, and y is supported by x. Should a learner execute x without subsequently executing y, the
learner has created unused potential in relation to y. Note that actions x and y need not be
consecutive.

The task model (Figure 3) implies two critical coherence relations: 1) applying information acquired from
the hypertext resources to editing the map; and 2) applying inferred link correctness information (as
obtained via quizzes) to editing the map. More specifically, an information seeking action (e.g., reading
about a causal relationship) may generate support for a future solution construction action (e.g., adding
that causal relationship to the map). Similarly, a solution construction action can be supported by a
solution assessment action. An example of the latter situation occurs in Betty’s Brain when a student
deletes a causal link from their map after observing that Betty used that link to generate an incorrect
answer to a quiz question.

CA assumes that learners with higher levels of action coherence possess stronger metacognitive
knowledge and task understanding. Thus, these learners will perform a larger proportion of supported
actions and take advantage of a larger proportion of the potential that their actions generate. In the
analyses presented in this paper, we incorporated the following coherence relations:

e Accessing a resource page that discusses two concepts provides support for adding, removing, or
editing a causal link that connects those concepts.

e Viewing assessment information (usually quiz results) that proves that a specific causal link is
correct provides support for adding that causal link to the map (if not present) and annotating it

! In reality, students may be applying their prior knowledge; however, CA assumes that since students are typically
wrestling with their emerging understanding of the domain, they should verify their prior knowledge before
attempting a solution.
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as being correct (if not annotated)’.
e Viewing assessment information (usually quiz results) that proves that a specific causal link is
incorrect provides support for deleting it from the map (if present).?

Action coherence metrics measure whether or not learners’ actions take advantage of previously
encountered information. To measure whether or not a learner’s actions contradict the information
generated during previous activities, CA also incorporates measures of action incoherence:

Two ordered actions (x — y) taken by a student in an OELE are action incoherent if the second
action, y, is action coherent with the negation of information generated by the first action, x. In
this case, x provides negative support for y, and y is contradicted by x.

CA assumes that learners with higher levels of incoherence among their actions possess a weaker
understanding of the science domain and the relations between different concepts in the domain. For
example, when students have a misconception, they may add an incorrect link to their map due to their
incorrect prior knowledge (Segedy, Kinnebrew, & Biswas, 2011). During solution assessment, they may
obtain evidence that the link is incorrect and then delete it. However, in deleting the link, they may not
restructure their own understanding of the problem domain, and, as a consequence, their established
misconception may lead them to add the same incorrect link to the map at a later point in time. It is
important to note that while incoherence is the natural complement to coherence in our analysis
framework, space limitations compel us to focus on the primary (coherence-based) CA metrics in this
paper, leaving a detailed analysis of students’ action incoherence for future work.

Low levels of action coherence (and high levels of action incoherence) may indicate that learners do not
possess sufficient task understanding or all of the metacognitive knowledge necessary for generating
coherent plans. However, these CA-derived metrics are general measures of performance, and learners
may exhibit low levels of action coherence for a variety of reasons. They may be struggling with 1) the
task understanding and metacognitive knowledge underlying the coherence relations, 2) the related
cognitive processes, and/or 3) their understanding of the domain content.

Our hypotheses in developing CA were as follows:
1. Students’ CA-derived metrics would predict their learning and success in teaching Betty;

2. Students’ prior levels of task understanding would predict their CA-derived metrics while using
Betty’s Brain.

% A quiz can only prove that a link is correct when it is already on Betty’s map; however, a student can view an old
quiz after deleting a link proven correct by that old quiz. In this case, viewing the old quiz would provide support
for adding that link back to the map.

* A student can view an old quiz that proves a link is incorrect even if that link is not currently on their map.
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To explore these hypotheses, we applied CA to a recent classroom study of students using Betty’s Brain.
This study is presented next.

5 EXPERIMENTAL STUDY WITH BETTY'S BRAIN

The goals of this experimental study were to test the two hypotheses listed above. In addition, we
sought to investigate whether or not CA-derived metrics would reveal common problem-solving
approaches as a set of distinct behaviour profiles from the study data. The data presented in this paper
comes from a larger experiment with Betty’s Brain in which students completed two instructional units:
climate change and human thermoregulation. During the first unit on climate change, students received
different types of support from Mr. Davis. While analyses on this data have revealed statistically
significant learning gains overall, they failed to reveal any significant effects of the type of support from
Mr. Davis on students’ learning and performance. Therefore, this paper focuses on the behaviour of all
students, irrespective of the type of support received in the first unit, as they worked on the second
unit, human thermoregulation, where students did not receive any support from the agents.

5.1 Participants

Ninety-nine 6" grade students from four mid-Tennessee science classrooms participated in the study.
The participating school was an academic magnet school with competitive admission requirements. To
enrol in this school, students need to pass all of their classes and achieve an average grade of B+ during
the previous academic year. Demographic data for individual students were not released; however, the
participants were typical of the school environment. Of the school’s 701 students, 7.8% identified as
Asian, 26.2% as Black, 4.0% as Hispanic, and 61.8% as White. None of the students was eligible for
English as a Second Language programs, 1.4% of the students participated in special education
programs, and 26.8% of the students were served by the Free and Reduced Price Lunch program. None
of our study participants was enrolled in special education programs. One student was excused from the
study due to an unrelated injury, therefore, the sample included data from 98 students.

5.2 Topic Unit and Text Resources

Students used Betty’s Brain to learn about human thermoregulation when exposed to cold
temperatures. The expert map, shown in Figure 4, contained 13 concepts and 15 links representing cold
detection (cold temperatures, heat loss, body temperature, cold detection, hypothalamus response) and
three bodily responses to cold: goose bumps (skin contraction, raised skin hairs, warm air near skin, heat
loss), vasoconstriction (blood vessel constriction, blood flow to the skin, heat loss), and shivering
(skeletal muscle contractions, friction in the body, heat in the body). The resources were organized into
two introductory pages discussing the nervous system and homeostasis, one page discussing cold
detection, and three pages discussing the three bodily responses to cold temperatures, one response
per page. Additionally, a dictionary section discussed some of the concepts, one per page. The text was
15 pages (1,974 words) with a Flesch-Kincaid reading grade level of 9.0.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 25



JOURNAL OF LEARNING ANALYFICS. 0

(2015). Using Coherence Analysis to Characterize Self-Regulated Learning Behaviours in Open-Ended Learning Environments. Journal of
Learning Analytics, 2(1), 13—48.

5.3 Betty’s Brain Interface and Features

The version of Betty’s Brain used in this study was similar to the version presented above and illustrated
in Figure 2. Students had access to hypertext resources, causal map editing tools, and the quiz feature.
They could also ask Betty to answer questions and explain her answers, and they could ask Mr. Davis to
grade Betty’s answer to a specific question. However, Mr. Davis avoided grading answers where Betty
used a single link to generate the answer. This was done to prevent students from gaming the system
(Baker et al., 2006) by repeatedly adding a link to Betty’s map and asking Mr. Davis if Betty’s answer to a
question using only that link was correct. If students were unsure of what to do, they could ask Mr.
Davis to explain concepts important for success in Betty’s Brain (e.g., what are cause and effect
relationships, and how do I find them while reading?).

In addition, all students had access to a Teacher’s Guide and a second set of hypertext resources that
explained skills and strategies for seeking information, constructing the causal map, and assessing the
causal map. For information seeking, the guide discussed how to identify causal links in text passages
that use different presentation formats. For example, some passages present a causal link by describing
what happens when the source concept decreases (e.g., “When cold detection decreases, the
hypothalamus response also decreases”). For constructing the causal map, the guide explained how to
use the causal map interface to add, edit, and remove concepts and links. It also explained the
mechanics of causal reasoning (e.g., how to use a causal map to answer questions). For assessing the
causal map, the guide discussed strategies for using quizzes, explanations, and Mr. Davis’s answer
evaluations to identify correct and incorrect links on Betty’s map. In total, the guide contained 31 pages
(6,247 words) with a Flesch-Kincaid reading grade level of 6.6.

5.4 Learning Assessments

Learning was assessed using a pre-test—post-test design with two parts: a set of computer-based
exercises and a set of paper-and-pencil questions. The computer-based test consisted of 20 causal
reasoning items, 10 causal link extraction items, and 14 quiz evaluation items designed to test students’
understanding of the skills discussed in Section 4.1. The written test consisted of six multiple-choice
science content items and four short answer science content questions. Further details on these
assessments are available in Segedy (2014), Appendix C.

5.4.1 Causal Reasoning Items

Causal reasoning items (n=20) presented students with an abstract causal map (i.e., concepts were
named A, B, etc...) and asked students to reason with the map to answer questions (e.g., “If concept A
increases, what will happen to concept B?”). Each problem presented students with four possible
choices: B will increase; B will decrease; B will not be affected; and it depends on which causal relations
are stronger. Students were awarded one point for each question they answered correctly. An abstract
causal map from this assessment is shown in Figure 5. Two causal reasoning items associated with this
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map were as follows: 1) If N increases, then what will happen to P?; and 2) If N decreases, then what will
happen to P? The causal reasoning items were found to be reliable on both the pre-test (a = 0.74) and
the post-test (a = 0.81).

(}/TO\()
N K P
oy 0

\AQ/

Figure 5. An example causal reasoning item.

5.4.2  Causal Link Extraction Items

Causal link extraction items (n=10) presented students with a text passage discussing the relationship
between two abstract entities “Ticks” and “Tacks” (e.g., “Tacks increase when Ticks decrease”), and they
were asked to choose the corresponding causal link described by that passage from the following
choices: Tacks increase Ticks, Tacks decrease Ticks, Ticks increase Tacks, and Ticks decrease Tacks.
Students were awarded one point for each correct answer. The ten causal link extraction items and their
correct answers are included in Table 1. These items were found to be reliable on the pre-test (a = 0.71)
and the post-test (o = 0.76).

Table 1. Causal link extraction items and their correct answers

Text Passage Correct Causal Link
1. Tacks increase Ticks. Tacks increase Ticks.
2. A decrease in Ticks decreases Tacks. Ticks increase Tacks.
3. Tacks are decreased by Ticks. Ticks decrease Tacks.
4. Ticks are decreased by a decrease in Tacks. Tacks increase Ticks.
5. When Ticks increase, Tacks increase too. Ticks increase Tacks.
6. When Tacks decrease, Ticks increase. Tacks decrease Ticks.
7. When Tacks increase, Ticks decrease. Tacks decrease Ticks.
8. Ticks decrease when Tacks increase. Tacks decrease Ticks.
9. Tacks decrease when Ticks decrease. Ticks increase Tacks.
10. | Ticks are increased when Tacks increase. Tacks increase Ticks.

5.4.3 Quiz Evaluation Items

Quiz evaluation items (n=14) presented students with a quiz whose questions, answers, and grades were
linked to an abstract causal map (see Figure 6). Students received one point for every problem in which
they correctly annotated links as correct or incorrect according to the information in the quiz’. These

* See the “Betty’s Brain” section for more information about how Betty’s answers can be used to infer correct and
incorrect causal links.
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items were found to be somewhat reliable on both the pre-test (a = 0.62) and the post-test (a = 0.68).

Challenge: Quiz Like a Pro

# | Question | Answer | Grade
1. IfCincreases, then what happens to D? D will increase.
2. IfD decreases, then what happens to E? E will decrease. @

E will increase.

CI@ Mark as ‘right

Mark as "could be wrong’

Mark as ‘wrong’
¢
& &

Directions

In this challenge, you will practice using quiz results to figure out which ofthe links on a causal map are right, which are wrong,
and which could be wrong. Look at the quiz and map above. When you click on a quiz question, all of the links that are a part of
that answer will light up on the map. To mark a link ‘right,’ ‘wrong,” or ‘could be wrong," right-click on it. When you have finished
marking links, you can submit your answers.

Submit Answers

Figure 6. The quiz evaluation problem interface

5.4.4  Science Content Multiple-Choice Items

Science content multiple-choice items (n=6), each with four choices, tested students’ knowledge of
concepts, processes, and causal relations among concepts in the thermoregulation domain. These items
are shown in Table 2.

5.4.5 Science Content Short Answer Items

Short answer items asked students to combine the causal relations among concepts to explain how the
human body detects and responds to cold temperatures. The items are listed in Table 3. These items
were coded by identifying the chain of causal relationships in learners’ answers, and these chains were
then scored by comparing them to the chain of causal relationships used to derive the answer from the
expert map. One point was awarded for each causal relationship in the student’s answer that was the
same as or closely related to a relation specified in the expert map. For example, to answer question 1
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correctly, students needed to note that skin contraction raises hairs near the skin (1 point), that these
raised hairs trap warm air and keep it near the skin (1 point), and that this warm air near the skin
reduces the rate at which heat is lost from the body (1 point). The maximum combined score for these
questions was 11. Two coders independently scored five of the pre- and post-tests with over 85%
agreement, at which point one of the coders individually coded the remaining answers and computed

the scores.
Table 2. Science content multiple-choice items.
Item

1. | What is thermoregulation?

2. | How does the hypothalamus regulate body temperature when the body gets too cold?

3. | How does shivering help regulate body temperature in cold temperatures?

4. | How do blood vessels change when the body is exposed to cold temperatures?

5. | How do raised skin hairs affect body heat?

6 When a person drinks alcohol, their blood vessels become wider. How would drinking alcohol

" | affect a person outside on a cold day?

Table 3. Science content short answer items.

Items

Explain, step-by-step, how skin contraction reduces heat loss from the body.

Explain, step-by-step, how skeletal muscle contractions increase body temperature.

Explain, step-by-step, how blood vessel constriction decreases heat loss from the body.

AW INIE

Explain, step-by-step, how cold temperatures cause a hypothalamus response in the brain.

5.5 Log File Analysis

This version of Betty’s Brain generated event logs that captured every action taken by the student,
Betty, and Mr. Davis. A logged action corresponds to an atomic expression of intent, such as deleting a
causal link or asking Betty to take a quiz. In addition, the logs contain information on every view that
was displayed when the system was running. A logged view captures the information visible to a user
during a specific time interval. For example, a view is created each time a page of the hypertext
resources is visible. Unlike actions, which are distinct and orderable, views can overlap each other and
span across multiple actions.

The log files provided the information required to calculate a measure of task performance for each
student. By tracking the evolution of a student’s causal map, we could compute how the student’s
causal map score changed over time. The map score at any point in time is calculated as the number of
correct links (i.e., links that appear in the expert map) minus the number of incorrect links in the
student’s map. A student’s best map score was computed as the highest map score they attained during
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the intervention’. The log files also served as input to CA, which automatically calculated the following
metrics for each student:

1. Edit Frequency: the number of causal link edits and annotations made by the student divided by
number of minutes that the student was logged onto the system.

2. Unsupported edit percentage: the percentage of causal link edits and annotations not supported
by any of the previous views that occurred within a five-minute window of the edit.

3. Information viewing time: the amount of time spent viewing either the science resource pages
or Betty’s graded answers. Information viewing percentage is the percentage of the student’s
time on the system classified as information viewing time.

4. Potential generation time: the amount of information viewing time spent viewing information
that could support causal map edits that would improve the map score. To calculate this, we
annotated each hypertext resource page with information about the concepts and links
discussed on that page. Potential generation percentage is the percentage of information
viewing time classified as potential generation time.

5. Used potential time: the amount of potential generation time associated with views that both
occur within a prior five-minute window and also support an ensuing causal map edit. Used
potential percentage is the percentage of potential generation time classified as used potential
time.

Metrics one and two capture the quantity and quality of a student’s causal link edits and annotations,
where supported edits and annotations are considered to be of higher quality. Metrics three, four, and
five capture the quantity and quality of the student’s time viewing either the resources or Betty’s graded
answers. These metrics speak to the student’s ability to seek and identify information that may help her
build or refine her map (potential generation percentage) and then utilize information from those pages
in future map-editing activities (used potential percentage). In these analyses, a page view generated
potential and supported edits only if it lasted at least 10 seconds. Similarly, students had to view quiz
results for at least 2 seconds. These cut-offs helped filter out irrelevant actions (e.g., rapidly flipping
through the resource pages without reading them).

We also calculated a measure of disengaged time, which is defined as the sum of all periods of time, at
least 5 minutes long, during which the student neither 1) viewed a source of information (i.e., science
resources and quiz results) for at least 30 seconds; nor 2) added, changed, deleted, or annotated
concepts or links. This metric represents periods of time during which the learner is not measurably
engaged with the system. Disengaged percentage is the percentage of the student’s time on the system
classified as disengaged time.

> Not every student’s final map was the best map she had created. For example, a student might decide to delete
her entire map and start over near the end of the intervention.
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As a complement to the CA-derived metrics, we employed an information-theoretic differential
sequence mining approach (Kinnebrew, Mack, Biswas, & Chang, 2014) to analyze students’ action
sequences further. This allowed us to identify sequential action patterns that best differentiated groups
of students defined by the CA-derived metrics. The analysis considered the following student actions: 1)
reading resource pages; 2) adding, removing, or editing causal links in the map (further distinguished by
whether or not the edit improved the map score); 3) asking Betty to answer causal questions; 4) having
Betty take quizzes; 5) asking Betty to explain her answer to a question; 6) creating, editing, and viewing
notes; and 7) annotating links to keep track of their correctness. The derivation of action definitions
from raw activity logs is discussed further in (Kinnebrew et al., 2013).

5.6 Procedure

The study was conducted over a period of approximately 6 weeks. At the beginning of the study, the
first author spent 20 minutes introducing students to the causal reasoning methods used in the system.
In particular, this lesson focused on understanding how to interpret and reason with both individual
links and chains of links (i.e., a sequence of one or more links). Students then spent two weeks
completing the climate change unit, which are not reported in this paper. At the beginning of the
climate change unit, students were introduced to the software by Mr. Davis, who explained the task goal
(i.e., teach Betty the correct causal map) and each of the Betty’s Brain system features. As Mr. Davis
explained a feature, he required students to use the feature in a specific way. For example, Mr. Davis
asked students to add the concept “wolves” to their maps and he did not let them proceed until they
had followed his instructions. Students practiced adding and deleting concepts and links, annotating
links, asking Betty to take a quiz, and viewing Betty’s quiz results. Mr. Davis also explained the
importance of these features in successfully completing the Betty’s Brain task. For example, he noted
that students needed to identify relevant causal relations as they read the science resources and then
teach these relations to Betty.

A two-week break separated the climate change and thermoregulation units. At the start of the
thermoregulation unit, students spent two days completing the thermoregulation pre-tests. Students
then spent four class periods using Betty’s Brain to learn about thermoregulation. They completed the
thermoregulation post-test approximately 1.5 weeks after the pre-test.

6 RESULTS

6.1 Learning and Performance Results

Table 4 summarizes the means (and standard deviations) of the students’ pre-test and post-test scores,
significant tests for gains, and a measure of effect size (Cohen’s d). Overall, students exhibited strong
gains on science multiple choice (d = 1.04) and short answer items (d = 1.55), suggesting that Betty’s
Brain facilitated students’ ability to recognize and reason with relationships and definitions important
for understanding thermoregulation. Conversely, students did not show statistically significant gains on
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the remaining three measures. However, during the first unit, students did exhibit statistically significant
gains on causal reasoning (p < 0.01, d = 0.27), causal link extraction (p < 0.01, d = 0.72), and quiz
evaluation items (p < 0.01, d = 0.75), suggesting that Betty’s Brain facilitated students’ ability to reason
with causal maps, identify links in text passages, and interpret Betty’s quiz results during the first unit.

Table 4. Means (and standard deviations) of assessment test scores

Measure Maximum Pre-test Post-test t p Cohen’s d
Science Multiple-Choice 6 2.46 (1.07) 3.90 (1.63) 7.87 0.001 1.04
Science Short Answer 11 1.09 (1.14) 4.63 (2.55) 13.83 0.001 1.55
Causal Reasoning 20 11.44 (3.78) 11.61(4.05) 0.72 0.474 0.07
Causal Link Extraction 10 6.06 (1.98) 6.09 (2.17) 0.22 0.824 0.02
Quiz Evaluation 14 5.27(2.35) 5.63(2.51) 1.79 0.076 0.18

Figure 7 displays the distribution of best map scores achieved by students (u = 6.87, 0 = 5.24). As in
previous studies with Betty’s Brain, student performance on the task varied widely (Kinnebrew et al.,
2013), with 37 students scoring below 5, 28 students scoring between 5 and 10, and 33 students scoring
higher than 10. The maximum score students could obtain was 15, and 13 of the 98 students (13.3%)
attained the maximum score.
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Figure 7. Map score distribution
6.2 Relationships between CA-Derived Metrics, Learning, and Performance

To investigate our first hypothesis, that students’ CA-derived metrics would predict their learning and
success in teaching Betty, we first analyzed correlations between the CA metrics, learning gains, and
students’ best map scores. The bottom row of Table 5 shows the overall descriptive statistics for the CA
metrics. Students edited their maps fairly often (0.60 times per minute), and on average, 55.7% of these
edits were supported. Students spent roughly one-third of their total time viewing information, but only
65.3% of this viewing time was spent on information that could support causal map edits. Students
used, on average, a majority of the potential that they generated (62.3%), and they were mostly
engaged in their learning (88.8%).
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To test for the relationships between students’ CA-derived metrics and their learning and performance,
we calculated the pairwise correlations between students’ CA metrics, their short answer learning gains,
and their best map scores (Table 5). The results show that several of the CA metrics were significantly
and moderately-to-strongly correlated with students’ best map scores. Best map scores were positively
correlated with edit frequency (r = 0.56), potential generation percentage (r = 0.41), and used potential
percentage (r = 0.60). Best map scores were negatively correlated with unsupported edit percentage (r =
—0.49) and disengaged percentage (r = —0.46). Students’ CA metrics were also correlated with their short
answer learning gains. More specifically, short answer learning gains were positively correlated with edit
frequency (r = 0.40), potential generation percentage (r = 0.26), and used potential percentage (r =
0.26).

Interestingly, several CA-derived metrics were significantly correlated with each other. Students with
higher levels of disengagement performed fewer edits per minute (r = —0.49), a higher proportion of
which were unsupported (r = 0.28). They also spent a smaller percentage of their time viewing sources
of information (r = —0.39) and took advantage of proportionally less of the information they
encountered (r = —0.38).

To investigate these relationships further, we conducted multiple regression analyses to predict each of
the learning gain measures and the best map score with the six CA metrics. The CA metrics predicted
best map scores (F = 22.87, p < 0.001, R? = 0.601) and gains on short answer items (F = 4.544, p < 0.001,
R? = 0.231) with statistical significance. With respect to map scores, the CA metrics of edit frequency
(Beta = 0.56, t = 5.10, p < 0.01), information viewing percentage (Beta = 0.36, t = 3.44, p < 0.01),
potential generation percentage (Beta = 0.20, t = 2.52, p = 0.01), and used potential percentage (Beta =
0.26, t = 2.80, p < 0.01) each added significantly to the prediction. With respect to short answer items,
edit frequency (Beta = 0.56, t = 3.73, p < 0.01) and potential generation percentage (Beta = 0.25, t =
2.29, p = 0.02) each added significantly to the prediction. Conversely, the CA metrics did not predict
gains on multiple choice (F= 1.60, p = 0.156, R? = 0.095), causal reasoning (F = 0.53, p = 0.782, R’ =
0.034), causal link extraction (F = 1.02, p = 0.417, R? = 0.063), or quiz evaluation items (F = 1.20, p =
0.316, R? = 0.073) with statistical significance.

Together, these analyses provide potential insight into why particular students experienced more or less
success. Negative correlations between unsupported edit percentage and information viewing
percentage, potential generation percentage, and used potential percentage along with the positive
correlation between unsupported edit percentage and disengaged percentage may suggest a behaviour
profile characterized by disengagement, effort avoidance, and/or a difficulty in identifying causal links in
the resources.

In summary, these results provide support for our first hypothesis. Students’ CA-derived metrics were
collectively predictive of their short answer learning gains and collectively and individually predictive of
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their success in teaching Betty. Students who edited their maps more often, spent more time viewing
information, viewed proportionally more relevant sources of information, and attempted to apply that
information (via supported edits) achieved higher map scores. To gain further insight into this and other
possible behaviour profiles, we performed a more comprehensive behaviour analysis in the next section.

To test our second hypothesis — that students’ prior levels of task understanding would predict their
CA-derived metrics while using Betty’s Brain — we calculated correlations between CA metrics and
students’ pre-test skill levels (6). Most correlations are weak. However, some specific pre-test skill levels
were weakly and significantly correlated with the CA metrics. Students with higher causal reasoning
scores edited their maps more often (r = 0.23) and used proportionally more of the potential they
generated (r = 0.27). Those with higher causal link extraction scores edited their maps more often (r =
0.34), had higher potential generation percentage (r = 0.26), and higher levels of used potential
percentage (r = 0.21). Finally, students with higher quiz evaluation pre-test scores had higher levels of
used potential percentages (r = 0.24).

To investigate this further, we conducted regression analyses to predict each of the six behaviour
metrics from students’ pre-test skill levels. The pre-test skill levels predicted edit frequency (F=4.91, p =
0.003, R? = 0.136), potential generation percentage (F = 2.76, p = 0.047, R’ = 0.284), and used potential
percentage (F = 4.09, p = 0.009, R’ = 0.115) with statistical significance. In these tests, only students’
causal link extraction score added to the prediction of edit frequency with statistical significance (Beta =
0.29, t = 2.50, p = 0.01). Conversely, the pre-test skill levels did not predict unsupported edit percentage
(F=2.40, p = 0.072, R? = 0.071), information viewing percentage (F = 0.28, p = 0.843, R? = 0.009), or
disengaged percentage (F = 1.93, p = 0.129, R? = 0.058) with statistical significance.

Table 6. Correlations between skill level at pre-test and behaviour metrics

Causal Causal Link Quiz
Reasoning Extraction Evaluation
Causal Link Extraction 0.53** 1
Quiz Evaluation 0.17 0.20* 1
Edit Frequency 0.23* 0.34** 0.19
Unsupported Edit % -0.14 -0.24* -0.16
Info Viewing % 0.07 -0.01 -0.02
Potential Generation % 0.17 0.26** 0.16
Used Potential % 0.27** 0.21%* 0.24*
Disengaged % -0.14 —-0.23* -0.13

Note. *p < 0.05. **p < 0.01.

To summarize, we found only limited support for our second hypothesis. Students who were better at
interpreting causal relations in text passages during the pre-test edited their maps somewhat more
frequently and exhibited slightly higher levels of coherence by generating and using proportionally more
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potential.
6.3 Exploratory Clustering Analysis

In addition to testing our hypotheses, we performed an exploratory analysis to identify and characterize
common behaviour profiles exhibited by students. These profiles may provide insight into students’ SRL
strategies as they worked toward completing the Betty’s Brain task. For this analysis, we clustered
students with a complete-link hierarchical clustering algorithm (Jain & Dubes, 1988; Murtagh, 1983),
where each student was described by their set of CA metrics (listed in the Log File Analysis section
above). The Euclidean distance between students’ normalized CA metrics was used as the measure of
dissimilarity among pairs of students. Clustering was performed using version 2.7 of the Orange data
mining toolbox (Demsar, Curk, & Erjavec, 2013).

Figure 8 illustrates the resulting dendrogram. The analysis revealed five relatively distinct clusters
containing 24, 39, 5, 6, and 24 students. Table 7 displays the means (and standard deviations) of the CA
metrics for each cluster. The clustering results show distinct behaviour profiles among the 98 students in
the study. Cluster 1 students (n=24) may be characterized as frequent researchers and careful editors;
these students spent large proportions of their time (42.4%) viewing sources of information and did not
edit their maps very often. When they did edit their maps, the edit was usually supported by recent
activities ( (unsupported edit percentage = 29.4%). Most of the information they viewed was useful for
improving their causal maps (potential generation percentage = 71.4%), but they often did not take
advantage of this information (used potential percentage = 58.9%). Cluster 2 students (n=39) may be
characterized as strategic experimenters. These students spent a fair proportion of their time (33.5%)
viewing sources of information, and, like Cluster 1 students, often did not take advantage of this
information (used potential percentage = 62.6%). Unlike Cluster 1 students, they performed more map
edits, a higher proportion of which were unsupported, as they tried to construct the correct causal
model.

Cluster 3 students (n=5) may be characterized as confused guessers. These students edited their maps
fairly infrequently and usually without support. They spent an average of 58.9% of their time viewing
sources of information, but most of their time viewing information did not generate potential (potential
generation percentage = 45.8%). One possibility is that these students struggled to differentiate
between more and less helpful sources of information. Unfortunately, when they did view useful
information, they often did not take advantage of it (used potential percentage = 23.1%), indicating that
they may have struggled to understand the relevance of the information they encountered. Students in
Cluster 4 (n=6) may be characterized as disengaged from the task. On average, these students spent
more than 30% of their time on the system (more than 45 minutes of class time) in a state of
disengagement. Like confused guessers, disengaged students had a very high proportion of unsupported
edits, low potential generation percentage, and low used potential percentage. In addition, their
information viewing percentage was much lower, though their edits per minute were slightly higher
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Figure 8. Dendrogram of students’ thermoregulation behaviour profiles

Table 7. Means (and standard deviations) of CA-derived metrics by cluster

Cluster Edit Unsup. Info. Potential Used Disengaged
Freq. Edit% View% Gen.% Potential % %

1 Res./Careful Editors 0.30 29.4% 424% 71.4% 58.9% 15.7%

" (n=24) (0.11) (16.1%) (11.0%) (10.6%)  (15.4%) (9.9%)
) Strat. Experimenters 0.60 54.4% 33.5% 58.7% 62.6% 10.9%

" (n=39) (0.23) (14.8%) (8.3%) (18.9%) (16.2%) (7.4%)
3 Confused Guessers 0.21 73.5% 58.9% 45.8% 23.1% 4.8%

" (n=5) (0.06) (13.5%) (7.7%) (19.4%) (12.6%) (5.4%)
4 Disengaged 0.33 74.7%  27.0% 54.9% 28.0% 33.6%

" (n=6) (0.11) (17.4%) (9.6%) (9.3%) (8.7%) (8.4%)
5 Engaged/Efficient 1.04 29.1%  35.4% 76.8% 82.0% 3.1%

" (n=24) (0.32) (15.2%) (8.6%) (9.5%) (9.0%) (5.0%)

Cluster 5 students (n=24) are characterized by a high edit frequency (just over 1 edit per minute), and
most of these students’ edits (70.9%) were supported. Additionally, they spent just over one-third of
their time viewing information, and over three-fourths of this time viewing information that generated
potential. These students are distinct from students in the other four clusters in that they used a large
majority of the potential they generated (82.0%) and were rarely in a state of disengagement (3.1%). In
other words, these students appeared to be engaged and efficient. Their behaviour is indicative of
students who knew how to succeed in Betty’s Brain and were willing to exert the necessary effort.
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Table 8 shows the pre-test and post-test scores broken down by cluster. Cohen’s d calculations were
computed using equation 8 from Morris & DeShon (2002), which corrects for dependence among the
means in within-subjects t-tests. Note that the small cluster sizes of Clusters 3 and 4 (n=5 and 6,
respectively) necessitates caution when interpreting statistical tests performed on the data from these
two clusters. Nevertheless, a 5x2 repeated-measures ANOVA run on the data revealed a main effect of
cluster on short answer questions (F = 5.09, p = 0.001), causal extraction problems (F = 2.82, p = 0.029),
and quiz evaluation problems (F = 3.96, p = 0.005). Tukey HSD-adjusted pairwise comparisons between

the clusters showed that 1) Cluster 5’s short answer scores were significantly higher than the scores of

adjusted adjusted _

Cluster 1 (p = 0.001) and higher, but not significantly higher, than the scores of Cluster 4 (p

0.064); 2) Cluster 5’s causal extraction scores were significantly higher than the scores of Cluster 4
(p°¥“s**? = 0.027); and 3) Cluster 3’s quiz evaluation scores were significantly lower than the scores of

Clusters 1 (p™“*? = 0.036), 2 (p°¥“** = 0.030), and 5 (p°?“**” = 0.003).

The analysis also revealed an interaction between time and cluster for short answer questions (F = 4.86,
p = 0.001). Follow-up ANOVAs on the pre-test and post-test short answer scores did not reveal a
significant effect of cluster on short answer pre-test scores (F = 1.92, p = 0.102), but they did find a
significant effect of cluster on short answer post-test scores (F = 5.70, p < 0.001). Tukey HSD-adjusted
pairwise comparisons between the clusters showed that Cluster 5’s short answer post-test scores were
significantly higher than the scores of Clusters 1 (p°¥“*? < 0.001, d = 1.20), 2 (p®¥***“ = 0.018, d = 0.83),
and 4 (p°@**? = 0.043, d = 1.34). These results show that Cluster 5 students, characterized as engaged
and efficient, exhibited significantly higher short answer item gains when compared to most of the other
student clusters.

Table 9 displays the means (and standard deviations) of the best map scores achieved by students in
each cluster. Because the map scores exhibited a non-normal distribution, we tested for differences
among clusters using a Kruskal-Wallis H test. The test identified a statistically significant difference in
map scores between the clusters (x’(4) = 35.70, p < 0.001), with a mean rank score of 41.58 for Cluster 1,
47.91 for Cluster 2, 24.20 for Cluster 3, 14.00 for Cluster 4, and 74.25 for Cluster 5. Follow-up Mann-
Whitney tests between the groups showed that Cluster 5 students achieved higher map scores than
students in Clusters 1 (p < 0.001, d = 1.50), 2 (p = 0.001, d = 1.49), 3 (p = 0.001, d = 3.70), and 4 (p <
0.001, d = 4.05). As with the learning results, engaged and efficient students performed significantly
better than most other clusters.

To explore more detailed behaviour differences between the identified clusters, we employed the
information-theoretic differential sequence mining approach described in Kinnebrew, Mack, Biswas, &
Chang (2104) and the Log File Analysis section above. This approach identified the action patterns that
best differentiate the five clusters, the top seven of which are presented in Table 10°. In previous work,

® The top differential activity patterns presented in Table 10 are those that included multiple distinct actions,
leaving out trivial patterns of the same action simply repeated multiple times.
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we have argued that these patterns, when interpreted in the context of the task model, may be
indicative of strategies students employ in building and refining their maps (Kinnebrew, Segedy, &
Biswas, 2014). The pattern that most effectively differentiated clusters involved adding an incorrect link
and then annotating an incorrect link as being correct (usually this was the same link just added). This
pattern, most frequently used by strategic experimenters and disengaged students, suggests a potential
misunderstanding of the use of link annotation functionality. According to the task model, students
should only mark links as being correct once those links have been used in Betty’s correct quiz answers.
On average, the pattern was performed 5 to 6 times by strategic experimenters and disengaged
students and less than once by students in the other clusters.

Table 8. Means (and standard deviations) of assessment test scores by cluster

Measure Max Cluster Pre-test Post-test t P Cohen’s d

1 (Res./Careful Editors) 2.17 (1.40)  3.88(1.51) 3.48 0.02 0.71
2 (Strat. Experiment.) 2.59(1.21) 3.72 (1.73) 452 0.01 0.76

(S:er?:::t 6  3(Confused Guessers) 2.20(1.79) 3.60(1.95) 1.25 0.28 0.56

4 (Disengaged) 2.83(1.47) 333(1.21) 075 049 031

5 (Engaged/Efficient)  2.58(1.32)  4.42(1.59) 510 0.01 1.05

1 (Res./Careful Editors) 0.73 (1.13) 3.46 (2.50) 5.17 0.01 1.15

Short 2 (Strat. Experiment.) 1.44 (1.27) 4,53 (2.14) 8.75 0.01 1.47

Answer 11 3 (Confused Guessers) 0.70 (0.45) 3.80 (2.68) 244 0.07 1.24

4 (Disengaged) 0.67(0.61) 3.42(2.06) 3.51 0.02 1.84

5 (Engaged/Efficient) 1.08 (1.00) 6.44 (2.46) 11.29 0.01 2.69

1 (Res./Careful Editors) 10.67 (3.71) 11.17 (4.40) 0.89 0.38 0.19

Caveal 2 (Strat. Experiment.)  11.72(3.75) 11.62(3.77) 025 0.81 0.04

Reasoning 20 3(Confused Guessers) 9.60(3.36)  9.80(370) 022 084 010

4 (Disengaged) 8.83 (1.33) 9.83 (1.72) 2.24 0.08 0.97

5 (Engaged/Efficient)  12.79(3.97) 12.88(4.46) 0.20 0.84 0.05

1 (Res./Careful Editors) 5.79 (1.77)  5.88(1.87) 031 0.76 0.07

2 (Strat. Experiment.)  5.85(1.71) 5.97(2.13) 051 0.1 0.08

Ejt“;'tion 10 3 (Confused Guessers) 5.80(3.42) 6.20(3.27) 1.00 037 0.45

4 (Disengaged) 4.83(1.33) 4.00(1.55) 127 026 052

5 (Engaged/Efficient)  7.04 (2.16)  7.00(2.09) 020 0.84 0.04

1 (Res./Careful Editors) 5.21(2.11) 5.75(3.19) 1.25 0.23 0.29

) 2 (Strat. Experiment.) 5.26 (1.94) 5.64 (1.86) 142 0.17 0.22

Quiz 44 3(Confused Guessers)  2.00(2.00)  3.00(2.83) 141 023 0.73
Evaluation

4 (Disengaged) 5.00(2.76) 3.67(2.58) 1.75 0.14 0.72
5 (Engaged/Efficient)  6.08 (2.69)  6.54(2.11) 0.92 0.37 0.19
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Table 9. Means (and standard deviations) of map score metrics by cluster

Best Map — Best Map - Best Map Score

Cluster Correct Links Incorrect Links (max = 15)
1 (Res./Careful Editors) 6.42 (5.69) 0.96 (1.65) 5.46 (5.27)
2 (Strat. Experiment.) 7.54 (4.76) 1.41 (1.58) 6.13 (4.40)
3 (Confused Guessers)  2.80(2.39) 0.80(1.30) 2.00 (2.00)
4 (Disengaged) 1.17 (1.94)  0.00 (0.00) 1.17 (1.94)
5 (Engaged/Efficient)  12.67 (2.85)  0.75 (1.15) 11.92 (3.37)

Table 10. Means (and standard deviations) of activity pattern frequency by cluster

Pattern Res./Care-  Strat. Confused Disen- Engaged/
ful Editors  Exper. Guessers  gaged Efficient
1. [Add Incorrect Link] = [Mark 0.04 5.28 0.60 5.83 0.83
Incorrect Link as Being Correct] (0.20) (8.81) (0.89) (6.52) (3.29)
. . 2.00 3.67 0.20 0.33 12.29
2. [Quiz] = [Remove Incorrect Link] (4.24) (6.18) (0.45) (0.52) (12.33)
. . 1.25 2.97 0.00 0.17 9.33
3. [Remove Incorrect Link] = [Quiz] (1.33) (5.73) (0.00) (0.41) (8.65)
4. [Add Incorrect Link] = [Quiz] = 1.08 2.56 0.00 0.17 8.79
[Remove Incorrect Link] (4.27) (5.53) (0.00) (0.41) (10.47)
. . 4.54 7.72 2.20 2.50 17.54
5. [Add Incorrect Link] = [Quiz] (4.62) (7.63) (1.30) (1.38) (13.06)
6. [Check Quiz Answer Explanation] = 1.79 2.54 0.20 0.33 9.08
[Remove Incorrect Link] (1.61) (2.87) (0.45) (0.82) (6.40)
7. [Remove Incorrect Link] = [Add 1.08 1.59 0.00 0.00 6.46
Incorrect Link] = [Quiz] (1.06) (2.58) (0.00) (0.00) (6.11)

All of the other top differential activity patterns described in Table 10 involve a combination of map
editing (specifically with respect to incorrect links) and quizzing, patterns that have been associated with
successful performance in Betty’s Brain (Kinnebrew et al., 2013). For example, patterns 2 and 6 are
characteristic of supported map edits based on quiz results. In particular, pattern 6 is characteristic of
exploring the quiz results more deeply by viewing Betty’s answer explanation. Patterns 3, 5, and 7 are
characteristic of using quizzes to monitor progress. After the student edits the map, they have Betty take
a quiz in order to evaluate the effect of that edit on her quiz performance. Pattern 4 combines these two
pattern types into a pattern characteristic of an edit-and-check strategy, in which students add a link to
their map, use a quiz to monitor the effect of that link on Betty’s performance, and then, upon
discovering the link is incorrect, remove it from their maps.

All six of these activity patterns display similar relative use across the clusters, having the highest
average frequency in engaged and efficient students, moderate frequencies in researchers/careful
editors and strategic experimenters, and low frequencies in confused guessers and disengaged students.
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Interestingly, these relative frequencies follow the same pattern as overall map scores and number of
correct links in comparing performance across clusters, as illustrated in Table 9. In other words, clusters
that used these behaviour patterns more often were ones that also achieved greater success in teaching
Betty. Moreover, they also had lower average unsupported edit percentages and higher used potential
percentages. This suggests, but does not prove, that when these patterns were employed by students,
the quizzes provided support for subsequent edits. Altogether, these results indicate that students in
more successful clusters were more likely to employ behaviours illustrating productive uses of the quiz
for solution assessment.

7 DISCUSSION AND CONCLUSIONS

This paper presented Coherence Analysis (CA), a novel approach to measuring aspects of students’ self-
regulated learning (SRL) behaviours in open-ended learning environments (OELEs). CA focuses on the
learner’s ability to seek, interpret, and apply information encountered while working in an OELE. By
characterizing behaviours in this manner, CA provides insight into students’ open-ended problem-
solving strategies, as well as the extent to which they understand the nuances of the learning task they
are currently completing. We applied CA to data from a recent classroom study with Betty’s Brain to test
two hypotheses: 1) students’ CA-derived metrics would predict their learning and success in teaching
Betty; and 2) students’ prior levels of task understanding would predict their CA-derived metrics while
using Betty’s Brain. Results showed some support for both hypotheses: CA-derived metrics were
predictive of students’ task performance and learning gains, and students’ prior skill levels were
(weakly) predictive of some of the CA metrics, suggesting a link between task understanding and
effective open-ended problem-solving behaviours. In addition to testing these hypotheses, we applied a
clustering analysis to characterize students based on their CA metrics, and this provided insights into
common problem-solving approaches used by students in this study.

One important limitation of this work is the fact that we directly assessed students’ task understanding
(via their skills) during the pre- and post-tests without similarly assessing aspects of their metacognitive
knowledge and regulation. Students with high task understanding may still exhibit difficulty in employing
metacognitive processes, such as goal setting, planning, monitoring, and reflection. Future work should
investigate the relationships between metacognitive knowledge, task understanding, and CA-derived
metrics in OELEs. Another limitation is that the CA metrics were based on action coherence metrics
without considering action incoherence. In future work, we will examine the relationships between
students’ learning, performance, action coherence, and action incoherence.

7.1 Coherence Analysis and SRL in OELEs

CA, as distinct from analyses of students’ learning and task performance, provides insight into aspects of
students’ SRL behaviours, particularly in OELEs. Several of the behaviour profiles, identified using cluster
analysis with the CA metrics as features, exhibited similar levels of prior knowledge, prior skill levels,
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success in teaching Betty, and learning while using the system. CA helps us understand how different
behaviours can result in the same level of performance and learning. In fact, one of the more interesting
findings that emerged from this study is that CA metrics were able to distinguish groups of students,
based on their behaviours, beyond what was possible when only focusing on learning gains and map
scores. Certainly, students in the engaged and efficient cluster had higher prior skill levels, better map
scores, and higher learning gains than students in most other clusters. However, it is harder to
distinguish the remaining four clusters in terms of learning gains and performance. Confused guessers
scored lower on quiz evaluation items when compared to researchers/careful editors and strategic
experimenters. However, there were no other measurable differences in performance and learning
gains. Despite this, these groups of students adopted distinct approaches to completing the Betty’s
Brain learning task, as measured by CA. Future work should investigate these profiles further with more
detailed analyses of strategic behaviours. For example, further analysis of observed behaviour patterns
and interviewing students with different behaviour profiles may help us understand the intentions that
drove students’ problem-solving strategy selections. Additional work should also look for interactions
between CA-derived metrics and other aspects of SRL, such as affect and self-efficacy.

7.2 Implications for the Design of OELEs

One interesting set of findings from this study involves the predictive relationships between students’
task understanding (as measured by their skill levels) and their behaviours (as measured by CA). The
results seem to validate, at least to some extent, the metacognitive knowledge dilemma presented by
Land (2000). This dilemma states that success in OELEs depends not only on students’ metacognitive
skills, but also on their understanding of the overall task and its components. In this study, students’
prior skill levels were predictive of some CA metrics, which, in turn, predicted their success in teaching
Betty. Specifically, students with higher task understanding had higher levels of coherence, and students
with higher levels of coherence were more successful in their map-building tasks and demonstrated
larger learning gains on short answer questions. Therefore, building coherence detectors into OELEs can
provide a mechanism for first identifying low levels of coherence and then performing more targeted
diagnosis of students’ task understanding (perhaps via a method similar to rapid dynamic assessments;
Kalyuga & Sweller, 2005). This mechanism, then, could identify and scaffold causes of poor SRL and
problem-solving behaviours. For example, the system could provide students with opportunities to
practice and develop their skills (Segedy et al., 2013) while explaining relevant problem-solving
strategies.

Further, mining of behaviour sequences across identified clusters showed that students with more
successful behaviour profiles were more likely to use the quiz productively (patterns 2 to 7 in Table 10).
This is especially interesting given the fact that students’ quiz evaluation skills were far less predictive of
their behaviour than were their causal extraction skills. It makes sense to hypothesize that students
cannot take advantage of the quiz functionality unless they can identify causal relations in text passages.
Given this, scaffolding agents may support students by first helping them develop their information-
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seeking skills, and then helping them to develop their solution assessment skills. Future work should
investigate these relationships in more detail and how to provide the right scaffolding at the right time.

Another potentially powerful application of CA in OELEs, and one that we are particularly excited about,
is presenting CA metrics to classroom teachers for evaluation and formative assessment. Ideally,
teachers could use these reports to quickly and easily 1) understand learners’ problem-solving
approaches, 2) infer potential reasons for the levels of success achieved by students, and 3) make
predictions about students’ learning and task understanding. Moreover, teachers could use these
reports to assign performance and effort grades and implement classroom and homework activities that
target the aspects of SRL and problem solving with which students are struggling. However, additional
research is required to understand how best to present and use this data with classroom teachers.

In future work, we plan to investigate the predictive power of additional CA-derived metrics via feature
engineering and selection (Peng, Long, & Ding, 2005). In this study, we chose six metrics that
successfully differentiated students and predicted aspects of their learning and performance. However,
other CA-derived metrics may be better predictors. For example, it may be valuable to represent actions
based on the amount of support they have from previous actions, rather than a binary measure of
whether they do/do not have any support. As another example, it may be valuable to investigate CA
metrics that incorporate more fine-grained aspects of how student behaviour changes over time. Ideally,
this will allow us to study the development of SRL as students’ task understanding and problem-solving
skills improve in the Betty’s Brain environment. Further, by studying aspects of coherence across
multiple OELEs, we could also gain insight into how students generalize aspects of SRL and open-ended
problem-solving strategies and skills over a more extended period.
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